File size: 1,517 Bytes
4d4837c
 
 
 
b092406
4d4837c
 
b092406
4d4837c
b092406
4d4837c
 
 
 
 
 
 
 
d8bc527
4d4837c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f40ea1
b1a652c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from gpt_index import SimpleDirectoryReader, GPTListIndex, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
# from gpt_index import LLMPredictor, ServiceContext
from gpt_index import LLMPredictor, ServiceContext
import gradio as gr
import sys
import os

 

def construct_index(directory_path):
    max_input_size = 4096
    num_outputs = 512
    max_chunk_overlap = 20
    chunk_size_limit = 600

    prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)

    llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-002", max_tokens=num_outputs))

    documents = SimpleDirectoryReader(directory_path).load_data()
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)

    index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
    # index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper)

    index.save_to_disk('index.json')

    return index

def chatbot(input_text):
    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    response = index.query(input_text, response_mode="compact")
    return response.response

iface = gr.Interface(fn=chatbot,
                     inputs=gr.inputs.Textbox(lines=7, label="Enter your text"),
                     outputs="text",
                     title="Hormuud Services")

# index = construct_index("docs")

iface.launch()