sachin
commited on
Commit
·
4ec2bfb
1
Parent(s):
20a258b
fix
Browse files- Dockerfile +2 -0
- Dockerfile.app +4 -4
- Dockerfile.models +0 -17
- download_models.py +0 -35
- src/server/main.py +56 -50
- src/server/main_hfy.py +0 -910
- src/server/main_local.py +0 -913
Dockerfile
CHANGED
@@ -8,6 +8,8 @@ COPY . .
|
|
8 |
RUN useradd -ms /bin/bash appuser \
|
9 |
&& chown -R appuser:appuser /app
|
10 |
USER appuser
|
|
|
|
|
11 |
ENV HF_HOME=/data/huggingface
|
12 |
# Expose port
|
13 |
EXPOSE 7860
|
|
|
8 |
RUN useradd -ms /bin/bash appuser \
|
9 |
&& chown -R appuser:appuser /app
|
10 |
USER appuser
|
11 |
+
|
12 |
+
|
13 |
ENV HF_HOME=/data/huggingface
|
14 |
# Expose port
|
15 |
EXPOSE 7860
|
Dockerfile.app
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
|
2 |
-
FROM slabstech/dhwani-model-server:latest
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
6 |
-
# Copy application code
|
7 |
COPY . .
|
8 |
|
9 |
# Set up user
|
@@ -11,6 +9,8 @@ RUN useradd -ms /bin/bash appuser \
|
|
11 |
&& chown -R appuser:appuser /app
|
12 |
USER appuser
|
13 |
|
|
|
|
|
14 |
# Expose port
|
15 |
EXPOSE 7860
|
16 |
|
|
|
1 |
+
FROM slabstech/dhwani-server-base
|
|
|
2 |
WORKDIR /app
|
3 |
|
4 |
+
ENV HF_HOME=/data/huggingface
|
|
|
5 |
COPY . .
|
6 |
|
7 |
# Set up user
|
|
|
9 |
&& chown -R appuser:appuser /app
|
10 |
USER appuser
|
11 |
|
12 |
+
|
13 |
+
ENV HF_HOME=/data/huggingface
|
14 |
# Expose port
|
15 |
EXPOSE 7860
|
16 |
|
Dockerfile.models
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
# Base image with CUDA support
|
2 |
-
FROM slabstech/dhwani-server-base:latest
|
3 |
-
|
4 |
-
|
5 |
-
# Create a directory for pre-downloaded models
|
6 |
-
RUN mkdir -p /app/models
|
7 |
-
|
8 |
-
# Define build argument for HF_TOKEN
|
9 |
-
ARG HF_TOKEN_DOCKER
|
10 |
-
|
11 |
-
# Set environment variable for the build process
|
12 |
-
ENV HF_TOKEN=$HF_TOKEN_DOCKER
|
13 |
-
|
14 |
-
# Copy and run the model download script
|
15 |
-
COPY download_models.py .
|
16 |
-
COPY . .
|
17 |
-
RUN python download_models.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
download_models.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel
|
3 |
-
from transformers import Gemma3ForConditionalGeneration
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Get the Hugging Face token from environment variable
|
7 |
-
hf_token = os.getenv("HF_TOKEN")
|
8 |
-
if not hf_token:
|
9 |
-
print("Warning: HF_TOKEN not set. Some models may require authentication.")
|
10 |
-
|
11 |
-
# Define the models to download
|
12 |
-
models = {
|
13 |
-
#'llm_model': ('google/gemma-3-4b-it', Gemma3ForConditionalGeneration, AutoProcessor),
|
14 |
-
'tts_model': ('ai4bharat/IndicF5', AutoModel, None),
|
15 |
-
#'asr_model': ('ai4bharat/indic-conformer-600m-multilingual', AutoModel, None),
|
16 |
-
'trans_en_indic': ('ai4bharat/indictrans2-en-indic-dist-200M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
17 |
-
'trans_indic_en': ('ai4bharat/indictrans2-indic-en-dist-200M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
18 |
-
'trans_indic_indic': ('ai4bharat/indictrans2-indic-indic-dist-320M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
19 |
-
}
|
20 |
-
|
21 |
-
# Directory to save models
|
22 |
-
save_dir = '/app/models'
|
23 |
-
|
24 |
-
# Ensure the directory exists
|
25 |
-
os.makedirs(save_dir, exist_ok=True)
|
26 |
-
|
27 |
-
# Download and save each model
|
28 |
-
for name, (model_name, model_class, processor_class) in models.items():
|
29 |
-
print(f'Downloading {model_name}...')
|
30 |
-
model = model_class.from_pretrained(model_name, trust_remote_code=True, token=hf_token)
|
31 |
-
model.save_pretrained(f'{save_dir}/{name}')
|
32 |
-
if processor_class:
|
33 |
-
processor = processor_class.from_pretrained(model_name, trust_remote_code=True, token=hf_token)
|
34 |
-
processor.save_pretrained(f'{save_dir}/{name}')
|
35 |
-
print(f'Saved {model_name} to {save_dir}/{name}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/server/main.py
CHANGED
@@ -88,23 +88,19 @@ class LLMManager:
|
|
88 |
self.is_loaded = False
|
89 |
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
|
91 |
-
|
92 |
if not self.is_loaded:
|
93 |
try:
|
94 |
-
self.model =
|
95 |
-
Gemma3ForConditionalGeneration.from_pretrained,
|
96 |
self.model_name,
|
97 |
device_map="auto",
|
98 |
quantization_config=quantization_config,
|
99 |
torch_dtype=self.torch_dtype
|
100 |
)
|
101 |
self.model.eval()
|
102 |
-
self.processor =
|
103 |
-
AutoProcessor.from_pretrained,
|
104 |
-
self.model_name
|
105 |
-
)
|
106 |
self.is_loaded = True
|
107 |
-
logger.info(f"LLM {self.model_name} loaded
|
108 |
except Exception as e:
|
109 |
logger.error(f"Failed to load LLM: {str(e)}")
|
110 |
raise
|
@@ -121,7 +117,7 @@ class LLMManager:
|
|
121 |
|
122 |
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
123 |
if not self.is_loaded:
|
124 |
-
|
125 |
|
126 |
messages_vlm = [
|
127 |
{
|
@@ -163,7 +159,7 @@ class LLMManager:
|
|
163 |
|
164 |
async def vision_query(self, image: Image.Image, query: str) -> str:
|
165 |
if not self.is_loaded:
|
166 |
-
|
167 |
|
168 |
messages_vlm = [
|
169 |
{
|
@@ -212,7 +208,7 @@ class LLMManager:
|
|
212 |
|
213 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
214 |
if not self.is_loaded:
|
215 |
-
|
216 |
|
217 |
messages_vlm = [
|
218 |
{
|
@@ -266,16 +262,15 @@ class TTSManager:
|
|
266 |
self.model = None
|
267 |
self.repo_id = "ai4bharat/IndicF5"
|
268 |
|
269 |
-
|
270 |
if not self.model:
|
271 |
-
logger.info("Loading TTS model IndicF5
|
272 |
-
self.model =
|
273 |
-
AutoModel.from_pretrained,
|
274 |
self.repo_id,
|
275 |
trust_remote_code=True
|
276 |
)
|
277 |
self.model = self.model.to(self.device_type)
|
278 |
-
logger.info("TTS model IndicF5 loaded
|
279 |
|
280 |
def synthesize(self, text, ref_audio_path, ref_text):
|
281 |
if not self.model:
|
@@ -359,7 +354,7 @@ class TranslateManager:
|
|
359 |
self.tgt_lang = tgt_lang
|
360 |
self.use_distilled = use_distilled
|
361 |
|
362 |
-
|
363 |
if not self.tokenizer or not self.model:
|
364 |
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
365 |
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B"
|
@@ -370,13 +365,11 @@ class TranslateManager:
|
|
370 |
else:
|
371 |
raise ValueError("Invalid language combination")
|
372 |
|
373 |
-
self.tokenizer =
|
374 |
-
AutoTokenizer.from_pretrained,
|
375 |
model_name,
|
376 |
trust_remote_code=True
|
377 |
)
|
378 |
-
self.model =
|
379 |
-
AutoModelForSeq2SeqLM.from_pretrained,
|
380 |
model_name,
|
381 |
trust_remote_code=True,
|
382 |
torch_dtype=torch.float16,
|
@@ -384,7 +377,7 @@ class TranslateManager:
|
|
384 |
)
|
385 |
self.model = self.model.to(self.device_type)
|
386 |
self.model = torch.compile(self.model, mode="reduce-overhead")
|
387 |
-
logger.info(f"Translation model {model_name} loaded
|
388 |
|
389 |
class ModelManager:
|
390 |
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
|
@@ -393,18 +386,18 @@ class ModelManager:
|
|
393 |
self.use_distilled = use_distilled
|
394 |
self.is_lazy_loading = is_lazy_loading
|
395 |
|
396 |
-
|
397 |
-
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}
|
398 |
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
|
399 |
-
|
400 |
self.models[key] = translate_manager
|
401 |
-
logger.info(f"Loaded translation model for {key}
|
402 |
|
403 |
def get_model(self, src_lang, tgt_lang):
|
404 |
key = self._get_model_key(src_lang, tgt_lang)
|
405 |
if key not in self.models:
|
406 |
if self.is_lazy_loading:
|
407 |
-
|
408 |
else:
|
409 |
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
|
410 |
return self.models.get(key)
|
@@ -425,16 +418,15 @@ class ASRModelManager:
|
|
425 |
self.model = None
|
426 |
self.model_language = {"kannada": "kn"}
|
427 |
|
428 |
-
|
429 |
if not self.model:
|
430 |
-
logger.info("Loading ASR model
|
431 |
-
self.model =
|
432 |
-
AutoModel.from_pretrained,
|
433 |
"ai4bharat/indic-conformer-600m-multilingual",
|
434 |
trust_remote_code=True
|
435 |
)
|
436 |
self.model = self.model.to(self.device_type)
|
437 |
-
logger.info("ASR model loaded
|
438 |
|
439 |
# Global Managers
|
440 |
llm_manager = LLMManager(settings.llm_model_name)
|
@@ -484,34 +476,48 @@ translation_configs = []
|
|
484 |
|
485 |
@asynccontextmanager
|
486 |
async def lifespan(app: FastAPI):
|
487 |
-
|
488 |
try:
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
translation_tasks = [
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
]
|
500 |
|
501 |
for config in translation_configs:
|
502 |
src_lang = config["src_lang"]
|
503 |
tgt_lang = config["tgt_lang"]
|
504 |
key = model_manager._get_model_key(src_lang, tgt_lang)
|
505 |
-
translation_tasks.append(
|
|
|
|
|
|
|
|
|
|
|
506 |
|
507 |
-
|
508 |
-
logger.info("All models loaded successfully asynchronously")
|
509 |
except Exception as e:
|
510 |
logger.error(f"Error loading models: {str(e)}")
|
511 |
raise
|
512 |
|
513 |
-
logger.info("Starting
|
514 |
-
|
515 |
yield
|
516 |
llm_manager.unload()
|
517 |
logger.info("Server shutdown complete")
|
@@ -602,11 +608,11 @@ async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_
|
|
602 |
except ValueError as e:
|
603 |
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
604 |
key = model_manager._get_model_key(src_lang, tgt_lang)
|
605 |
-
|
606 |
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
607 |
|
608 |
if not translate_manager.model:
|
609 |
-
|
610 |
|
611 |
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
612 |
response = await translate(request, translate_manager)
|
@@ -635,7 +641,7 @@ async def unload_all_models():
|
|
635 |
async def load_all_models():
|
636 |
try:
|
637 |
logger.info("Starting to load all models...")
