Spaces:
Running
on
Zero
Running
on
Zero
from typing import List | |
import torch | |
from torchvision import transforms | |
from transformers import CLIPImageProcessor | |
from transformers import CLIPVisionModel as OriginalCLIPVisionModel | |
from ._clip import CLIPVisionModel | |
from PIL import Image | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import os | |
def is_torch2_available(): | |
return hasattr(F, "scaled_dot_product_attention") | |
if is_torch2_available(): | |
from .attention_processor import SSRAttnProcessor2_0 as SSRAttnProcessor, AttnProcessor2_0 as AttnProcessor | |
else: | |
from .attention_processor import SSRAttnProcessor, AttnProcessor | |
from .resampler import Resampler | |
class detail_encoder(torch.nn.Module): | |
"""from SSR-encoder""" | |
def __init__(self, unet, image_encoder_path, device="cuda", dtype=torch.float32): | |
super().__init__() | |
self.device = device | |
self.dtype = dtype | |
# load image encoder | |
clip_encoder = OriginalCLIPVisionModel.from_pretrained(image_encoder_path) | |
self.image_encoder = CLIPVisionModel(clip_encoder.config) | |
state_dict = clip_encoder.state_dict() | |
self.image_encoder.load_state_dict(state_dict, strict=False) | |
self.image_encoder.to(self.device, self.dtype) | |
del clip_encoder | |
self.clip_image_processor = CLIPImageProcessor() | |
# load SSR layers | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor() | |
else: | |
attn_procs[name] = SSRAttnProcessor(hidden_size=hidden_size, cross_attention_dim=1024, scale=1).to(self.device, dtype=self.dtype) | |
unet.set_attn_processor(attn_procs) | |
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) | |
self.SSR_layers = adapter_modules | |
self.SSR_layers.to(self.device, dtype=self.dtype) | |
self.resampler = self.init_proj() | |
def init_proj(self): | |
resampler = Resampler().to(self.device, dtype=self.dtype) | |
return resampler | |
def forward(self, img): | |
image_embeds = self.image_encoder(img, output_hidden_states=True)['hidden_states'][2::2] | |
image_embeds = torch.cat(image_embeds, dim=1) | |
image_embeds = self.resampler(image_embeds) | |
return image_embeds | |
def get_image_embeds(self, pil_image): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = [] | |
for pil in pil_image: | |
tensor_image = self.clip_image_processor(images=pil, return_tensors="pt").pixel_values.to(self.device, dtype=self.dtype) | |
clip_image.append(tensor_image) | |
clip_image = torch.cat(clip_image, dim=0) | |
# cond | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True)['hidden_states'][2::2] # 1 257*12 1024 | |
clip_image_embeds = torch.cat(clip_image_embeds, dim=1) | |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True)['hidden_states'][2::2] | |
uncond_clip_image_embeds = torch.cat(uncond_clip_image_embeds, dim=1) | |
clip_image_embeds = self.resampler(clip_image_embeds) | |
uncond_clip_image_embeds = self.resampler(uncond_clip_image_embeds) | |
return clip_image_embeds, uncond_clip_image_embeds | |
def generate( | |
self, | |
id_image, | |
makeup_image, | |
seed=None, | |
guidance_scale=2, | |
num_inference_steps=30, | |
pipe=None, | |
**kwargs, | |
): | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(makeup_image) | |
prompt_embeds = image_prompt_embeds | |
negative_prompt_embeds = uncond_image_prompt_embeds | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
image = pipe( | |
image=id_image, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images[0] | |
return image |