File size: 5,278 Bytes
bae0b06
 
 
 
dde297c
c2546a5
 
 
 
 
 
 
 
 
 
 
8935672
c2546a5
 
 
 
 
 
 
8935672
7f43d7a
 
8935672
 
 
c2546a5
 
 
 
 
 
7f43d7a
c2546a5
 
8935672
7f43d7a
 
c2546a5
7f43d7a
 
 
8935672
 
 
 
 
 
 
dde297c
 
 
 
 
 
c2546a5
 
 
 
 
 
 
 
 
 
7f43d7a
c2546a5
 
 
8935672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2546a5
 
 
 
 
 
 
 
 
 
 
7f43d7a
8935672
c2546a5
7f43d7a
 
c2546a5
 
8935672
 
 
 
7f43d7a
c2546a5
7f43d7a
 
c2546a5
7f43d7a
 
c2546a5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os

os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')

import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from mel_processing import spectrogram_torch


def get_text(text, hps):
    text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm


def tts_fn(text, speaker):
    if len(text) > 150:
        return "Error: Text is too long", None
    model, hps = models[model_idx[speaker]]
    speaker_id = speaker_idx[speaker]
    stn_tst = get_text(text, hps)
    with no_grad():
        x_tst = stn_tst.unsqueeze(0)
        x_tst_lengths = LongTensor([stn_tst.size(0)])
        sid = LongTensor([speaker_id])
        audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
            0, 0].data.cpu().float().numpy()
    return "Success", (hps.data.sampling_rate, audio)


def vc_fn(original_speaker, target_speaker, input_audio):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    duration = audio.shape[0] / sampling_rate
    if duration > 30:
        return "Error: Audio is too long", None
    if model_idx[original_speaker] != model_idx[target_speaker]:
        return "Error: Can not convert voice between different model", None

    model, hps = models[model_idx[original_speaker]]
    original_speaker_id = speaker_idx[original_speaker]
    target_speaker_id = speaker_idx[target_speaker]

    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != hps.data.sampling_rate:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
    y = torch.FloatTensor(audio)
    y = y.unsqueeze(0)
    spec = spectrogram_torch(y, hps.data.filter_length,
                             hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                             center=False)
    spec_lengths = LongTensor([spec.size(-1)])
    sid_src = LongTensor([original_speaker_id])
    sid_tgt = LongTensor([target_speaker_id])
    with no_grad():
        audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
            0, 0].data.cpu().float().numpy()
    return "Success", (hps.data.sampling_rate, audio)


if __name__ == '__main__':
    models = []
    model_idx = []
    speaker_idx = []
    speakers = []
    for i in range(0, 2):
        config_path = f"saved_model/{i}/config.json"
        model_path = f"saved_model/{i}/model.pth"
        hps = utils.get_hparams_from_file(config_path)
        model = SynthesizerTrn(
            len(hps.symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model)
        utils.load_checkpoint(model_path, model, None)
        model.eval()
        models.append((model, hps))
        speakers = speakers + [f"model{i}/{x}" for x in hps.speakers]
        model_idx = model_idx + [i] * len(hps.speakers)
        speaker_idx = speaker_idx + list(range(0, len(hps.speakers)))

    app = gr.Blocks()

    with app:
        gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
                    "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n"
                    "unofficial demo for [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)"
                    )
        with gr.Tabs():
            with gr.TabItem("TTS"):
                with gr.Column():
                    tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにけは。")
                    tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[0])
                    tts_submit = gr.Button("Generate", variant="primary")
                    tts_output1 = gr.Textbox(label="Output Message")
                    tts_output2 = gr.Audio(label="Output Audio")
            with gr.TabItem("Voice Conversion"):
                with gr.Column():
                    vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
                                            value=speakers[0])
                    vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
                                            value=speakers[1])
                    vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
                    vc_submit = gr.Button("Convert", variant="primary")
                    vc_output1 = gr.Textbox(label="Output Message")
                    vc_output2 = gr.Audio(label="Output Audio")

        tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2])
        vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])

    app.launch()