|
638 |
-
|
639 |
logger.info("All models loaded successfully")
|
640 |
return {"status": "success", "message": "All models loaded"}
|
641 |
except Exception as e:
|
|
|
88 |
self.is_loaded = False
|
89 |
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
|
91 |
+
def load(self):
|
92 |
if not self.is_loaded:
|
93 |
try:
|
94 |
+
self.model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
95 |
self.model_name,
|
96 |
device_map="auto",
|
97 |
quantization_config=quantization_config,
|
98 |
torch_dtype=self.torch_dtype
|
99 |
)
|
100 |
self.model.eval()
|
101 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
|
|
|
|
|
|
102 |
self.is_loaded = True
|
103 |
+
logger.info(f"LLM {self.model_name} loaded on {self.device}")
|
104 |
except Exception as e:
|
105 |
logger.error(f"Failed to load LLM: {str(e)}")
|
106 |
raise
|
|
|
117 |
|
118 |
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
119 |
if not self.is_loaded:
|
120 |
+
self.load()
|
121 |
|
122 |
messages_vlm = [
|
123 |
{
|
|
|
159 |
|
160 |
async def vision_query(self, image: Image.Image, query: str) -> str:
|
161 |
if not self.is_loaded:
|
162 |
+
self.load()
|
163 |
|
164 |
messages_vlm = [
|
165 |
{
|
|
|
208 |
|
209 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
210 |
if not self.is_loaded:
|
211 |
+
self.load()
|
212 |
|
213 |
messages_vlm = [
|
214 |
{
|
|
|
262 |
self.model = None
|
263 |
self.repo_id = "ai4bharat/IndicF5"
|
264 |
|
265 |
+
def load(self):
|
266 |
if not self.model:
|
267 |
+
logger.info("Loading TTS model IndicF5...")
|
268 |
+
self.model = AutoModel.from_pretrained(
|
|
|
269 |
self.repo_id,
|
270 |
trust_remote_code=True
|
271 |
)
|
272 |
self.model = self.model.to(self.device_type)
|
273 |
+
logger.info("TTS model IndicF5 loaded")
|
274 |
|
275 |
def synthesize(self, text, ref_audio_path, ref_text):
|
276 |
if not self.model:
|
|
|
354 |
self.tgt_lang = tgt_lang
|
355 |
self.use_distilled = use_distilled
|
356 |
|
357 |
+
def load(self):
|
358 |
if not self.tokenizer or not self.model:
|
359 |
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
360 |
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B"
|
|
|
365 |
else:
|
366 |
raise ValueError("Invalid language combination")
|
367 |
|
368 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
369 |
model_name,
|
370 |
trust_remote_code=True
|
371 |
)
|
372 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
373 |
model_name,
|
374 |
trust_remote_code=True,
|
375 |
torch_dtype=torch.float16,
|
|
|
377 |
)
|
378 |
self.model = self.model.to(self.device_type)
|
379 |
self.model = torch.compile(self.model, mode="reduce-overhead")
|
380 |
+
logger.info(f"Translation model {model_name} loaded")
|
381 |
|
382 |
class ModelManager:
|
383 |
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
|
|
|
386 |
self.use_distilled = use_distilled
|
387 |
self.is_lazy_loading = is_lazy_loading
|
388 |
|
389 |
+
def load_model(self, src_lang, tgt_lang, key):
|
390 |
+
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}")
|
391 |
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
|
392 |
+
translate_manager.load()
|
393 |
self.models[key] = translate_manager
|
394 |
+
logger.info(f"Loaded translation model for {key}")
|
395 |
|
396 |
def get_model(self, src_lang, tgt_lang):
|
397 |
key = self._get_model_key(src_lang, tgt_lang)
|
398 |
if key not in self.models:
|
399 |
if self.is_lazy_loading:
|
400 |
+
self.load_model(src_lang, tgt_lang, key)
|
401 |
else:
|
402 |
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
|
403 |
return self.models.get(key)
|
|
|
418 |
self.model = None
|
419 |
self.model_language = {"kannada": "kn"}
|
420 |
|
421 |
+
def load(self):
|
422 |
if not self.model:
|
423 |
+
logger.info("Loading ASR model...")
|
424 |
+
self.model = AutoModel.from_pretrained(
|
|
|
425 |
"ai4bharat/indic-conformer-600m-multilingual",
|
426 |
trust_remote_code=True
|
427 |
)
|
428 |
self.model = self.model.to(self.device_type)
|
429 |
+
logger.info("ASR model loaded")
|
430 |
|
431 |
# Global Managers
|
432 |
llm_manager = LLMManager(settings.llm_model_name)
|
|
|
476 |
|
477 |
@asynccontextmanager
|
478 |
async def lifespan(app: FastAPI):
|
479 |
+
def load_all_models():
|
480 |
try:
|
481 |
+
# Load LLM model
|
482 |
+
logger.info("Loading LLM model...")
|
483 |
+
llm_manager.load()
|
484 |
+
logger.info("LLM model loaded successfully")
|
485 |
+
|
486 |
+
# Load TTS model
|
487 |
+
logger.info("Loading TTS model...")
|
488 |
+
tts_manager.load()
|
489 |
+
logger.info("TTS model loaded successfully")
|
490 |
+
|
491 |
+
# Load ASR model
|
492 |
+
logger.info("Loading ASR model...")
|
493 |
+
asr_manager.load()
|
494 |
+
logger.info("ASR model loaded successfully")
|
495 |
+
|
496 |
+
# Load translation models
|
497 |
translation_tasks = [
|
498 |
+
('eng_Latn', 'kan_Knda', 'eng_indic'),
|
499 |
+
('kan_Knda', 'eng_Latn', 'indic_eng'),
|
500 |
+
('kan_Knda', 'hin_Deva', 'indic_indic'),
|
501 |
]
|
502 |
|
503 |
for config in translation_configs:
|
504 |
src_lang = config["src_lang"]
|
505 |
tgt_lang = config["tgt_lang"]
|
506 |
key = model_manager._get_model_key(src_lang, tgt_lang)
|
507 |
+
translation_tasks.append((src_lang, tgt_lang, key))
|
508 |
+
|
509 |
+
for src_lang, tgt_lang, key in translation_tasks:
|
510 |
+
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}...")
|
511 |
+
model_manager.load_model(src_lang, tgt_lang, key)
|
512 |
+
logger.info(f"Translation model for {key} loaded successfully")
|
513 |
|
514 |
+
logger.info("All models loaded successfully")
|
|
|
515 |
except Exception as e:
|
516 |
logger.error(f"Error loading models: {str(e)}")
|
517 |
raise
|
518 |
|
519 |
+
logger.info("Starting sequential model loading...")
