Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,325 +1,325 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import imageio
|
3 |
-
import numpy as np
|
4 |
-
import onnx
|
5 |
-
import onnxruntime as rt
|
6 |
-
from numpy.random import RandomState
|
7 |
-
from skimage import transform
|
8 |
-
|
9 |
-
|
10 |
-
def get_inter(r1, r2):
|
11 |
-
h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0)
|
12 |
-
w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0)
|
13 |
-
return h_inter * w_inter
|
14 |
-
|
15 |
-
|
16 |
-
def iou(r1, r2):
|
17 |
-
s1 = (r1[2] - r1[0]) * (r1[3] - r1[1])
|
18 |
-
s2 = (r2[2] - r2[0]) * (r2[3] - r2[1])
|
19 |
-
i = get_inter(r1, r2)
|
20 |
-
return i / (s1 + s2 - i)
|
21 |
-
|
22 |
-
|
23 |
-
def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32):
|
24 |
-
# Resize and pad image while meeting stride-multiple constraints
|
25 |
-
shape = im.shape[:2] # current shape [height, width]
|
26 |
-
|
27 |
-
# Scale ratio (new / old)
|
28 |
-
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
29 |
-
|
30 |
-
# Compute padding
|
31 |
-
new_unpad = int(round(shape[
|
32 |
-
dw, dh = new_shape[1] - new_unpad[
|
33 |
-
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
34 |
-
|
35 |
-
dw /= 2 # divide padding into 2 sides
|
36 |
-
dh /= 2
|
37 |
-
|
38 |
-
if shape != new_unpad: # resize
|
39 |
-
im = transform.resize(im, new_unpad)
|
40 |
-
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
41 |
-
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
42 |
-
|
43 |
-
im_new
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
for x in
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
for
|
60 |
-
|
61 |
-
candidate = candidate[
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
self.
|
78 |
-
self.
|
79 |
-
self.
|
80 |
-
self.
|
81 |
-
self.
|
82 |
-
self.
|
83 |
-
self.
|
84 |
-
self.
|
85 |
-
self.
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
w_avg =
|
92 |
-
w_avg = w_avg.
|
93 |
-
|
94 |
-
self.
|
95 |
-
self.
|
96 |
-
self.
|
97 |
-
self.
|
98 |
-
|
99 |
-
|
100 |
-
self.
|
101 |
-
self.
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
img = img
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
int(
|
185 |
-
int(max(waifu_rect[
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
min(bounds[
|
196 |
-
)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
temp_img
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
imgs.append(temp_img)
|
221 |
-
return imgs
|
222 |
-
|
223 |
-
def gen_video(self, w1, w2, path, frame_num=10):
|
224 |
-
video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
|
225 |
-
lin = np.linspace(0, 1, frame_num)
|
226 |
-
for i in range(0, frame_num):
|
227 |
-
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2))
|
228 |
-
video.append_data(img)
|
229 |
-
video.close()
|
230 |
-
|
231 |
-
|
232 |
-
def gen_fn(use_seed, seed, psi):
|
233 |
-
z = RandomState(int(seed) + 2 ** 31).randn(1, 512) if use_seed else np.random.randn(1, 512)
|
234 |
-
w = model.get_w(z.astype(dtype=np.float32), psi)
|
235 |
-
img_out = model.get_img(w)
|
236 |
-
return img_out, w.tolist(), img_out
|
237 |
-
|
238 |
-
|
239 |
-
def encode_img_fn(img):
|
240 |
-
imgs = model.detect(img, 0.2, 0.03)
|
241 |
-
if len(imgs) == 0:
|
242 |
-
return "failed to detect waifu", None, None
|
243 |
-
w = model.encode_img(imgs[0])
|
244 |
-
img_out = model.get_img(w)
|
245 |
-
return "success", imgs[0], img_out, w.tolist(), img_out
|
246 |
-
|
247 |
-
|
248 |
-
def gen_video_fn(w1, w2, frame):
|
249 |
-
if w1 is None or w2 is None:
|
250 |
-
return None
|
251 |
-
model.gen_video(np.array(w1, dtype=np.float32), np.array(w2, dtype=np.float32), "video.mp4", int(frame))
|
252 |
-
return "video.mp4"
|
253 |
-
|
254 |
-
|
255 |
-
if __name__ == '__main__':
|
256 |
-
model = Model()
|
257 |
-
|
258 |
-
app = gr.Blocks()
|
259 |
-
with app:
|
260 |
-
gr.Markdown("# full-body anime\n\n"
|
261 |
-
"the model is not good, just for fun.")
