skytnt's picture
update model version 2
fc2d897
raw
history blame
16.2 kB
import gradio as gr
import imageio
import numpy as np
import onnx
import onnxruntime as rt
import huggingface_hub
from numpy.random import RandomState
from skimage import transform
def get_inter(r1, r2):
h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0)
w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0)
return h_inter * w_inter
def iou(r1, r2):
s1 = (r1[2] - r1[0]) * (r1[3] - r1[1])
s2 = (r2[2] - r2[0]) * (r2[3] - r2[1])
i = get_inter(r1, r2)
return i / (s1 + s2 - i)
def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape != new_unpad: # resize
im = transform.resize(im, (new_unpad[1], new_unpad[0]))
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im_new = np.full((new_unpad[1] + top + bottom, new_unpad[0] + left + right, 3), color, dtype=np.float32)
im_new[top:new_unpad[1] + top, left:new_unpad[0] + left] = im
return im_new
def nms(pred, conf_thres, iou_thres, max_instance=20): # pred (anchor_num, 5 + cls_num)
nc = pred.shape[1] - 5
candidates = [list() for x in range(nc)]
for x in pred:
if x[4] < conf_thres:
continue
cls = np.argmax(x[5:])
p = x[4] * x[5 + cls]
if conf_thres <= p:
box = (x[0] - x[2] / 2, x[1] - x[3] / 2, x[0] + x[2] / 2, x[1] + x[3] / 2) # xywh2xyxy
candidates[cls].append([p, box])
result = [list() for x in range(nc)]
for i, candidate in enumerate(candidates):
candidate = sorted(candidate, key=lambda a: a[0], reverse=True)
candidate = candidate[:max_instance]
for x in candidate:
ok = True
for r in result[i]:
if iou(r[1], x[1]) > iou_thres:
ok = False
break
if ok:
result[i].append(x)
return result
class Model:
def __init__(self):
self.detector = None
self.encoder = None
self.g_synthesis = None
self.g_mapping = None
self.detector_stride = None
self.detector_imgsz = None
self.detector_class_names = None
self.w_avg = None
self.load_models("skytnt/fbanime-gan")
def load_models(self, repo):
g_mapping_path = huggingface_hub.hf_hub_download(repo, "g_mapping.onnx")
g_synthesis_path = huggingface_hub.hf_hub_download(repo, "g_synthesis.onnx")
encoder_path = huggingface_hub.hf_hub_download(repo, "encoder.onnx")
detector_path = huggingface_hub.hf_hub_download(repo, "waifu_dect.onnx")
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
g_mapping = onnx.load(g_mapping_path)
w_avg = [x for x in g_mapping.graph.initializer if x.name == "w_avg"][0]
w_avg = np.frombuffer(w_avg.raw_data, dtype=np.float32)[np.newaxis, :]
w_avg = w_avg.repeat(16, axis=0)[np.newaxis, :]
self.w_avg = w_avg
self.g_mapping = rt.InferenceSession(g_mapping_path, providers=providers)
self.g_synthesis = rt.InferenceSession(g_synthesis_path, providers=providers)
self.encoder = rt.InferenceSession(encoder_path, providers=providers)
self.detector = rt.InferenceSession(detector_path, providers=providers)
detector_meta = self.detector.get_modelmeta().custom_metadata_map
self.detector_stride = int(detector_meta['stride'])
self.detector_imgsz = 1088
self.detector_class_names = eval(detector_meta['names'])
def get_img(self, w, noise=0):
img = self.g_synthesis.run(None, {'w': w, "noise": np.asarray([noise], dtype=np.float32)})[0]
return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0]
def get_w(self, z, psi1, psi2):
return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi1, psi2], dtype=np.float32)})[0]
def encode_img(self, img):
img = transform.resize(((img / 255 - 0.5) / 0.5), (256, 256)).transpose(2, 0, 1)[np.newaxis, :].astype(
np.float32)
return self.encoder.run(None, {'img': img})[0] + self.w_avg
def detect(self, im0, conf_thres, iou_thres, detail=False):
if im0 is None:
return []
img = letterbox((im0 / 255).astype(np.float32), (self.detector_imgsz, self.detector_imgsz),
stride=self.detector_stride)
# Convert
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :]
pred = self.detector.run(None, {'images': img})[0][0]