|
520 |
+
load_all_models()
|
521 |
yield
|
522 |
llm_manager.unload()
|
523 |
logger.info("Server shutdown complete")
|
|
|
608 |
except ValueError as e:
|
609 |
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
610 |
key = model_manager._get_model_key(src_lang, tgt_lang)
|
611 |
+
model_manager.load_model(src_lang, tgt_lang, key)
|
612 |
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
613 |
|
614 |
if not translate_manager.model:
|
615 |
+
translate_manager.load()
|
616 |
|
617 |
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
618 |
response = await translate(request, translate_manager)
|
|
|
641 |
async def load_all_models():
|
642 |
try:
|
643 |
logger.info("Starting to load all models...")
|
644 |
+
llm_manager.load()
|
645 |
logger.info("All models loaded successfully")
|
646 |
return {"status": "success", "message": "All models loaded"}
|
647 |
except Exception as e:
|
src/server/main_hfy.py
DELETED
@@ -1,910 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import io
|
3 |
-
import os
|
4 |
-
from time import time
|
5 |
-
from typing import List
|
6 |
-
import tempfile
|
7 |
-
import uvicorn
|
8 |
-
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
|
9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
10 |
-
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
|
11 |
-
from PIL import Image
|
12 |
-
from pydantic import BaseModel, field_validator
|
13 |
-
from pydantic_settings import BaseSettings
|
14 |
-
from slowapi import Limiter
|
15 |
-
from slowapi.util import get_remote_address
|
16 |
-
import torch
|
17 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, AutoModel, Gemma3ForConditionalGeneration
|
18 |
-
from IndicTransToolkit import IndicProcessor
|
19 |
-
import json
|
20 |
-
import asyncio
|
21 |
-
from contextlib import asynccontextmanager
|
22 |
-
import soundfile as sf
|
23 |
-
import numpy as np
|
24 |
-
import requests
|
25 |
-
from starlette.responses import StreamingResponse
|
26 |
-
from logging_config import logger
|
27 |
-
from tts_config import SPEED, ResponseFormat, config as tts_config
|
28 |
-
import torchaudio
|
29 |
-
|
30 |
-
# Device setup
|
31 |
-
if torch.cuda.is_available():
|
32 |
-
device = "cuda:0"
|
33 |
-
logger.info("GPU will be used for inference")
|
34 |
-
else:
|
35 |
-
device = "cpu"
|
36 |
-
logger.info("CPU will be used for inference")
|
37 |
-
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
38 |
-
|
39 |
-
# Check CUDA availability and version
|
40 |
-
cuda_available = torch.cuda.is_available()
|
41 |
-
cuda_version = torch.version.cuda if cuda_available else None
|
42 |
-
|
43 |
-
if torch.cuda.is_available():
|
44 |
-
device_idx = torch.cuda.current_device()
|
45 |
-
capability = torch.cuda.get_device_capability(device_idx)
|
46 |
-
compute_capability_float = float(f"{capability[0]}.{capability[1]}")
|
47 |
-
print(f"CUDA version: {cuda_version}")
|
48 |
-
print(f"CUDA Compute Capability: {compute_capability_float}")
|
49 |
-
else:
|
50 |
-
print("CUDA is not available on this system.")
|
51 |
-
|
52 |
-
# Settings
|
53 |
-
class Settings(BaseSettings):
|
54 |
-
llm_model_name: str = "google/gemma-3-4b-it"
|
55 |
-
max_tokens: int = 512
|
56 |
-
host: str = "0.0.0.0"
|
57 |
-
port: int = 7860
|
58 |
-
chat_rate_limit: str = "100/minute"
|
59 |
-
speech_rate_limit: str = "5/minute"
|
60 |
-
|
61 |
-
@field_validator("chat_rate_limit", "speech_rate_limit")
|
62 |
-
def validate_rate_limit(cls, v):
|
63 |
-
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
|
64 |
-
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
|
65 |
-
return v
|
66 |
-
|
67 |
-
class Config:
|
68 |
-
env_file = ".env"
|
69 |
-
|
70 |
-
settings = Settings()
|
71 |
-
|
72 |
-
# Quantization config for LLM
|
73 |
-
quantization_config = BitsAndBytesConfig(
|
74 |
-
load_in_4bit=True,
|
75 |
-
bnb_4bit_quant_type="nf4",
|
76 |
-
bnb_4bit_use_double_quant=True,
|
77 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
78 |
-
)
|
79 |
-
|
80 |
-
# LLM Manager
|
81 |
-
class LLMManager:
|
82 |
-
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
83 |
-
self.model_name = model_name
|
84 |
-
self.device = torch.device(device)
|
85 |
-
self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32
|
86 |
-
self.model = None
|
87 |
-
self.processor = None
|
88 |
-
self.is_loaded = False
|
89 |
-
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
-
|
91 |
-
async def load(self):
|
92 |
-
if not self.is_loaded:
|
93 |
-
try:
|
94 |
-
self.model = await asyncio.to_thread(
|
95 |
-
Gemma3ForConditionalGeneration.from_pretrained,
|
96 |
-
self.model_name,
|
97 |
-
device_map="auto",
|
98 |
-
quantization_config=quantization_config,
|
99 |
-
torch_dtype=self.torch_dtype
|
100 |
-
)
|
101 |
-
self.model.eval()
|
102 |
-
self.processor = await asyncio.to_thread(
|
103 |
-
AutoProcessor.from_pretrained,
|
104 |
-
self.model_name
|
105 |
-
)
|
106 |
-
self.is_loaded = True
|
107 |
-
logger.info(f"LLM {self.model_name} loaded asynchronously on {self.device}")
|
108 |
-
except Exception as e:
|
109 |
-
logger.error(f"Failed to load LLM: {str(e)}")
|
110 |
-
raise
|
111 |
-
|
112 |
-
def unload(self):
|
113 |
-
if self.is_loaded:
|
114 |
-
del self.model
|
115 |
-
del self.processor
|
116 |
-
if self.device.type == "cuda":
|
117 |
-
torch.cuda.empty_cache()
|
118 |
-
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
119 |
-
self.is_loaded = False
|
120 |
-
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
121 |
-
|
122 |
-
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
123 |
-
if not self.is_loaded:
|
124 |
-
await self.load()
|
125 |
-
|
126 |
-
messages_vlm = [
|
127 |
-
{
|
128 |
-
"role": "system",
|
129 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"role": "user",
|
133 |
-
"content": [{"type": "text", "text": prompt}]
|
134 |
-
}
|
135 |
-
]
|
136 |
-
|
137 |
-
try:
|
138 |
-
inputs_vlm = self.processor.apply_chat_template(
|
139 |
-
messages_vlm,
|
140 |
-
add_generation_prompt=True,
|
141 |
-
tokenize=True,
|
142 |
-
return_dict=True,
|
143 |
-
return_tensors="pt"
|
144 |
-
).to(self.device, dtype=torch.bfloat16)
|
145 |
-
except Exception as e:
|
146 |
-
logger.error(f"Error in tokenization: {str(e)}")
|
147 |
-
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
148 |
-
|
149 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
150 |
-
|
151 |
-
with torch.inference_mode():
|
152 |
-
generation = self.model.generate(
|
153 |
-
**inputs_vlm,
|
154 |
-
max_new_tokens=max_tokens,
|
155 |
-
do_sample=True,
|
156 |
-
temperature=temperature
|
157 |
-
)
|
158 |
-
generation = generation[0][input_len:]
|
159 |
-
|
160 |
-
response = self.processor.decode(generation, skip_special_tokens=True)
|
161 |
-
logger.info(f"Generated response: {response}")
|
162 |
-
return response
|
163 |
-
|
164 |
-
async def vision_query(self, image: Image.Image, query: str) -> str:
|
165 |
-
if not self.is_loaded:
|
166 |
-
await self.load()
|
167 |
-
|
168 |
-
messages_vlm = [
|
169 |
-
{
|
170 |
-
"role": "system",
|
171 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}]
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"role": "user",
|
175 |
-
"content": []
|
176 |
-
}
|
177 |
-
]
|
178 |
-
|
179 |
-
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
180 |
-
if image and image.size[0] > 0 and image.size[1] > 0:
|
181 |
-
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
182 |
-
logger.info(f"Received valid image for processing")
|
183 |
-
else:
|
184 |
-
logger.info("No valid image provided, processing text only")
|
185 |
-
|
186 |
-
try:
|
187 |
-
inputs_vlm = self.processor.apply_chat_template(
|
188 |
-
messages_vlm,
|
189 |
-
add_generation_prompt=True,
|
190 |
-
tokenize=True,
|
191 |
-
return_dict=True,
|
192 |
-
return_tensors="pt"
|
193 |
-
).to(self.device, dtype=torch.bfloat16)
|
194 |
-
except Exception as e:
|
195 |
-
logger.error(f"Error in apply_chat_template: {str(e)}")
|
196 |
-
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
197 |
-
|
198 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
199 |
-
|
200 |
-
with torch.inference_mode():
|
201 |
-
generation = self.model.generate(
|
202 |
-
**inputs_vlm,
|
203 |
-
max_new_tokens=512,
|
204 |
-
do_sample=True,
|
205 |
-
temperature=0.7
|
206 |
-
)
|
207 |
-
generation = generation[0][input_len:]
|
208 |
-
|
209 |
-
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
210 |
-
logger.info(f"Vision query response: {decoded}")
|
211 |
-
return decoded
|
212 |
-
|
213 |
-
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
214 |
-
if not self.is_loaded:
|
215 |
-
await self.load()
|
216 |
-
|
217 |
-
messages_vlm = [
|
218 |
-
{
|
219 |
-
"role": "system",
|
220 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]
|
221 |
-
},
|
222 |
-
{
|
223 |
-
"role": "user",
|
224 |
-
"content": []
|
225 |
-
}
|
226 |
-
]
|
227 |
-
|
228 |
-
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
229 |
-
if image and image.size[0] > 0 and image.size[1] > 0:
|
230 |
-
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
231 |
-
logger.info(f"Received valid image for processing")
|
232 |
-
else:
|
233 |
-
logger.info("No valid image provided, processing text only")
|
234 |
-
|
235 |
-
try:
|
236 |
-
inputs_vlm = self.processor.apply_chat_template(
|
237 |
-
messages_vlm,
|
238 |
-
add_generation_prompt=True,
|
239 |
-
tokenize=True,
|
240 |
-
return_dict=True,
|
241 |
-
return_tensors="pt"
|
242 |
-
).to(self.device, dtype=torch.bfloat16)
|
243 |
-
except Exception as e:
|
244 |
-
logger.error(f"Error in apply_chat_template: {str(e)}")
|
245 |
-
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
246 |
-
|
247 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
248 |
-
|
249 |
-
with torch.inference_mode():
|
250 |
-
generation = self.model.generate(
|
251 |
-
**inputs_vlm,
|
252 |
-
max_new_tokens=512,
|
253 |
-
do_sample=True,
|
254 |
-
temperature=0.7
|
255 |
-
)
|
256 |
-
generation = generation[0][input_len:]
|
257 |
-
|
258 |
-
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
259 |
-
logger.info(f"Chat_v2 response: {decoded}")
|
260 |
-
return decoded
|
261 |
-
|
262 |
-
# TTS Manager
|
263 |
-
class TTSManager:
|
264 |
-
def __init__(self, device_type=device):
|
265 |
-
self.device_type = device_type
|
266 |
-
self.model = None
|
267 |
-
self.repo_id = "ai4bharat/IndicF5"
|
268 |
-
|
269 |
-
async def load(self):
|
270 |
-
if not self.model:
|
271 |
-
logger.info("Loading TTS model IndicF5 asynchronously...")