|
262 |
-
with gr.Tabs():
|
263 |
-
with gr.TabItem("generate image"):
|
264 |
-
with gr.Column():
|
265 |
-
with gr.Row():
|
266 |
-
gen_input1 = gr.Checkbox(value=False, label="use seed")
|
267 |
-
gen_input2 = gr.Number(value=1, label="seed")
|
268 |
-
gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.6, label="psi")
|
269 |
-
gen_submit = gr.Button("Run")
|
270 |
-
gen_output1 = gr.Image()
|
271 |
-
select_img_input_w1 = gr.Json(visible=False)
|
272 |
-
select_img_input_img1 = gr.Image(visible=False)
|
273 |
-
|
274 |
-
with gr.TabItem("encode image"):
|
275 |
-
with gr.Column():
|
276 |
-
encode_img_input = gr.Image()
|
277 |
-
encode_img_submit = gr.Button("Run")
|
278 |
-
encode_img_output1 = gr.Textbox(label="message")
|
279 |
-
with gr.Row():
|
280 |
-
encode_img_output2 = gr.Image(label="detected")
|
281 |
-
encode_img_output3 = gr.Image(label="encoded")
|
282 |
-
select_img_input_w2 = gr.Json(visible=False)
|
283 |
-
select_img_input_img2 = gr.Image(visible=False)
|
284 |
-
|
285 |
-
with gr.TabItem("generate video"):
|
286 |
-
with gr.Column():
|
287 |
-
gr.Markdown("## generate video between 2 images")
|
288 |
-
with gr.Row():
|
289 |
-
with gr.Column():
|
290 |
-
gr.Markdown("please select image 1")
|
291 |
-
select_img1_dropdown = gr.Dropdown(label="source",
|
292 |
-
choices=["current generated image",
|
293 |
-
"current encoded image"], type="index")
|
294 |
-
select_img1_button = gr.Button("select")
|
295 |
-
select_img1_output_img = gr.Image(label="image 1")
|
296 |
-
select_img1_output_w = gr.Json(visible=False)
|
297 |
-
with gr.Column():
|
298 |
-
gr.Markdown("please select image 2")
|
299 |
-
select_img2_dropdown = gr.Dropdown(label="source",
|
300 |
-
choices=["current generated image",
|
301 |
-
"current encoded image"], type="index")
|
302 |
-
select_img2_button = gr.Button("select")
|
303 |
-
select_img2_output_img = gr.Image(label="image 2")
|
304 |
-
select_img2_output_w = gr.Json(visible=False)
|
305 |
-
generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=10)
|
306 |
-
generate_video_button = gr.Button("generate")
|
307 |
-
generate_video_output = gr.Video()
|
308 |
-
|
309 |
-
gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3],
|
310 |
-
[gen_output1, select_img_input_w1, select_img_input_img1])
|
311 |
-
encode_img_submit.click(encode_img_fn, [encode_img_input],
|
312 |
-
[encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2,
|
313 |
-
select_img_input_img2])
|
314 |
-
select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
315 |
-
[select_img1_dropdown, select_img_input_img1, select_img_input_img2,
|
316 |
-
select_img_input_w1, select_img_input_w2],
|
317 |
-
[select_img1_output_img, select_img1_output_w])
|
318 |
-
select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
319 |
-
[select_img2_dropdown, select_img_input_img1, select_img_input_img2,
|
320 |
-
select_img_input_w1, select_img_input_w2],
|
321 |
-
[select_img2_output_img, select_img2_output_w])
|
322 |
-
generate_video_button.click(gen_video_fn, [select_img1_output_w, select_img2_output_w, generate_video_frame],
|
323 |
-
[generate_video_output])
|
324 |
-
|
325 |
-
app.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
import onnx
|
5 |
+
import onnxruntime as rt
|
6 |
+
from numpy.random import RandomState
|
7 |
+
from skimage import transform
|
8 |
+
|
9 |
+
|
10 |
+
def get_inter(r1, r2):
|
11 |