dets = nms(pred, conf_thres, iou_thres)
imgs = []
# Print results
s = '%gx%g ' % img.shape[2:] # print string
for i, det in enumerate(dets):
n = len(det)
s += f"{n} {self.detector_class_names[i]}{'s' * (n > 1)}, " # add to string
if detail:
print(s)
waifu_rects = []
head_rects = []
body_rects = []
for i, det in enumerate(dets):
for x in det:
# Rescale boxes from img_size to im0 size
wr = im0.shape[1] / img.shape[3]
hr = im0.shape[0] / img.shape[2]
x[1] = (int(x[1][0] * wr), int(x[1][1] * hr),
int(x[1][2] * wr), int(x[1][3] * hr))
if i == 0:
head_rects.append(x[1])
elif i == 1:
body_rects.append(x[1])
elif i == 2:
waifu_rects.append(x[1])
for j, waifu_rect in enumerate(waifu_rects):
msg = f'waifu {j + 1} '
head_num = 0
body_num = 0
hr, br = None, None
for r in head_rects:
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.75:
hr = r
head_num += 1
if head_num != 1:
if detail:
print(msg + f'head num error: {head_num}')
continue
for r in body_rects:
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.65:
br = r
body_num += 1
if body_num != 1:
if detail:
print(msg + f'body num error: {body_num}')
continue
bounds = (min(waifu_rect[0], hr[0], br[0]),
min(waifu_rect[1], hr[1], br[1]),
max(waifu_rect[2], hr[2], br[2]),
max(waifu_rect[3], hr[3], br[3]))
if (bounds[2] - bounds[0]) / (bounds[3] - bounds[1]) > 0.7:
if detail:
print(msg + "ratio out of limit")
continue
expand_pixel = (bounds[3] - bounds[1]) // 20
bounds = [max(bounds[0] - expand_pixel // 2, 0),
max(bounds[1] - expand_pixel, 0),
min(bounds[2] + expand_pixel // 2, im0.shape[1]),
min(bounds[3] + expand_pixel, im0.shape[0]),
]
# corp and resize
w = bounds[2] - bounds[0]
h = bounds[3] - bounds[1]
bounds[3] += h % 2
h += h % 2
r = min(512 / w, 1024 / h)
pw, ph = int(512 / r - w), int(1024 / r - h)
bounds_tmp = (bounds[0] - pw // 2, bounds[1] - ph // 2,
bounds[2] + pw // 2 + pw % 2, bounds[3] + ph // 2 + ph % 2)
bounds = (max(0, bounds_tmp[0]), max(0, bounds_tmp[1]),
min(im0.shape[1], bounds_tmp[2]), min(im0.shape[0], bounds_tmp[3]))
dl = bounds[0] - bounds_tmp[0]
dr = bounds[2] - bounds_tmp[2]
dt = bounds[1] - bounds_tmp[1]
db = bounds[3] - bounds_tmp[3]
w = bounds_tmp[2] - bounds_tmp[0]
h = bounds_tmp[3] - bounds_tmp[1]
temp_img = np.full((h, w, 3), 255, dtype=np.uint8)
temp_img[dt:h + db, dl:w + dr] = im0[bounds[1]:bounds[3], bounds[0]:bounds[2]]
temp_img = transform.resize(temp_img, (1024, 512), preserve_range=True).astype(np.uint8)
imgs.append(temp_img)
return imgs
def gen_video(self, w1, w2, noise, path, frame_num=10):
video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
lin = np.linspace(0, 1, frame_num)
for i in range(0, frame_num):
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
video.append_data(img)
video.close()
def get_thumbnail(img):
img_new = np.full((256, 384, 3), 200, dtype=np.uint8)
img_new[:, 128:256] = transform.resize(img, (256, 128), preserve_range=True)
return img_new
def gen_fn(method, seed, psi1, psi2, noise):
z = RandomState(int(seed) + 2 ** 31).randn(1, 512) if method == 1 else np.random.randn(1, 512)
w = model.get_w(z.astype(dtype=np.float32), psi1, psi2)
img_out = model.get_img(w, noise)
return img_out, w, get_thumbnail(img_out)
def encode_img_fn(img):
if img is None:
return "please upload a image", None, None, None, None
imgs = model.detect(img, 0.2, 0.03)
if len(imgs) == 0:
return "failed to detect waifu", None, None, None, None
w = model.encode_img(imgs[0])
img_out = model.get_img(w)
return "success", imgs[0], img_out, w, get_thumbnail(img_out)
def gen_video_fn(w1, w2, noise, frame):
if w1 is None or w2 is None:
return None
model.gen_video(w1, w2, noise, "video.mp4", int(frame))
return "video.mp4"
if __name__ == '__main__':
model = Model()
app = gr.Blocks()
with app:
gr.Markdown("# full-body anime GAN\n\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.full-body-anime-gan)\n\n"
"the model is not well, just use for fun.")
