Spaces:
Runtime error
Runtime error
File size: 21,032 Bytes
910b9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict
from IPython.display import display
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
from torch import nn, einsum
from einops import rearrange, repeat
from inspect import isfunction
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
h, w, c = image.shape
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
return img
def view_images(images, num_rows=1, offset_ratio=0.02, name='image', timestamp=0, layernum=None):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
display(pil_img)
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
if low_resource:
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
# classifier-free guidance during inference
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# noise_pred = guidance_scale * noise_prediction_text
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents = controller.step_callback(latents)
return latents
def latent2image(vae, latents):
latents = 1 / 0.18215 * latents
image = vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
@torch.no_grad()
def text2image_ldm(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
):
register_attention_control(model, controller)
height = width = 256
batch_size = len(prompt)
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
context = torch.cat([uncond_embeddings, text_embeddings])
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
image = latent2image(model.vqvae, latents)
return image, latent
@torch.no_grad()
def text2image_ldm_stable(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
low_resource: bool = False,
):
register_attention_control(model, controller)
height = width = 512
batch_size = len(prompt)
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
context = [uncond_embeddings, text_embeddings]
if not low_resource:
context = torch.cat(context)
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for t in tqdm(model.scheduler.timesteps):
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
image = latent2image(model.vae, latents)
return image, latent
def register_attention_control(model, controller, center_row_rm, center_col_rm, target_height, target_width, width, height, top=None, left=None, bottom=None, right=None, inject_bg=False, segmentation_map=None, pseudo_cross=False):
def ca_forward(self, place_in_unet):
def forward(x, context=None, mask=None, encode=False, controller_for_inject=None, inject=False, layernum=None, main_height=None, main_width=None):
torch.cuda.empty_cache()
is_cross = context is not None
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# ref's location in ref image
top_rr = int((0.5*(target_height - height))/target_height * main_height)
bottom_rr = int((0.5*(target_height + height))/target_height * main_height)
left_rr = int((0.5*(target_width - width))/target_width * main_width)
right_rr = int((0.5*(target_width + width))/target_width * main_width)
new_height = bottom_rr - top_rr
new_width = right_rr - left_rr
step_height2, remainder = divmod(new_height, 2)
step_height1 = step_height2 + remainder
step_width2, remainder = divmod(new_width, 2)
step_width1 = step_width2 + remainder
center_row = int(center_row_rm * main_height)
center_col = int(center_col_rm * main_width)
if pseudo_cross:
ref_init = rearrange(x[2], '(h w) c ->1 c h w', h=main_height).contiguous()
context = ref_init[:, :, top_rr:bottom_rr, left_rr:right_rr]
context = rearrange(context, '1 c h w ->1 (h w) c').contiguous()
context = repeat(context, '1 ... -> b ...', b=2)
if (sim.shape[1])**0.5 == 32:
seg_map = segmentation_map[::2, ::2].clone()
elif (sim.shape[1])**0.5 == 16:
seg_map = segmentation_map[::4, ::4].clone()
elif (sim.shape[1])**0.5 == 8:
seg_map = segmentation_map[::8, ::8].clone()
else:
seg_map = segmentation_map.clone()
# record reference location
ref_loc_masked = []
for i in range(bottom_rr - top_rr):
for j in range(right_rr - left_rr):
if seg_map[top_rr:bottom_rr, left_rr:right_rr][i, j] == 1:
ref_loc_masked.append(int(i * (right_rr - left_rr) + j))
ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)
if len(ref_loc_masked) == 0:
masked_context = context
else:
masked_context = context[:, ref_loc_masked, :]
k = self.to_k(masked_context)
v = self.to_v(masked_context)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k, v))