|
272 |
-
self.model = await asyncio.to_thread(
|
273 |
-
AutoModel.from_pretrained,
|
274 |
-
self.repo_id,
|
275 |
-
trust_remote_code=True
|
276 |
-
)
|
277 |
-
self.model = self.model.to(self.device_type)
|
278 |
-
logger.info("TTS model IndicF5 loaded asynchronously")
|
279 |
-
|
280 |
-
def synthesize(self, text, ref_audio_path, ref_text):
|
281 |
-
if not self.model:
|
282 |
-
raise ValueError("TTS model not loaded")
|
283 |
-
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
|
284 |
-
|
285 |
-
# TTS Constants
|
286 |
-
EXAMPLES = [
|
287 |
-
{
|
288 |
-
"audio_name": "KAN_F (Happy)",
|
289 |
-
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
|
290 |
-
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ.",
|
291 |
-
"synth_text": "ಚೆನ್ನೈನ ಶೇರ್ ಆಟೋ ಪ್ರಯಾಣಿಕರ ನಡುವೆ ಆಹಾರವನ್ನು ಹಂಚಿಕೊಂಡು ತಿನ್ನುವುದು ನನಗೆ ಮನಸ್ಸಿಗೆ ತುಂಬಾ ಒಳ್ಳೆಯದೆನಿಸುವ ವಿಷಯ."
|
292 |
-
},
|
293 |
-
]
|
294 |
-
|
295 |
-
# Pydantic models for TTS
|
296 |
-
class SynthesizeRequest(BaseModel):
|
297 |
-
text: str
|
298 |
-
ref_audio_name: str
|
299 |
-
ref_text: str = None
|
300 |
-
|
301 |
-
class KannadaSynthesizeRequest(BaseModel):
|
302 |
-
text: str
|
303 |
-
|
304 |
-
# TTS Functions
|
305 |
-
def load_audio_from_url(url: str):
|
306 |
-
response = requests.get(url)
|
307 |
-
if response.status_code == 200:
|
308 |
-
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
|
309 |
-
return sample_rate, audio_data
|
310 |
-
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL.")
|
311 |
-
|
312 |
-
def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str):
|
313 |
-
ref_audio_url = None
|
314 |
-
for example in EXAMPLES:
|
315 |
-
if example["audio_name"] == ref_audio_name:
|
316 |
-
ref_audio_url = example["audio_url"]
|
317 |
-
if not ref_text:
|
318 |
-
ref_text = example["ref_text"]
|
319 |
-
break
|
320 |
-
|
321 |
-
if not ref_audio_url:
|
322 |
-
raise HTTPException(status_code=400, detail="Invalid reference audio name.")
|
323 |
-
if not text.strip():
|
324 |
-
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
325 |
-
if not ref_text or not ref_text.strip():
|
326 |
-
raise HTTPException(status_code=400, detail="Reference text cannot be empty.")
|
327 |
-
|
328 |
-
sample_rate, audio_data = load_audio_from_url(ref_audio_url)
|
329 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
330 |
-
sf.write(temp_audio.name, audio_data, samplerate=sample_rate, format='WAV')
|
331 |
-
temp_audio.flush()
|
332 |
-
audio = tts_manager.synthesize(text, ref_audio_path=temp_audio.name, ref_text=ref_text)
|
333 |
-
|
334 |
-
if audio.dtype == np.int16:
|
335 |
-
audio = audio.astype(np.float32) / 32768.0
|
336 |
-
buffer = io.BytesIO()
|
337 |
-
sf.write(buffer, audio, 24000, format='WAV')
|
338 |
-
buffer.seek(0)
|
339 |
-
return buffer
|
340 |
-
|
341 |
-
# Supported languages
|
342 |
-
SUPPORTED_LANGUAGES = {
|
343 |
-
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
344 |
-
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
|
345 |
-
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
|
346 |
-
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
|
347 |
-
"kan_Knda", "ory_Orya",
|
348 |
-
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
|
349 |
-
"por_Latn", "rus_Cyrl", "pol_Latn"
|
350 |
-
}
|
351 |
-
|
352 |
-
# Translation Manager
|
353 |
-
class TranslateManager:
|
354 |
-
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
|
355 |
-
self.device_type = device_type
|
356 |
-
self.tokenizer = None
|
357 |
-
self.model = None
|
358 |
-
self.src_lang = src_lang
|
359 |
-
self.tgt_lang = tgt_lang
|
360 |
-
self.use_distilled = use_distilled
|
361 |
-
|
362 |
-
async def load(self):
|
363 |
-
if not self.tokenizer or not self.model:
|
364 |
-
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
365 |
-
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B"
|
366 |
-
elif not self.src_lang.startswith("eng") and self.tgt_lang.startswith("eng"):
|
367 |
-
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-indic-en-1B"
|
368 |
-
elif not self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
369 |
-
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if self.use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
|
370 |
-
else:
|
371 |
-
raise ValueError("Invalid language combination")
|
372 |
-
|
373 |
-
self.tokenizer = await asyncio.to_thread(
|
374 |
-
AutoTokenizer.from_pretrained,
|
375 |
-
model_name,
|
376 |
-
trust_remote_code=True
|
377 |
-
)
|
378 |
-
self.model = await asyncio.to_thread(
|
379 |
-
AutoModelForSeq2SeqLM.from_pretrained,
|
380 |
-
model_name,
|
381 |
-
trust_remote_code=True,
|
382 |
-
torch_dtype=torch.float16,
|
383 |
-
attn_implementation="flash_attention_2"
|
384 |
-
)
|
385 |
-
self.model = self.model.to(self.device_type)
|
386 |
-
self.model = torch.compile(self.model, mode="reduce-overhead")
|
387 |
-
logger.info(f"Translation model {model_name} loaded asynchronously")
|
388 |
-
|
389 |
-
class ModelManager:
|
390 |
-
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
|
391 |
-
self.models = {}
|
392 |
-
self.device_type = device_type
|
393 |
-
self.use_distilled = use_distilled
|
394 |
-
self.is_lazy_loading = is_lazy_loading
|
395 |
-
|
396 |
-
async def load_model(self, src_lang, tgt_lang, key):
|
397 |
-
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang} asynchronously")
|
398 |
-
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
|
399 |
-
await translate_manager.load()
|
400 |
-
self.models[key] = translate_manager
|
401 |
-
logger.info(f"Loaded translation model for {key} asynchronously")
|
402 |
-
|
403 |
-
def get_model(self, src_lang, tgt_lang):
|
404 |
-
key = self._get_model_key(src_lang, tgt_lang)
|
405 |
-
if key not in self.models:
|
406 |
-
if self.is_lazy_loading:
|
407 |
-
asyncio.create_task(self.load_model(src_lang, tgt_lang, key))
|
408 |
-
else:
|
409 |
-
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
|
410 |
-
return self.models.get(key)
|
411 |
-
|
412 |
-
def _get_model_key(self, src_lang, tgt_lang):
|
413 |
-
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
414 |
-
return 'eng_indic'
|
415 |
-
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
|
416 |
-
return 'indic_eng'
|
417 |
-
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
418 |
-
return 'indic_indic'
|
419 |
-
raise ValueError("Invalid language combination")
|
420 |
-
|
421 |
-
# ASR Manager
|
422 |
-
class ASRModelManager:
|
423 |
-
def __init__(self, device_type="cuda"):
|
424 |
-
self.device_type = device_type
|
425 |
-
self.model = None
|
426 |
-
self.model_language = {"kannada": "kn"}
|
427 |
-
|
428 |
-
async def load(self):
|
429 |
-
if not self.model:
|
430 |
-
logger.info("Loading ASR model asynchronously...")