+
h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0)
|
12 |
+
w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0)
|
13 |
+
return h_inter * w_inter
|
14 |
+
|
15 |
+
|
16 |
+
def iou(r1, r2):
|
17 |
+
s1 = (r1[2] - r1[0]) * (r1[3] - r1[1])
|
18 |
+
s2 = (r2[2] - r2[0]) * (r2[3] - r2[1])
|
19 |
+
i = get_inter(r1, r2)
|
20 |
+
return i / (s1 + s2 - i)
|
21 |
+
|
22 |
+
|
23 |
+
def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32):
|
24 |
+
# Resize and pad image while meeting stride-multiple constraints
|
25 |
+
shape = im.shape[:2] # current shape [height, width]
|
26 |
+
|
27 |
+
# Scale ratio (new / old)
|
28 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
29 |
+
|
30 |
+
# Compute padding
|
31 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
32 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
33 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
34 |
+
|
35 |
+
dw /= 2 # divide padding into 2 sides
|
36 |
+
dh /= 2
|
37 |
+
|
38 |
+
if shape != new_unpad: # resize
|
39 |
+
im = transform.resize(im, (new_unpad[1], new_unpad[0]))
|
40 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
41 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
42 |
+
|
43 |
+
im_new = np.full((new_unpad[1] + top + bottom, new_unpad[0] + left + right, 3), color, dtype=np.float32)
|
44 |
+
im_new[top:new_unpad[1] + top, left:new_unpad[0] + left] = im
|
45 |
+
return im_new
|
46 |
+
|
47 |
+
|
48 |
+
def nms(pred, conf_thres, iou_thres, max_instance=20): # pred (anchor_num, 5 + cls_num)
|
49 |
+
nc = pred.shape[1] - 5
|
50 |
+
candidates = [list() for x in range(nc)]
|
51 |
+
for x in pred:
|
52 |
+
if x[4] < conf_thres:
|
53 |
+
continue
|
54 |
+
cls = np.argmax(x[5:])
|
55 |
+
p = x[4] * x[5 + cls]
|
56 |
+
if conf_thres <= p:
|
57 |
+
box = (x[0] - x[2] / 2, x[1] - x[3] / 2, x[0] + x[2] / 2, x[1] + x[3] / 2) # xywh2xyxy
|
58 |
+
candidates[cls].append([p, box])
|
59 |
+
result = [list() for x in range(nc)]
|
60 |
+
for i, candidate in enumerate(candidates):
|
61 |
+
candidate = sorted(candidate, key=lambda a: a[0], reverse=True)
|
62 |
+
candidate = candidate[:max_instance]
|
63 |
+
for x in candidate:
|
64 |
+
ok = True
|
65 |
+
for r in result[i]:
|
66 |
+
if iou(r[1], x[1]) > iou_thres:
|
67 |
+
ok = False
|
68 |
+
break
|
69 |
+
if ok:
|
70 |
+
result[i].append(x)
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
|
75 |
+
class Model:
|
76 |
+
def __init__(self):
|
77 |
+
self.img_avg = None
|
78 |
+
self.detector = None
|
79 |
+
self.encoder = None
|
80 |
+
self.g_synthesis = None
|
81 |
+
self.g_mapping = None
|
82 |
+
self.w_avg = None
|
83 |
+
self.detector_stride = None
|
84 |
+
self.detector_imgsz = None
|
85 |
+
self.detector_class_names = None
|
86 |
+
self.load_models("./models/")
|
87 |
+
|
88 |
+
def load_models(self, model_dir):
|
89 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
90 |
+
g_mapping = onnx.load(model_dir + "g_mapping.onnx")
|
91 |
+
w_avg = [x for x in g_mapping.graph.initializer if x.name == "w_avg"][0]
|
92 |
+
w_avg = np.frombuffer(w_avg.raw_data, dtype=np.float32)[np.newaxis, :]
|
93 |
+
w_avg = w_avg.repeat(16, axis=0)[np.newaxis, :]
|
94 |
+
self.w_avg = w_avg
|
95 |
+
self.g_mapping = rt.InferenceSession(model_dir + "g_mapping.onnx", providers=providers)
|
96 |
+
self.g_synthesis = rt.InferenceSession(model_dir + "g_synthesis.onnx", providers=providers)
|
