File size: 21,032 Bytes
910b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict
from IPython.display import display
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
from torch import nn, einsum
from einops import rearrange, repeat
from inspect import isfunction


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
    h, w, c = image.shape
    offset = int(h * .2)
    img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
    font = cv2.FONT_HERSHEY_SIMPLEX
    # font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
    img[:h] = image
    textsize = cv2.getTextSize(text, font, 1, 2)[0]
    text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
    cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
    return img


def view_images(images, num_rows=1, offset_ratio=0.02, name='image', timestamp=0, layernum=None):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0

    empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
    images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
    num_items = len(images)

    h, w, c = images[0].shape
    offset = int(h * offset_ratio)
    num_cols = num_items // num_rows
    image_ = np.ones((h * num_rows + offset * (num_rows - 1),
                      w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
    for i in range(num_rows):
        for j in range(num_cols):
            image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
                i * num_cols + j]   
    
    pil_img = Image.fromarray(image_)
    display(pil_img)
    
    
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
    if low_resource:
        noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
        noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
    else:
        latents_input = torch.cat([latents] * 2)
        noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
        noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
    
    # classifier-free guidance during inference
    noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) 
    # noise_pred = guidance_scale * noise_prediction_text
    
    latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
    latents = controller.step_callback(latents)
    return latents


def latent2image(vae, latents):
    latents = 1 / 0.18215 * latents
    image = vae.decode(latents)['sample']
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).astype(np.uint8)
    return image


def init_latent(latent, model, height, width, generator, batch_size):
    if latent is None:
        latent = torch.randn(
            (1, model.unet.in_channels, height // 8, width // 8),
            generator=generator,
        )
    latents = latent.expand(batch_size,  model.unet.in_channels, height // 8, width // 8).to(model.device)
    return latent, latents


@torch.no_grad()
def text2image_ldm(
    model,
    prompt:  List[str],
    controller,
    num_inference_steps: int = 50,
    guidance_scale: Optional[float] = 7.,
    generator: Optional[torch.Generator] = None,
    latent: Optional[torch.FloatTensor] = None,
):
    register_attention_control(model, controller)
    height = width = 256
    batch_size = len(prompt)
    
    uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
    uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
    
    text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
    text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
    latent, latents = init_latent(latent, model, height, width, generator, batch_size)
    context = torch.cat([uncond_embeddings, text_embeddings]) 
    
    model.scheduler.set_timesteps(num_inference_steps)
    for t in tqdm(model.scheduler.timesteps):
        latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
    
    image = latent2image(model.vqvae, latents)
   
    return image, latent


@torch.no_grad()
def text2image_ldm_stable(
    model,
    prompt: List[str],
    controller,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    generator: Optional[torch.Generator] = None,
    latent: Optional[torch.FloatTensor] = None,
    low_resource: bool = False,
):
    register_attention_control(model, controller)
    height = width = 512
    batch_size = len(prompt)

    text_input = model.tokenizer(
        prompt,
        padding="max_length",
        max_length=model.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
    max_length = text_input.input_ids.shape[-1]
    uncond_input = model.tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
    
    context = [uncond_embeddings, text_embeddings]
    if not low_resource:
        context = torch.cat(context)
    latent, latents = init_latent(latent, model, height, width, generator, batch_size)
    
    model.scheduler.set_timesteps(num_inference_steps)
    for t in tqdm(model.scheduler.timesteps):
        latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
    
    image = latent2image(model.vae, latents)
  
    return image, latent


def register_attention_control(model, controller, center_row_rm, center_col_rm, target_height, target_width, width, height, top=None, left=None, bottom=None, right=None, inject_bg=False, segmentation_map=None, pseudo_cross=False): 
    def ca_forward(self, place_in_unet):
        def forward(x, context=None, mask=None, encode=False, controller_for_inject=None, inject=False, layernum=None, main_height=None, main_width=None):
            torch.cuda.empty_cache()
            is_cross = context is not None
            h = self.heads

            q = self.to_q(x)
            context = default(context, x)
            k = self.to_k(context)
            v = self.to_v(context)

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
                        
            if exists(mask):
                mask = rearrange(mask, 'b ... -> b (...)')
                max_neg_value = -torch.finfo(sim.dtype).max
                mask = repeat(mask, 'b j -> (b h) () j', h=h)
                sim.masked_fill_(~mask, max_neg_value)
                    