|
431 |
-
self.model = await asyncio.to_thread(
|
432 |
-
AutoModel.from_pretrained,
|
433 |
-
"ai4bharat/indic-conformer-600m-multilingual",
|
434 |
-
trust_remote_code=True
|
435 |
-
)
|
436 |
-
self.model = self.model.to(self.device_type)
|
437 |
-
logger.info("ASR model loaded asynchronously")
|
438 |
-
|
439 |
-
# Global Managers
|
440 |
-
llm_manager = LLMManager(settings.llm_model_name)
|
441 |
-
model_manager = ModelManager()
|
442 |
-
asr_manager = ASRModelManager()
|
443 |
-
tts_manager = TTSManager()
|
444 |
-
ip = IndicProcessor(inference=True)
|
445 |
-
|
446 |
-
# Pydantic Models
|
447 |
-
class ChatRequest(BaseModel):
|
448 |
-
prompt: str
|
449 |
-
src_lang: str = "kan_Knda"
|
450 |
-
tgt_lang: str = "kan_Knda"
|
451 |
-
|
452 |
-
@field_validator("prompt")
|
453 |
-
def prompt_must_be_valid(cls, v):
|
454 |
-
if len(v) > 1000:
|
455 |
-
raise ValueError("Prompt cannot exceed 1000 characters")
|
456 |
-
return v.strip()
|
457 |
-
|
458 |
-
@field_validator("src_lang", "tgt_lang")
|
459 |
-
def validate_language(cls, v):
|
460 |
-
if v not in SUPPORTED_LANGUAGES:
|
461 |
-
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
462 |
-
return v
|
463 |
-
|
464 |
-
class ChatResponse(BaseModel):
|
465 |
-
response: str
|
466 |
-
|
467 |
-
class TranslationRequest(BaseModel):
|
468 |
-
sentences: List[str]
|
469 |
-
src_lang: str
|
470 |
-
tgt_lang: str
|
471 |
-
|
472 |
-
class TranscriptionResponse(BaseModel):
|
473 |
-
text: str
|
474 |
-
|
475 |
-
class TranslationResponse(BaseModel):
|
476 |
-
translations: List[str]
|
477 |
-
|
478 |
-
# Dependency
|
479 |
-
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
|
480 |
-
return model_manager.get_model(src_lang, tgt_lang)
|
481 |
-
|
482 |
-
# Lifespan Event Handler
|
483 |
-
translation_configs = []
|
484 |
-
|
485 |
-
@asynccontextmanager
|
486 |
-
async def lifespan(app: FastAPI):
|
487 |
-
async def load_all_models():
|
488 |
-
try:
|
489 |
-
tasks = [
|
490 |
-
llm_manager.load(),
|
491 |
-
tts_manager.load(),
|
492 |
-
asr_manager.load(),
|
493 |
-
]
|
494 |
-
|
495 |
-
translation_tasks = [
|
496 |
-
model_manager.load_model('eng_Latn', 'kan_Knda', 'eng_indic'),
|
497 |
-
model_manager.load_model('kan_Knda', 'eng_Latn', 'indic_eng'),
|
498 |
-
model_manager.load_model('kan_Knda', 'hin_Deva', 'indic_indic'),
|
499 |
-
]
|
500 |
-
|
501 |
-
for config in translation_configs:
|
502 |
-
src_lang = config["src_lang"]
|
503 |
-
tgt_lang = config["tgt_lang"]
|
504 |
-
key = model_manager._get_model_key(src_lang, tgt_lang)
|
505 |
-
translation_tasks.append(model_manager.load_model(src_lang, tgt_lang, key))
|
506 |
-
|
507 |
-
await asyncio.gather(*tasks, *translation_tasks)
|
508 |
-
logger.info("All models loaded successfully asynchronously")
|
509 |
-
except Exception as e:
|
510 |
-
logger.error(f"Error loading models: {str(e)}")
|
511 |
-
raise
|
512 |
-
|
513 |
-
logger.info("Starting asynchronous model loading...")
|
514 |
-
await load_all_models()
|
515 |
-
yield
|
516 |
-
llm_manager.unload()
|
517 |
-
logger.info("Server shutdown complete")
|
518 |
-
|
519 |
-
# FastAPI App
|
520 |
-
app = FastAPI(
|
521 |
-
title="Dhwani API",
|
522 |
-
description="AI Chat API supporting Indian languages",
|
523 |
-
version="1.0.0",
|
524 |
-
redirect_slashes=False,
|
525 |
-
lifespan=lifespan
|
526 |
-
)
|
527 |
-
|
528 |
-
app.add_middleware(
|
529 |
-
CORSMiddleware,
|
530 |
-
allow_origins=["*"],
|
531 |
-
allow_credentials=False,
|
532 |
-
allow_methods=["*"],
|
533 |
-
allow_headers=["*"],
|
534 |
-
)
|
535 |
-
|
536 |
-
limiter = Limiter(key_func=get_remote_address)
|
537 |
-
app.state.limiter = limiter
|
538 |
-
|
539 |
-
# API Endpoints
|
540 |
-
@app.post("/audio/speech", response_class=StreamingResponse)
|
541 |
-
async def synthesize_kannada(request: KannadaSynthesizeRequest):
|
542 |
-
if not tts_manager.model:
|
543 |
-
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
544 |
-
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
|
545 |
-
if not request.text.strip():
|
546 |
-
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
547 |
-
|
548 |
-
audio_buffer = synthesize_speech(
|
549 |
-
tts_manager,
|
550 |
-
text=request.text,
|
551 |
-
ref_audio_name="KAN_F (Happy)",
|
552 |
-
ref_text=kannada_example["ref_text"]
|
553 |
-
)
|
554 |
-
|
555 |
-
return StreamingResponse(
|
556 |
-
audio_buffer,
|
557 |
-
media_type="audio/wav",
|
558 |
-
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
|
559 |
-
)
|
560 |
-
|
561 |
-
@app.post("/translate", response_model=TranslationResponse)
|
562 |
-
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
563 |
-
input_sentences = request.sentences
|
564 |
-
src_lang = request.src_lang
|
565 |
-
tgt_lang = request.tgt_lang
|
566 |
-
|
567 |
-
if not input_sentences:
|
568 |
-
raise HTTPException(status_code=400, detail="Input sentences are required")
|
569 |
-
|
570 |
-
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
571 |
-
inputs = translate_manager.tokenizer(
|
572 |
-
batch,
|
573 |
-
truncation=True,
|
574 |
-
padding="longest",
|
575 |
-
return_tensors="pt",
|
576 |
-
return_attention_mask=True,
|
577 |
-
).to(translate_manager.device_type)
|
578 |
-
|
579 |
-
with torch.no_grad():
|
580 |
-
generated_tokens = translate_manager.model.generate(
|
581 |
-
**inputs,
|
582 |
-
use_cache=True,
|
583 |
-
min_length=0,
|
584 |
-
max_length=256,
|
585 |
-
num_beams=5,
|
586 |
-
num_return_sequences=1,
|
587 |
-
)
|
588 |
-
|
589 |
-
with translate_manager.tokenizer.as_target_tokenizer():
|
590 |
-
generated_tokens = translate_manager.tokenizer.batch_decode(
|
591 |
-
generated_tokens.detach().cpu().tolist(),
|
592 |
-
skip_special_tokens=True,
|
593 |
-
clean_up_tokenization_spaces=True,
|
594 |
-
)
|
595 |
-
|
596 |
-
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
597 |
-
return TranslationResponse(translations=translations)
|
598 |
-
|
599 |
-
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
600 |
-
try:
|
601 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
602 |
-
except ValueError as e:
|
603 |
-
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
604 |
-
key = model_manager._get_model_key(src_lang, tgt_lang)
|
605 |
-
await model_manager.load_model(src_lang, tgt_lang, key)
|
606 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
607 |
-
|
608 |
-
if not translate_manager.model:
|
609 |
-
await translate_manager.load()
|
610 |
-
|
611 |
-
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
612 |
-
response = await translate(request, translate_manager)
|
613 |
-
return response.translations
|
614 |
-
|
615 |
-
@app.get("/v1/health")
|
616 |
-
async def health_check():
|
617 |
-
return {"status": "healthy", "model": settings.llm_model_name}
|
618 |
-
|
619 |
-
@app.get("/")
|
620 |
-
async def home():
|
621 |
-
return RedirectResponse(url="/docs")
|
622 |
-
|
623 |
-
@app.post("/v1/unload_all_models")
|
624 |
-
async def unload_all_models():
|
625 |
-
try:
|
626 |
-
logger.info("Starting to unload all models...")