sim = einsum('b i d, b j d -> b i j', q[int(q.shape[0]/2):], k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
if encode == False:
sim = controller(sim, is_cross, place_in_unet)
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = torch.cat([out]*2, dim=0)
del sim, k, v, masked_context, q, ref_loc_masked, context, ref_init, seg_map, mask
return self.to_out(out)
if encode == False:
sim = controller(sim, is_cross, place_in_unet)
if inject or inject_bg and is_cross == False:
if (sim.shape[1])**0.5 == 32:
seg_map = segmentation_map[::2, ::2]
elif (sim.shape[1])**0.5 == 16:
seg_map = segmentation_map[::4, ::4]
elif (sim.shape[1])**0.5 == 8:
seg_map = segmentation_map[::8, ::8]
else:
seg_map = segmentation_map
ref_loc = []
ref_loc_masked = []
for i in range(top_rr, bottom_rr):
for j in range(left_rr, right_rr):
ref_loc.append(int(i * (sim.shape[1])**0.5 + j))
if seg_map[i, j] == 1:
ref_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
ref_loc_masked = torch.tensor((ref_loc_masked), device=x.device)
ref_col_maksed1 = ref_loc_masked.repeat(len(ref_loc_masked)).unsqueeze(1)
ref_col_maksed2 = ref_loc_masked.repeat_interleave(len(ref_loc_masked)).unsqueeze(1)
# original location
orig_loc_masked = []
orig_loc = []
orig_mask = torch.zeros_like(sim[h:])
mask_for_realSA = torch.zeros_like(sim[h:])
for i_seg, i in enumerate(range(center_row - step_height1, center_row + step_height2)):
for j_seg, j in enumerate(range(center_col - step_width1, center_col + step_width2)):
orig_loc.append(int(i * (sim.shape[1])**0.5 + j))
# within segmentation map
if seg_map[top_rr:bottom_rr, left_rr:right_rr][i_seg, j_seg] == 1:
orig_loc_masked.append(int(i * (sim.shape[1])**0.5 + j))
orig_loc_masked = torch.tensor((orig_loc_masked), device=x.device)
orig_col_masked1 = orig_loc_masked.repeat(len(orig_loc_masked)).unsqueeze(1)
orig_col_masked2 = orig_loc_masked.repeat_interleave(len(orig_loc_masked)).unsqueeze(1)
orig_loc = torch.tensor((orig_loc), device=x.device)
mask_for_realSA[:, orig_loc, :] = 1
mask_for_realSA[:, :, orig_loc] = 1
if place_in_unet == 'down':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['down_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['down_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['down_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['down_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
elif place_in_unet == 'up':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['up_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['up_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['up_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['up_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
elif place_in_unet == 'mid':
if inject_bg:
# inject background of the squared region
sim[h:] = controller_for_inject[0].attention_store['mid_self'][layernum] * (1 - mask_for_realSA) + sim[h:] * mask_for_realSA
if inject and len(ref_col_maksed1) != 0:
# inject the pesudo cross attention
if len(orig_loc_masked) != 0:
sim[h:, :, orig_loc_masked] = controller_for_inject[2].attention_store['mid_self'][layernum] # row injection
sim[h:, orig_loc_masked, :] = controller_for_inject[2].attention_store['mid_self'][layernum].permute(0,2,1) # column injection
# inject the foreground in the squared region but masked by the segmentation map
sim[h:, orig_col_masked1, orig_col_masked2] = controller_for_inject[1].attention_store['mid_self'][layernum][:, ref_col_maksed1, ref_col_maksed2]
del orig_mask, mask_for_realSA, orig_loc_masked, orig_col_masked1, orig_col_masked2, ref_col_maksed1, ref_col_maksed2
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
del sim, v, q, k, context
return self.to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
if 'CrossAttention' in net_.__class__.__name__:
if net_.to_k.in_features != 1024:
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
else:
return count
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
# sub_nets = model.unet.named_children()
sub_nets = model.model.diffusion_model.named_children()
for net in sub_nets:
if "input" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "output" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "middle" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
tokenizer, max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
return alpha_time_words
|