            # ref's location in ref image
            top_rr = int((0.5*(target_height - height))/target_height * main_height)  
            bottom_rr = int((0.5*(target_height + height))/target_height * main_height) 
            left_rr = int((0.5*(target_width - width))/target_width * main_width)  
            right_rr = int((0.5*(target_width + width))/target_width * main_width)  
            
            new_height = bottom_rr - top_rr
            new_width = right_rr - left_rr    
                
            step_height2, remainder = divmod(new_height, 2)
            step_height1 = step_height2 + remainder
            step_width2, remainder = divmod(new_width, 2)
            step_width1 = step_width2 + remainder      

            center_row = int(center_row_rm * main_height)
            center_col = int(center_col_rm * main_width)
            
            if pseudo_cross:
                               
                ref_init = rearrange(x[2], '(h w) c ->1 c h w', h=main_height).contiguous()
                context = ref_init[:, :, top_rr:bottom_rr, left_rr:right_rr]
                
                context = rearrange(context, '1 c h w ->1 (h w) c').contiguous()
                context = repeat(context, '1 ... -> b ...', b=2)
                
                if (sim.shape[1])**0.5 == 32:
                    seg_map = segmentation_map[::2, ::2].clone()
                elif (sim.shape[1])**0.5 == 16:
                    seg_map = segmentation_map[::4, ::4].clone()
                elif (sim.shape[1])**0.5 == 8:
                    seg_map = segmentation_map[::8, ::8].clone()
                else:
                    seg_map = segmentation_map.clone()
                    
                # record reference location
                ref_loc_masked = []
                for i in range(bottom_rr - top_rr):
                    for j in range(right_rr - left_rr):
                        if seg_map[top_rr:bottom_rr, left_rr:right_rr][i, j] == 1:
                            ref_loc_masked.append(int(i * (right_rr - left_rr) + j))        
                ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)

                if len(ref_loc_masked) == 0:
                    masked_context = context
                else:
                    masked_context = context[:, ref_loc_masked, :]
                             
                k = self.to_k(masked_context)
                v = self.to_v(masked_context)

                k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k, v))
                sim = einsum('b i d, b j d -> b i j', q[int(q.shape[0]/2):], k) * self.scale
                
                if exists(mask):
                    mask = rearrange(mask, 'b ... -> b (...)')
                    max_neg_value = -torch.finfo(sim.dtype).max
                    mask = repeat(mask, 'b j -> (b h) () j', h=h)
                    sim.masked_fill_(~mask, max_neg_value)
                
                if encode == False:
                    sim = controller(sim, is_cross, place_in_unet)

                sim = sim.softmax(dim=-1)
                out = einsum('b i j, b j d -> b i d', sim, v)
                out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
                
                out = torch.cat([out]*2, dim=0)
                
                del sim, k, v, masked_context, q, ref_loc_masked, context, ref_init, seg_map, mask
                
                return self.to_out(out)
            
            if encode == False:
                sim = controller(sim, is_cross, place_in_unet)
                
            if inject or inject_bg and is_cross == False:
                            
                if (sim.shape[1])**0.5 == 32:
                    seg_map = segmentation_map[::2, ::2]
                elif (sim.shape[1])**0.5 == 16:
                    seg_map = segmentation_map[::4, ::4]
                elif (sim.shape[1])**0.5 == 8:
                    seg_map = segmentation_map[::8, ::8]
                else:
                    seg_map = segmentation_map

                ref_loc = []
                ref_loc_masked = []
                for i in range(top_rr, bottom_rr):
                    for j in range(left_rr, right_rr):
                        ref_loc.append(int(i * (sim.shape[1])**0.5 + j))
                        if seg_map[i, j] == 1:
                            ref_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
                ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)
                
                ref_col_maksed1 = ref_loc_masked.repeat(len(ref_loc_masked)).unsqueeze(1)
                ref_col_maksed2 = ref_loc_masked.repeat_interleave(len(ref_loc_masked)).unsqueeze(1)
                