97 |
+
self.encoder = rt.InferenceSession(model_dir + "fb_encoder.onnx", providers=providers)
|
98 |
+
self.detector = rt.InferenceSession(model_dir + "waifu_dect.onnx", providers=providers)
|
99 |
+
detector_meta = self.detector.get_modelmeta().custom_metadata_map
|
100 |
+
self.detector_stride = int(detector_meta['stride'])
|
101 |
+
self.detector_imgsz = 1088
|
102 |
+
self.detector_class_names = eval(detector_meta['names'])
|
103 |
+
|
104 |
+
self.img_avg = transform.resize(self.g_synthesis.run(None, {'w': w_avg})[0][0].transpose(1, 2, 0),
|
105 |
+
(256, 256)).transpose(2, 0, 1)[np.newaxis, :]
|
106 |
+
|
107 |
+
def get_img(self, w):
|
108 |
+
img = self.g_synthesis.run(None, {'w': w})[0]
|
109 |
+
return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0]
|
110 |
+
|
111 |
+
def get_w(self, z, psi):
|
112 |
+
return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi], dtype=np.float32)})[0]
|
113 |
+
|
114 |
+
def encode_img(self, img, iteration=5):
|
115 |
+
target_img = transform.resize(((img / 255 - 0.5) / 0.5), (256, 256)).transpose(2, 0, 1)[np.newaxis, :].astype(
|
116 |
+
np.float32)
|
117 |
+
w = self.w_avg.copy()
|
118 |
+
from_img = self.img_avg.copy()
|
119 |
+
for i in range(iteration):
|
120 |
+
dimg = np.concatenate([target_img, from_img], axis=1)
|
121 |
+
dw = self.encoder.run(None, {'dimg': dimg})[0]
|
122 |
+
w += dw
|
123 |
+
from_img = transform.resize(self.g_synthesis.run(None, {'w': w})[0][0].transpose(1, 2, 0),
|
124 |
+
(256, 256)).transpose(2, 0, 1)[np.newaxis, :]
|
125 |
+
return w
|
126 |
+
|
127 |
+
def detect(self, im0, conf_thres, iou_thres, detail=False):
|
128 |
+
if im0 is None:
|
129 |
+
return []
|
130 |
+
img = letterbox((im0 / 255).astype(np.float32), (self.detector_imgsz, self.detector_imgsz),
|
131 |
+
stride=self.detector_stride)
|
132 |
+
# Convert
|
133 |
+
img = img.transpose(2, 0, 1)
|
134 |
+
img = img[np.newaxis, :]
|
135 |
+
pred = self.detector.run(None, {'images': img})[0][0]
|
136 |
+
dets = nms(pred, conf_thres, iou_thres)
|
137 |
+
imgs = []
|
138 |
+
# Print results
|
139 |
+
s = '%gx%g ' % img.shape[2:] # print string
|
140 |
+
for i, det in enumerate(dets):
|
141 |
+
n = len(det)
|
142 |
+
s += f"{n} {self.detector_class_names[i]}{'s' * (n > 1)}, " # add to string
|
143 |
+
if detail:
|
144 |
+
print(s)
|
145 |
+
waifu_rects = []
|
146 |
+
head_rects = []
|
147 |
+
body_rects = []
|
148 |
+
|
149 |
+
for i, det in enumerate(dets):
|
150 |
+
for x in det:
|
151 |
+
# Rescale boxes from img_size to im0 size
|
152 |
+
wr = im0.shape[1] / img.shape[3]
|
153 |
+
hr = im0.shape[0] / img.shape[2]
|
154 |
+
x[1] = (int(x[1][0] * wr), int(x[1][1] * hr),
|
155 |
+
int(x[1][2] * wr), int(x[1][3] * hr))
|
156 |
+
if i == 0:
|
157 |
+
head_rects.append(x[1])
|
158 |
+
elif i == 1:
|
159 |
+
body_rects.append(x[1])
|
160 |
+
elif i == 2:
|
161 |
+
waifu_rects.append(x[1])
|
162 |
+
for j, waifu_rect in enumerate(waifu_rects):
|
163 |
+
msg = f'waifu {j + 1} '
|
164 |
+
head_num = 0
|
165 |
+
body_num = 0
|
166 |
+
hr, br = None, None
|
167 |
+
for r in head_rects:
|
168 |
+
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.75:
|
169 |
+
hr = r
|
170 |
+
head_num += 1
|
171 |
+
if head_num != 1:
|
172 |
+
if detail:
|
173 |
+
print(msg + f'head num error: {head_num}')
|
174 |
+
continue
|
175 |
+
for r in body_rects:
|
176 |
+
if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.65:
|
177 |
+
br = r
|
178 |
+
body_num += 1
|
179 |
+
if body_num != 1:
|
180 |
+
if detail:
|
181 |
+
print(msg + f'body num error: {body_num}')
|
182 |
+
continue
|
183 |
+
bounds = (int(min(waifu_rect[0], hr[0], br[0])),
|
184 |
+
int(min(waifu_rect[1], hr[1], br[1])),
|
185 |
+
int(max(waifu_rect[2], hr[2], br[2])),
|
186 |
+
int(max(waifu_rect[3], hr[3], br[3])))
|
187 |
+
if (bounds[2] - bounds[0]) / (bounds[3] - bounds[1]) > 0.7:
|
188 |
+
if detail:
|
189 |
+
print(msg + "ratio out of limit")
|
190 |
+
continue
|
191 |
+
# 扩展边界
|
192 |
+
expand_pixel = (bounds[3] - bounds[1]) // 20
|
193 |
+
bounds = (max(bounds[0] - expand_pixel // 2, 0),
|
194 |
+
max(bounds[1] - expand_pixel, 0),
|
195 |
+
min(bounds[2] + expand_pixel // 2, im0.shape[1]),
|
196 |
+
min(bounds[3] + expand_pixel, im0.shape[0]),
|
197 |
+
)
|
198 |
+
if bounds[3] - bounds[1] >= (bounds[2] - bounds[0]) * 2: # 等高度剪裁
|
199 |
+
cx = (bounds[2] + bounds[0]) // 2
|
200 |
+
h = bounds[3] - bounds[1]
|
201 |
+
w = h // 2
|
202 |
+
w2 = w // 2
|
203 |
+
l1 = max(cx - w2, 0)
|
204 |
+
r1 = min(cx + w2, im0.shape[1])
|
205 |
+
bounds = (l1, bounds[1], r1, bounds[3])
|
206 |
+
temp_bound = (w2 - (cx - l1), 0, w2 + (r1 - cx), h)
|
207 |
+
else: # 等宽度剪裁
|
208 |
+
cy = (bounds[3] + bounds[1]) // 2
|
209 |
+
w = bounds[2] - bounds[0]
|
210 |
+
h = w * 2
|
211 |
+
h2 = h // 2
|
212 |
+
tp1 = max(cy - h2, 0)
|
213 |
+
b1 = min(cy + h2, im0.shape[0])
|
214 |
+
bounds = (bounds[0], tp1, bounds[2], b1)
|
215 |
+
temp_bound = (0, h2 - (cy - tp1), w, h2 + (b1 - cy))
|
216 |
+
temp_img = np.full((h, w, 3), 255, dtype=np.uint8)
|
217 |
+
temp_img[temp_bound[1]:temp_bound[3], temp_bound[0]:temp_bound[2]] = im0[bounds[1]:bounds[3],
|
218 |
+
bounds[0]:bounds[2]]
|
219 |
+
temp_img = transform.resize(temp_img, (1024, 512), preserve_range=True).astype(np.uint8)
|
220 |
+
imgs.append(temp_img)
|
221 |
+
return imgs
|
222 |
+
|
223 |
+
def gen_video(self, w1, w2, path, frame_num=10):
|
224 |
+
video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
|
225 |
+
lin = np.linspace(0, 1, frame_num)
|
226 |
+
for i in range(0, frame_num):
|
227 |
+
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2))
|
228 |
+
video.append_data(img)
|
229 |
+
video.close()
|
230 |
+
|
231 |
+
|
232 |
+
def gen_fn(use_seed, seed, psi):
|
233 |
+
z = RandomState(int(seed) + 2 ** 31).randn(1, 512) if use_seed else np.random.randn(1, 512)
|
234 |
+
w = model.get_w(z.astype(dtype=np.float32), psi)
|
235 |
+
img_out = model.get_img(w)
|
236 |
+
return img_out, w.tolist(), img_out
|
237 |
+
|
238 |
+
|
239 |
+
def encode_img_fn(img):
|
240 |
+
imgs = model.detect(img, 0.2, 0.03)
|
241 |
+
if len(imgs) == 0:
|
242 |
+
return "failed to detect waifu", None, None
|
243 |
+
w = model.encode_img(imgs[0])
|
244 |
+
img_out = model.get_img(w)
|
245 |
+
return "success", imgs[0], img_out, w.tolist(), img_out
|
246 |
+
|
247 |
+
|
248 |
+
def gen_video_fn(w1, w2, frame):
|
249 |
+
if w1 is None or w2 is None:
|
250 |
+
return None
|
251 |
+
model.gen_video(np.array(w1, dtype=np.float32), np.array(w2, dtype=np.float32), "video.mp4", int(frame))
|
252 |
+
return "video.mp4"
|
253 |
+
|
254 |
+
|
255 |
+
if __name__ == '__main__':
|
256 |
+
model = Model()
|
257 |
+
|
258 |
+
app = gr.Blocks()
|
259 |
+
with app:
|
260 |
+
gr.Markdown("# full-body anime\n\n"
|
261 |
+
"the model is not good, just for fun.")