|
627 |
-
llm_manager.unload()
|
628 |
-
logger.info("All models unloaded successfully")
|
629 |
-
return {"status": "success", "message": "All models unloaded"}
|
630 |
-
except Exception as e:
|
631 |
-
logger.error(f"Error unloading models: {str(e)}")
|
632 |
-
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
|
633 |
-
|
634 |
-
@app.post("/v1/load_all_models")
|
635 |
-
async def load_all_models():
|
636 |
-
try:
|
637 |
-
logger.info("Starting to load all models...")
|
638 |
-
await llm_manager.load()
|
639 |
-
logger.info("All models loaded successfully")
|
640 |
-
return {"status": "success", "message": "All models loaded"}
|
641 |
-
except Exception as e:
|
642 |
-
logger.error(f"Error loading models: {str(e)}")
|
643 |
-
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
|
644 |
-
|
645 |
-
@app.post("/v1/translate", response_model=TranslationResponse)
|
646 |
-
async def translate_endpoint(request: TranslationRequest):
|
647 |
-
logger.info(f"Received translation request: {request.dict()}")
|
648 |
-
try:
|
649 |
-
translations = await perform_internal_translation(
|
650 |
-
sentences=request.sentences,
|
651 |
-
src_lang=request.src_lang,
|
652 |
-
tgt_lang=request.tgt_lang
|
653 |
-
)
|
654 |
-
logger.info(f"Translation successful: {translations}")
|
655 |
-
return TranslationResponse(translations=translations)
|
656 |
-
except Exception as e:
|
657 |
-
logger.error(f"Unexpected error during translation: {str(e)}")
|
658 |
-
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
659 |
-
|
660 |
-
@app.post("/v1/chat", response_model=ChatResponse)
|
661 |
-
@limiter.limit(settings.chat_rate_limit)
|
662 |
-
async def chat(request: Request, chat_request: ChatRequest):
|
663 |
-
if not chat_request.prompt:
|
664 |
-
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
665 |
-
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
666 |
-
|
667 |
-
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
|
668 |
-
|
669 |
-
try:
|
670 |
-
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
|
671 |
-
translated_prompt = await perform_internal_translation(
|
672 |
-
sentences=[chat_request.prompt],
|
673 |
-
src_lang=chat_request.src_lang,
|
674 |
-
tgt_lang="eng_Latn"
|
675 |
-
)
|
676 |
-
prompt_to_process = translated_prompt[0]
|
677 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
678 |
-
else:
|
679 |
-
prompt_to_process = chat_request.prompt
|
680 |
-
logger.info("Prompt in English or European language, no translation needed")
|
681 |
-
|
682 |
-
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
683 |
-
logger.info(f"Generated response: {response}")
|
684 |
-
|
685 |
-
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
|
686 |
-
translated_response = await perform_internal_translation(
|
687 |
-
sentences=[response],
|
688 |
-
src_lang="eng_Latn",
|
689 |
-
tgt_lang=chat_request.tgt_lang
|
690 |
-
)
|
691 |
-
final_response = translated_response[0]
|
692 |
-
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
|
693 |
-
else:
|
694 |
-
final_response = response
|
695 |
-
logger.info(f"Response in {chat_request.tgt_lang}, no translation needed")
|
696 |
-
|
697 |
-
return ChatResponse(response=final_response)
|
698 |
-
except Exception as e:
|
699 |
-
logger.error(f"Error processing request: {str(e)}")
|
700 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
701 |
-
|
702 |
-
@app.post("/v1/visual_query/")
|
703 |
-
async def visual_query(
|
704 |
-
file: UploadFile = File(...),
|
705 |
-
query: str = Body(...),
|
706 |
-
src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
707 |
-
tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
708 |
-
):
|
709 |
-
try:
|
710 |
-
image = Image.open(file.file)
|
711 |
-
if image.size == (0, 0):
|
712 |
-
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
713 |
-
|
714 |
-
if src_lang != "eng_Latn":
|
715 |
-
translated_query = await perform_internal_translation(
|
716 |
-
sentences=[query],
|
717 |
-
src_lang=src_lang,
|
718 |
-
tgt_lang="eng_Latn"
|
719 |
-
)
|
720 |
-
query_to_process = translated_query[0]
|
721 |
-
logger.info(f"Translated query to English: {query_to_process}")
|
722 |
-
else:
|
723 |
-
query_to_process = query
|
724 |
-
logger.info("Query already in English, no translation needed")
|
725 |
-
|
726 |
-
answer = await llm_manager.vision_query(image, query_to_process)
|
727 |
-
logger.info(f"Generated English answer: {answer}")
|
728 |
-
|
729 |
-
if tgt_lang != "eng_Latn":
|
730 |
-
translated_answer = await perform_internal_translation(
|
731 |
-
sentences=[answer],
|
732 |
-
src_lang="eng_Latn",
|
733 |
-
tgt_lang=tgt_lang
|
734 |
-
)
|
735 |
-
final_answer = translated_answer[0]
|
736 |
-
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
|
737 |
-
else:
|
738 |
-
final_answer = answer
|
739 |
-
logger.info("Answer kept in English, no translation needed")
|
740 |
-
|
741 |
-
return {"answer": final_answer}
|
742 |
-
except Exception as e:
|
743 |
-
logger.error(f"Error processing request: {str(e)}")
|
744 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
745 |
-
|
746 |
-
@app.post("/v1/chat_v2", response_model=ChatResponse)
|
747 |
-
@limiter.limit(settings.chat_rate_limit)
|
748 |
-
async def chat_v2(
|
749 |
-
request: Request,
|
750 |
-
prompt: str = Form(...),
|
751 |
-
image: UploadFile = File(default=None),
|
752 |
-
src_lang: str = Form("kan_Knda"),
|
753 |
-
tgt_lang: str = Form("kan_Knda"),
|
754 |
-
):
|
755 |
-
if not prompt:
|
756 |
-
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
757 |
-
if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES:
|
758 |
-
raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
759 |
-
|
760 |
-
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
761 |
-
|
762 |
-
try:
|
763 |
-
if image:
|
764 |
-
image_data = await image.read()
|
765 |
-
if not image_data:
|
766 |
-
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
767 |
-
img = Image.open(io.BytesIO(image_data))
|
768 |
-
|
769 |
-
if src_lang != "eng_Latn":
|
770 |
-
translated_prompt = await perform_internal_translation(
|
771 |
-
sentences=[prompt],
|
772 |
-
src_lang=src_lang,
|
773 |
-
tgt_lang="eng_Latn"
|
774 |
-
)
|
775 |
-
prompt_to_process = translated_prompt[0]
|
776 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
777 |
-
else:
|
778 |
-
prompt_to_process = prompt
|
779 |
-
logger.info("Prompt already in English, no translation needed")
|
780 |
-
|
781 |
-
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
782 |
-
logger.info(f"Generated English response: {decoded}")
|
783 |
-
|
784 |
-
if tgt_lang != "eng_Latn":
|
785 |
-
translated_response = await perform_internal_translation(
|
786 |
-
sentences=[decoded],
|
787 |
-
src_lang="eng_Latn",
|
788 |
-
tgt_lang=tgt_lang
|
789 |
-
)
|
790 |
-
final_response = translated_response[0]
|
791 |
-
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
792 |
-
else:
|
793 |
-
final_response = decoded
|
794 |
-
logger.info("Response kept in English, no translation needed")
|
795 |
-
else:
|
796 |
-
if src_lang != "eng_Latn":
|
797 |
-
translated_prompt = await perform_internal_translation(
|
798 |
-
sentences=[prompt],
|
799 |
-
src_lang=src_lang,
|
800 |
-
tgt_lang="eng_Latn"
|
801 |
-
)
|
802 |
-
prompt_to_process = translated_prompt[0]
|
803 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
804 |
-
else:
|
805 |
-
prompt_to_process = prompt
|
806 |
-
logger.info("Prompt already in English, no translation needed")
|
807 |
-
|
808 |
-
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
809 |
-
logger.info(f"Generated English response: {decoded}")
|
810 |
-
|
811 |
-
if tgt_lang != "eng_Latn":
|
812 |
-
translated_response = await perform_internal_translation(
|
813 |
-
sentences=[decoded],
|
814 |
-
src_lang="eng_Latn",
|
815 |
-
tgt_lang=tgt_lang
|
816 |
-
)
|
817 |
-
final_response = translated_response[0]
|
818 |
-
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
819 |
-
else:
|
820 |
-
final_response = decoded
|
821 |
-
logger.info("Response kept in English, no translation needed")
|
822 |
-
|
823 |
-
return ChatResponse(response=final_response)
|
824 |
-
except Exception as e:
|
825 |