                # original location
                orig_loc_masked = []
                orig_loc = []
                
                orig_mask = torch.zeros_like(sim[h:])
                mask_for_realSA = torch.zeros_like(sim[h:])

                for i_seg, i in enumerate(range(center_row - step_height1, center_row + step_height2)):
                    for j_seg, j in enumerate(range(center_col - step_width1, center_col + step_width2)):
                        orig_loc.append(int(i * (sim.shape[1])**0.5 + j))
                        # within segmentation map
                        if seg_map[top_rr:bottom_rr, left_rr:right_rr][i_seg, j_seg] == 1:
                            orig_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
                orig_loc_masked = torch.tensor((orig_loc_masked), device=x.device)
                
                orig_col_masked1 = orig_loc_masked.repeat(len(orig_loc_masked)).unsqueeze(1)
                orig_col_masked2 = orig_loc_masked.repeat_interleave(len(orig_loc_masked)).unsqueeze(1)

                orig_loc = torch.tensor((orig_loc), device=x.device)
                                
                mask_for_realSA[:, orig_loc, :] = 1
                mask_for_realSA[:, :, orig_loc] = 1
                
                if place_in_unet == 'down':
                    
                    if inject_bg:
                        # inject background of the squared region
                        sim[h:] = controller_for_inject[0].attention_store['down_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA

                    if inject and len(ref_col_maksed1) != 0:
                        # inject the pesudo cross attention
                        if len(orig_loc_masked) != 0:
                            sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['down_self'][layernum] # row injection
                            sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['down_self'][layernum].permute(0,2,1) # column injection
                        # inject the foreground in the squared region but masked by the segmentation map
                        sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['down_self'][layernum][:, ref_col_maksed1, ref_col_maksed2] 
                    
                elif place_in_unet == 'up':  
                                        
                    if inject_bg:
                        # inject background of the squared region
                        sim[h:] = controller_for_inject[0].attention_store['up_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA

                    if inject and len(ref_col_maksed1) != 0:
                        # inject the pesudo cross attention
                        if len(orig_loc_masked) != 0:
                            sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['up_self'][layernum] # row injection
                            sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['up_self'][layernum].permute(0,2,1) # column injection
                        # inject the foreground in the squared region but masked by the segmentation map
                        sim[h:, orig_col_masked1, orig_col_masked2] =  controller_for_inject[1].attention_store['up_self'][layernum][:, ref_col_maksed1, ref_col_maksed2] 
                    
                elif place_in_unet == 'mid':
                    
                    if inject_bg:
                        # inject background of the squared region
                        sim[h:] = controller_for_inject[0].attention_store['mid_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
        
                    if inject and len(ref_col_maksed1) != 0:   
                        # inject the pesudo cross attention
                        if len(orig_loc_masked) != 0:
                            sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['mid_self'][layernum] # row injection
                            sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['mid_self'][layernum].permute(0,2,1) # column injection
                        # inject the foreground in the squared region but masked by the segmentation map
                        sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['mid_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]

                del orig_mask, mask_for_realSA, orig_loc_masked, orig_col_masked1, orig_col_masked2, ref_col_maksed1, ref_col_maksed2

            sim = sim.softmax(dim=-1)
                
            out = einsum('b i j, b j d -> b i d', sim, v)
            out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
            
            del sim, v, q, k, context
            
            return self.to_out(out)
            
        return forward

    def register_recr(net_, count, place_in_unet):
        if 'CrossAttention' in net_.__class__.__name__:
            if net_.to_k.in_features != 1024:
                net_.forward = ca_forward(net_, place_in_unet)
                return count + 1 
            else:
                return count
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                count = register_recr(net__, count, place_in_unet)
        return count

    cross_att_count = 0
    # sub_nets = model.unet.named_children()
    sub_nets = model.model.diffusion_model.named_children()
    for net in sub_nets:
        if "input" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "output" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "middle" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")
    controller.num_att_layers = cross_att_count

    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
    if type(bounds) is float:
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[: start, prompt_ind, word_inds] = 0
    alpha[start: end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha


def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                                   tokenizer, max_num_words=77):
    if type(cross_replace_steps) is not dict:
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0., 1.)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    
    for i in range(len(prompts) - 1):
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
        
    for key, item in cross_replace_steps.items():
        if key != "default_":
             inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
             for i, ind in enumerate(inds):
                 if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
    return alpha_time_words