with gr.Tabs():
with gr.TabItem("generate image"):
with gr.Row():
with gr.Column():
gr.Markdown("generate image randomly or by seed")
with gr.Row():
gen_input1 = gr.Radio(label="method", choices=["random", "use seed"], type="index")
gen_input2 = gr.Number(value=1, label="seed ( int between -2^31 and 2^31 - 1 )")
gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.6, label="truncation psi 1")
gen_input4 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 2")
gen_input5 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="noise strength")
with gr.Group():
gen_submit = gr.Button("Generate", variant="primary")
with gr.Column():
gen_output1 = gr.Image(label="output image")
select_img_input_w1 = gr.Variable()
select_img_input_img1 = gr.Variable()
with gr.TabItem("encode image"):
with gr.Row():
with gr.Column():
gr.Markdown("you'd better upload a standing full-body image")
encode_img_input = gr.Image(label="input image")
examples_data = [[f"examples/{x:02d}.png"] for x in range(1, 5)]
encode_img_examples = gr.Dataset(components=[encode_img_input], samples=examples_data)
with gr.Group():
encode_img_submit = gr.Button("Run", variant="primary")
with gr.Column():
encode_img_output1 = gr.Textbox(label="output message")
with gr.Row():
encode_img_output2 = gr.Image(label="detected")
encode_img_output3 = gr.Image(label="encoded")
select_img_input_w2 = gr.Variable()
select_img_input_img2 = gr.Variable()
with gr.TabItem("generate video"):
with gr.Row():
with gr.Column():
gr.Markdown("## generate video between 2 images")
with gr.Row():
with gr.Column():
gr.Markdown("please select image 1")
select_img1_dropdown = gr.Radio(label="source",
choices=["current generated image",
"current encoded image"], type="index")
with gr.Group():
select_img1_button = gr.Button("Select", variant="primary")
select_img1_output_img = gr.Image(label="selected image 1")
select_img1_output_w = gr.Variable()
with gr.Column():
gr.Markdown("please select image 2")
select_img2_dropdown = gr.Radio(label="source",
choices=["current generated image",
"current encoded image"], type="index")
with gr.Group():
select_img2_button = gr.Button("Select", variant="primary")
select_img2_output_img = gr.Image(label="selected image 2")
select_img2_output_w = gr.Variable()
generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=15)
with gr.Group():
generate_video_button = gr.Button("Generate", variant="primary")
with gr.Column():
generate_video_output = gr.Video(label="output video")
gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3, gen_input4, gen_input5],
[gen_output1, select_img_input_w1, select_img_input_img1])
encode_img_submit.click(encode_img_fn, [encode_img_input],
[encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2,
select_img_input_img2])
encode_img_examples.click(lambda x: x[0], [encode_img_examples], [encode_img_input])
select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
[select_img1_dropdown, select_img_input_img1, select_img_input_img2,
select_img_input_w1, select_img_input_w2],
[select_img1_output_img, select_img1_output_w])
select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
[select_img2_dropdown, select_img_input_img1, select_img_input_img2,
select_img_input_w1, select_img_input_w2],
[select_img2_output_img, select_img2_output_w])
generate_video_button.click(gen_video_fn,
[select_img1_output_w, select_img2_output_w, gen_input5, generate_video_frame],
[generate_video_output])
app.launch()