-
logger.error(f"Error processing request: {str(e)}")
|
826 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
827 |
-
|
828 |
-
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
829 |
-
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
830 |
-
if not asr_manager.model:
|
831 |
-
raise HTTPException(status_code=503, detail="ASR model not loaded")
|
832 |
-
try:
|
833 |
-
wav, sr = torchaudio.load(file.file)
|
834 |
-
wav = torch.mean(wav, dim=0, keepdim=True)
|
835 |
-
target_sample_rate = 16000
|
836 |
-
if sr != target_sample_rate:
|
837 |
-
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
|
838 |
-
wav = resampler(wav)
|
839 |
-
transcription_rnnt = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
|
840 |
-
return TranscriptionResponse(text=transcription_rnnt)
|
841 |
-
except Exception as e:
|
842 |
-
logger.error(f"Error in transcription: {str(e)}")
|
843 |
-
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
|
844 |
-
|
845 |
-
@app.post("/v1/speech_to_speech")
|
846 |
-
async def speech_to_speech(
|
847 |
-
request: Request,
|
848 |
-
file: UploadFile = File(...),
|
849 |
-
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
|
850 |
-
) -> StreamingResponse:
|
851 |
-
if not tts_manager.model:
|
852 |
-
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
853 |
-
transcription = await transcribe_audio(file, language)
|
854 |
-
logger.info(f"Transcribed text: {transcription.text}")
|
855 |
-
|
856 |
-
chat_request = ChatRequest(
|
857 |
-
prompt=transcription.text,
|
858 |
-
src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"),
|
859 |
-
tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda")
|
860 |
-
)
|
861 |
-
processed_text = await chat(request, chat_request)
|
862 |
-
logger.info(f"Processed text: {processed_text.response}")
|
863 |
-
|
864 |
-
voice_request = KannadaSynthesizeRequest(text=processed_text.response)
|
865 |
-
audio_response = await synthesize_kannada(voice_request)
|
866 |
-
return audio_response
|
867 |
-
|
868 |
-
LANGUAGE_TO_SCRIPT = {
|
869 |
-
"kannada": "kan_Knda"
|
870 |
-
}
|
871 |
-
|
872 |
-
# Main Execution
|
873 |
-
if __name__ == "__main__":
|
874 |
-
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
|
875 |
-
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
|
876 |
-
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
|
877 |
-
parser.add_argument("--config", type=str, default="config_one", help="Configuration to use")
|
878 |
-
args = parser.parse_args()
|
879 |
-
|
880 |
-
def load_config(config_path="dhwani_config.json"):
|
881 |
-
with open(config_path, "r") as f:
|
882 |
-
return json.load(f)
|
883 |
-
|
884 |
-
config_data = load_config()
|
885 |
-
if args.config not in config_data["configs"]:
|
886 |
-
raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}")
|
887 |
-
|
888 |
-
selected_config = config_data["configs"][args.config]
|
889 |
-
global_settings = config_data["global_settings"]
|
890 |
-
|
891 |
-
settings.llm_model_name = selected_config["components"]["LLM"]["model"]
|
892 |
-
settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"]
|
893 |
-
settings.host = global_settings["host"]
|
894 |
-
settings.port = global_settings["port"]
|
895 |
-
settings.chat_rate_limit = global_settings["chat_rate_limit"]
|
896 |
-
settings.speech_rate_limit = global_settings["speech_rate_limit"]
|
897 |
-
|
898 |
-
llm_manager = LLMManager(settings.llm_model_name)
|
899 |
-
|
900 |
-
if selected_config["components"]["ASR"]:
|
901 |
-
asr_model_name = selected_config["components"]["ASR"]["model"]
|
902 |
-
asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"]
|
903 |
-
|
904 |
-
if selected_config["components"]["Translation"]:
|
905 |
-
translation_configs.extend(selected_config["components"]["Translation"])
|
906 |
-
|
907 |
-
host = args.host if args.host != settings.host else settings.host
|
908 |
-
port = args.port if args.port != settings.port else settings.port
|
909 |
-
|
910 |
-
uvicorn.run(app, host=host, port=port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/server/main_local.py
DELETED
@@ -1,913 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import io
|
3 |
-
import os
|
4 |
-
from time import time
|
5 |
-
from typing import List
|
6 |
-
import tempfile
|
7 |
-
import uvicorn
|
8 |
-
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
|
9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
10 |
-
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
|
11 |
-
from PIL import Image
|
12 |
-
from pydantic import BaseModel, field_validator
|
13 |
-
from pydantic_settings import BaseSettings
|
14 |
-
from slowapi import Limiter
|
15 |
-
from slowapi.util import get_remote_address
|
16 |
-
import torch
|
17 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel, BitsAndBytesConfig, Gemma3ForConditionalGeneration
|
18 |
-
from IndicTransToolkit import IndicProcessor
|
19 |
-
import json
|
20 |
-
import asyncio
|
21 |
-
from contextlib import asynccontextmanager
|
22 |
-
import soundfile as sf
|
23 |
-
import numpy as np
|
24 |
-
import requests
|
25 |
-
from starlette.responses import StreamingResponse
|
26 |
-
from logging_config import logger
|
27 |
-
from tts_config import SPEED, ResponseFormat, config as tts_config
|
28 |
-
import torchaudio
|
29 |
-
|
30 |
-
# Device setup
|
31 |
-
if torch.cuda.is_available():
|
32 |
-
device = "cuda:0"
|
33 |
-
logger.info("GPU will be used for inference")
|
34 |
-
else:
|
35 |
-
device = "cpu"
|
36 |
-
logger.info("CPU will be used for inference")
|
37 |
-
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
38 |
-
|
39 |
-
# Check CUDA availability and version
|
40 |
-
cuda_available = torch.cuda.is_available()
|
41 |
-
cuda_version = torch.version.cuda if cuda_available else None
|
42 |
-
|
43 |
-
if torch.cuda.is_available():
|
44 |
-
device_idx = torch.cuda.current_device()
|
45 |
-
capability = torch.cuda.get_device_capability(device_idx)
|
46 |
-
compute_capability_float = float(f"{capability[0]}.{capability[1]}")
|
47 |
-
print(f"CUDA version: {cuda_version}")
|
48 |
-
print(f"CUDA Compute Capability: {compute_capability_float}")
|
49 |
-
else:
|
50 |
-
print("CUDA is not available on this system.")
|
51 |
-
|
52 |
-
# Settings
|
53 |
-
class Settings(BaseSettings):
|
54 |
-
llm_model_name: str = "google/gemma-3-4b-it"
|
55 |
-
max_tokens: int = 512
|
56 |
-
host: str = "0.0.0.0"
|
57 |
-
port: int = 7860
|
58 |
-
chat_rate_limit: str = "100/minute"
|
59 |
-
speech_rate_limit: str = "5/minute"
|
60 |
-
|
61 |
-
@field_validator("chat_rate_limit", "speech_rate_limit")
|
62 |
-
def validate_rate_limit(cls, v):
|
63 |
-
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
|
64 |
-
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
|
65 |
-
return v
|
66 |
-
|
67 |
-
class Config:
|
68 |
-
env_file = ".env"
|
69 |
-
|
70 |
-
settings = Settings()
|
71 |
-
|
72 |
-
# Quantization config for LLM
|
73 |
-
quantization_config = BitsAndBytesConfig(
|
74 |
-
load_in_4bit=True,
|
75 |
-
bnb_4bit_quant_type="nf4",
|
76 |
-
bnb_4bit_use_double_quant=True,
|
77 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
78 |
-
)
|
79 |
-
|
80 |
-
# LLM Manager
|
81 |
-
class LLMManager:
|
82 |
-
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
83 |
-
self.model_name = model_name
|
84 |
-
self.device = torch.device(device)
|
85 |
-
self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32
|
86 |
-
self.model = None
|
87 |
-
self.processor = None
|
88 |
-
self.is_loaded = False
|
89 |
-
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
-
|
91 |
-
async def load(self):
|
92 |
-
if not self.is_loaded:
|
93 |
-
try:
|
94 |
-
local_path = "/app/models/llm_model"
|
95 |
-
self.model = await asyncio.to_thread(
|
96 |
-
Gemma3ForConditionalGeneration.from_pretrained,
|
97 |
-
local_path,
|
98 |
-
device_map="auto",
|
99 |
-
quantization_config=quantization_config,
|
100 |
-
torch_dtype=self.torch_dtype
|
101 |
-
)
|
102 |
-
self.model.eval()
|
103 |
-
self.processor = await asyncio.to_thread(
|
104 |
-
AutoProcessor.from_pretrained,
|
105 |
-
local_path
|
106 |
-
)
|
107 |
-
self.is_loaded = True
|
108 |
-