|
262 |
+
with gr.Tabs():
|
263 |
+
with gr.TabItem("generate image"):
|
264 |
+
with gr.Column():
|
265 |
+
with gr.Row():
|
266 |
+
gen_input1 = gr.Checkbox(value=False, label="use seed")
|
267 |
+
gen_input2 = gr.Number(value=1, label="seed")
|
268 |
+
gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.6, label="psi")
|
269 |
+
gen_submit = gr.Button("Run")
|
270 |
+
gen_output1 = gr.Image()
|
271 |
+
select_img_input_w1 = gr.Json(visible=False)
|
272 |
+
select_img_input_img1 = gr.Image(visible=False)
|
273 |
+
|
274 |
+
with gr.TabItem("encode image"):
|
275 |
+
with gr.Column():
|
276 |
+
encode_img_input = gr.Image()
|
277 |
+
encode_img_submit = gr.Button("Run")
|
278 |
+
encode_img_output1 = gr.Textbox(label="message")
|
279 |
+
with gr.Row():
|
280 |
+
encode_img_output2 = gr.Image(label="detected")
|
281 |
+
encode_img_output3 = gr.Image(label="encoded")
|
282 |
+
select_img_input_w2 = gr.Json(visible=False)
|
283 |
+
select_img_input_img2 = gr.Image(visible=False)
|
284 |
+
|
285 |
+
with gr.TabItem("generate video"):
|
286 |
+
with gr.Column():
|
287 |
+
gr.Markdown("## generate video between 2 images")
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
gr.Markdown("please select image 1")
|
291 |
+
select_img1_dropdown = gr.Dropdown(label="source",
|
292 |
+
choices=["current generated image",
|
293 |
+
"current encoded image"], type="index")
|
294 |
+
select_img1_button = gr.Button("select")
|
295 |
+
select_img1_output_img = gr.Image(label="image 1")
|
296 |
+
select_img1_output_w = gr.Json(visible=False)
|
297 |
+
with gr.Column():
|
298 |
+
gr.Markdown("please select image 2")
|
299 |
+
select_img2_dropdown = gr.Dropdown(label="source",
|
300 |
+
choices=["current generated image",
|
301 |
+
"current encoded image"], type="index")
|
302 |
+
select_img2_button = gr.Button("select")
|
303 |
+
select_img2_output_img = gr.Image(label="image 2")
|
304 |
+
select_img2_output_w = gr.Json(visible=False)
|
305 |
+
generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=10)
|
306 |
+
generate_video_button = gr.Button("generate")
|
307 |
+
generate_video_output = gr.Video()
|
308 |
+
|
309 |
+
gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3],
|
310 |
+
[gen_output1, select_img_input_w1, select_img_input_img1])
|
311 |
+
encode_img_submit.click(encode_img_fn, [encode_img_input],
|
312 |
+
[encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2,
|
313 |
+
select_img_input_img2])
|
314 |
+
select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
315 |
+
[select_img1_dropdown, select_img_input_img1, select_img_input_img2,
|
316 |
+
select_img_input_w1, select_img_input_w2],
|
317 |
+
[select_img1_output_img, select_img1_output_w])
|
318 |
+
select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
|
319 |
+
[select_img2_dropdown, select_img_input_img1, select_img_input_img2,
|
320 |
+
select_img_input_w1, select_img_input_w2],
|
321 |
+
[select_img2_output_img, select_img2_output_w])
|
322 |
+
generate_video_button.click(gen_video_fn, [select_img1_output_w, select_img2_output_w, generate_video_frame],
|
323 |
+
[generate_video_output])
|
324 |
+
|
325 |
+
app.launch()
|