# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNet2DModel, VQModel from ...schedulers import DDIMScheduler from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class LDMPipeline(DiffusionPipeline): r""" Pipeline for unconditional image generation using latent diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): A `UNet2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): [`DDIMScheduler`] is used in combination with `unet` to denoise the encoded image latents. """ def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler): super().__init__() self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" The call function to the pipeline for generation. Args: batch_size (`int`, *optional*, defaults to 1): Number of images to generate. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Example: ```py >>> from diffusers import LDMPipeline >>> # load model and scheduler >>> pipe = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") >>> # run pipeline in inference (sample random noise and denoise) >>> image = pipe().images[0] ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ latents = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) latents = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(self.scheduler.timesteps): latent_model_input = self.scheduler.scale_model_input(latents, t) # predict the noise residual noise_prediction = self.unet(latent_model_input, t).sample # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample # adjust latents with inverse of vae scale latents = latents / self.vqvae.config.scaling_factor # decode the image latents with the VAE image = self.vqvae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)