import os import imageio import numpy as np from PIL import Image import torch torch.manual_seed(1024) from inference_utils import inference from face_utils import get_face_img, get_faces_video from batch_face import RetinaFace face_detector = RetinaFace(gpu_id=0) if torch.cuda.is_available() else RetinaFace(gpu_id=-1) def check_if_image_file(filename): return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".PNG", ".JPG", ".JPEG"]) def check_if_video_file(filename): return any(filename.endswith(extension) for extension in [".mp4", ".avi"]) def concat_image(image1, image2, image3): # resize to the same size of image3 image1 = image1.resize(image3.size) image2 = image2.resize(image3.size) concat_img = Image.new("RGB", (image3.width*3, image3.height)) concat_img.paste(image1, (0, 0)) concat_img.paste(image2, (image3.width, 0)) concat_img.paste(image3, (image3.width*2, 0)) return concat_img if __name__ == "__main__": import argparse from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument("--id_input", type=str, help="Path to the input, can be an image, a video", required=True) parser.add_argument("--makeup_reference", type=str, help="Path to the makeup image file", required=True) parser.add_argument("--fast_test", action="store_true", help="Use fast test mode, only process every 5 frames") parser.add_argument("--output_dir", type=str, default="./output") args = parser.parse_args() id_input = args.id_input makeup_reference = args.makeup_reference output_dir = args.output_dir os.makedirs(output_dir, exist_ok=True) # check if the input is a video or an image id_basename = os.path.basename(id_input).split(".")[0] if check_if_video_file(id_input): # read all frames from the video frames, coords = get_faces_video(face_detector, id_input) id_images = frames if not args.fast_test else frames[::5] coords = coords if not args.fast_test else coords[::5] elif check_if_image_file(id_input): frame, coord = get_face_img(face_detector, id_input) id_images = [frame] coords = [coord] else: raise ValueError("Unsupported file format for id_input") makeup_basename = os.path.basename(makeup_reference).split(".")[0] if check_if_image_file(makeup_reference): makeup_image_pil, _ = get_face_img(face_detector, makeup_reference) else: raise ValueError("Unsupported file format for makeup_reference") if len(id_images) == 0: raise ValueError("No input images loaded") elif len(id_images) == 1: result_img = inference(id_images[0], makeup_image_pil) # concat id, makeup and result images concat_img = concat_image(id_images[0], makeup_image_pil, result_img) concat_img.save(os.path.join(output_dir, id_basename + makeup_basename + '.png')) print(f"Output Image Saved to {os.path.join(output_dir, id_basename + makeup_basename + '.png')}") elif len(id_images) > 1: # get fps of the original video try: fps = imageio.get_reader(id_input).get_meta_data()["fps"] except: print("Failed to get the fps of the video, using default 25 fps") fps = 25 writer = imageio.get_writer(os.path.join(output_dir, id_basename + makeup_basename + '.mp4'), fps=fps if not args.fast_test else fps/5, quality=9, codec="libx264") for id_image_pil in tqdm(id_images): result_img = inference(id_image_pil, makeup_image_pil) concat_img = concat_image(id_image_pil, makeup_image_pil, result_img) writer.append_data(np.array(concat_img)) writer.close() print(f"Output Video Saved to {os.path.join(output_dir, id_basename + makeup_basename + '.mp4')}")