logger.info(f"LLM loaded from {local_path} on {self.device}")
|
109 |
-
except Exception as e:
|
110 |
-
logger.error(f"Failed to load LLM: {str(e)}")
|
111 |
-
raise
|
112 |
-
|
113 |
-
def unload(self):
|
114 |
-
if self.is_loaded:
|
115 |
-
del self.model
|
116 |
-
del self.processor
|
117 |
-
if self.device.type == "cuda":
|
118 |
-
torch.cuda.empty_cache()
|
119 |
-
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
120 |
-
self.is_loaded = False
|
121 |
-
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
122 |
-
|
123 |
-
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
124 |
-
if not self.is_loaded:
|
125 |
-
await self.load()
|
126 |
-
|
127 |
-
messages_vlm = [
|
128 |
-
{
|
129 |
-
"role": "system",
|
130 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"role": "user",
|
134 |
-
"content": [{"type": "text", "text": prompt}]
|
135 |
-
}
|
136 |
-
]
|
137 |
-
|
138 |
-
try:
|
139 |
-
inputs_vlm = self.processor.apply_chat_template(
|
140 |
-
messages_vlm,
|
141 |
-
add_generation_prompt=True,
|
142 |
-
tokenize=True,
|
143 |
-
return_dict=True,
|
144 |
-
return_tensors="pt"
|
145 |
-
).to(self.device, dtype=torch.bfloat16)
|
146 |
-
except Exception as e:
|
147 |
-
logger.error(f"Error in tokenization: {str(e)}")
|
148 |
-
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
149 |
-
|
150 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
151 |
-
|
152 |
-
with torch.inference_mode():
|
153 |
-
generation = self.model.generate(
|
154 |
-
**inputs_vlm,
|
155 |
-
max_new_tokens=max_tokens,
|
156 |
-
do_sample=True,
|
157 |
-
temperature=temperature
|
158 |
-
)
|
159 |
-
generation = generation[0][input_len:]
|
160 |
-
|
161 |
-
response = self.processor.decode(generation, skip_special_tokens=True)
|
162 |
-
logger.info(f"Generated response: {response}")
|
163 |
-
return response
|
164 |
-
|
165 |
-
async def vision_query(self, image: Image.Image, query: str) -> str:
|
166 |
-
if not self.is_loaded:
|
167 |
-
await self.load()
|
168 |
-
|
169 |
-
messages_vlm = [
|
170 |
-
{
|
171 |
-
"role": "system",
|
172 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}]
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"role": "user",
|
176 |
-
"content": []
|
177 |
-
}
|
178 |
-
]
|
179 |
-
|
180 |
-
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
181 |
-
if image and image.size[0] > 0 and image.size[1] > 0:
|
182 |
-
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
183 |
-
logger.info(f"Received valid image for processing")
|
184 |
-
else:
|
185 |
-
logger.info("No valid image provided, processing text only")
|
186 |
-
|
187 |
-
try:
|
188 |
-
inputs_vlm = self.processor.apply_chat_template(
|
189 |
-
messages_vlm,
|
190 |
-
add_generation_prompt=True,
|
191 |
-
tokenize=True,
|
192 |
-
return_dict=True,
|
193 |
-
return_tensors="pt"
|
194 |
-
).to(self.device, dtype=torch.bfloat16)
|
195 |
-
except Exception as e:
|
196 |
-
logger.error(f"Error in apply_chat_template: {str(e)}")
|
197 |
-
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
198 |
-
|
199 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
200 |
-
|
201 |
-
with torch.inference_mode():
|
202 |
-
generation = self.model.generate(
|
203 |
-
**inputs_vlm,
|
204 |
-
max_new_tokens=512,
|
205 |
-
do_sample=True,
|
206 |
-
temperature=0.7
|
207 |
-
)
|
208 |
-
generation = generation[0][input_len:]
|
209 |
-
|
210 |
-
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
211 |
-
logger.info(f"Vision query response: {decoded}")
|
212 |
-
return decoded
|
213 |
-
|
214 |
-
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
215 |
-
if not self.is_loaded:
|
216 |
-
await self.load()
|
217 |
-
|
218 |
-
messages_vlm = [
|
219 |
-
{
|
220 |
-
"role": "system",
|
221 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"role": "user",
|
225 |
-
"content": []
|
226 |
-
}
|
227 |
-
]
|
228 |
-
|
229 |
-
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
230 |
-
if image and image.size[0] > 0 and image.size[1] > 0:
|
231 |
-
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
232 |
-
logger.info(f"Received valid image for processing")
|
233 |
-
else:
|
234 |
-
logger.info("No valid image provided, processing text only")
|
235 |
-
|
236 |
-
try:
|
237 |
-
inputs_vlm = self.processor.apply_chat_template(
|
238 |
-
messages_vlm,
|
239 |
-
add_generation_prompt=True,
|
240 |
-
tokenize=True,
|
241 |
-
return_dict=True,
|
242 |
-
return_tensors="pt"
|
243 |
-
).to(self.device, dtype=torch.bfloat16)
|
244 |
-
except Exception as e:
|
245 |
-
logger.error(f"Error in apply_chat_template: {str(e)}")
|
246 |
-
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
247 |
-
|
248 |
-
input_len = inputs_vlm["input_ids"].shape[-1]
|
249 |
-
|
250 |
-
with torch.inference_mode():
|
251 |
-
generation = self.model.generate(
|
252 |
-
**inputs_vlm,
|
253 |
-
max_new_tokens=512,
|
254 |
-
do_sample=True,
|
255 |
-
temperature=0.7
|
256 |
-
)
|
257 |
-
generation = generation[0][input_len:]
|
258 |
-
|
259 |
-
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
260 |
-
logger.info(f"Chat_v2 response: {decoded}")
|
261 |
-
return decoded
|
262 |
-
|
263 |
-
# TTS Manager
|
264 |
-
class TTSManager:
|
265 |
-
def __init__(self, device_type=device):
|
266 |
-
self.device_type = device_type
|
267 |
-
self.model = None
|
268 |
-
self.repo_id = "ai4bharat/IndicF5"
|
269 |
-
|
270 |
-
async def load(self):
|
271 |
-
if not self.model:
|
272 |
-
logger.info("Loading TTS model from local path asynchronously...")
|
273 |
-
local_path = "/app/models/tts_model"
|
274 |
-
self.model = await asyncio.to_thread(
|
275 |
-
AutoModel.from_pretrained,
|
276 |
-
local_path,
|
277 |
-
trust_remote_code=True
|
278 |
-
)
|
279 |
-
self.model = self.model.to(self.device_type)
|
280 |
-
logger.info("TTS model loaded from local path asynchronously")
|
281 |
-
|
282 |
-
def synthesize(self, text, ref_audio_path, ref_text):
|
283 |
-
if not self.model:
|
284 |
-
raise ValueError("TTS model not loaded")
|
285 |
-
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
|
286 |
-
|
287 |
-
# TTS Constants
|
288 |
-
EXAMPLES = [
|
289 |
-
{
|
290 |
-
"audio_name": "KAN_F (Happy)",
|
291 |
-
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
|
292 |
-
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ.",
|
293 |
-
"synth_text": "ಚೆನ್ನೈನ ಶೇರ್ ಆಟೋ ಪ್ರಯಾಣಿಕರ ನಡುವೆ ಆಹಾರವನ್ನು ಹಂಚಿಕೊಂಡು ತಿನ್ನುವುದು ನನಗೆ ಮನಸ್ಸಿಗೆ ತುಂಬಾ ಒಳ್ಳೆಯದೆನಿಸುವ ವಿಷಯ."
|
294 |
-
},
|
295 |
-
]
|
296 |
-
|
297 |
-
# Pydantic models for TTS
|
298 |
-
class SynthesizeRequest(BaseModel):
|
299 |
-
text: str
|
300 |
-
ref_audio_name: str
|
301 |
-
ref_text: str = None
|
302 |
-
|
303 |
-
class KannadaSynthesizeRequest(BaseModel):
|
304 |
-
text: str
|
305 |
-
|
306 |
-
# TTS Functions
|
307 |
-
def load_audio_from_url(url: str):
|
308 |
-
response = requests.get(url)
|
309 |
-
if response.status_code == 200:
|
310 |
-
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
|
311 |
-
return sample_rate, audio_data
|
312 |
-
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL.")
|
313 |
-
|
314 |
-
def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str):
|
315 |
-
ref_audio_url = None
|
316 |
-
for example in EXAMPLES:
|
317 |
-
if example["audio_name"] == ref_audio_name:
|
318 |
-
ref_audio_url = example["audio_url"]
|
319 |
-
if not ref_text:
|
320 |
-
ref_text = example["ref_text"]
|
321 |
-
break
|
322 |
-
|
323 |
-
if not ref_audio_url:
|
324 |
-
raise HTTPException(status_code=400, detail="Invalid reference audio name.")
|
325 |
-
if not text.strip():
|
326 |
-
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
327 |
-
if not ref_text or not ref_text.strip():
|
328 |
-
raise HTTPException(status_code=400, detail="Reference text cannot be empty.")
|
329 |
-
|
330 |
-
sample_rate, audio_data = load_audio_from_url(ref_audio_url)
|
331 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
332 |
-
sf.write(temp_audio.name, audio_data, samplerate=sample_rate, format='WAV')
|
333 |
-
temp_audio.flush()
|
334 |
-
audio = tts_manager.synthesize(text, ref_audio_path=temp_audio.name, ref_text=ref_text)
|
335 |
-
|
336 |
-
if audio.dtype == np.int16:
|
337 |
-
audio = audio.astype(np.float32) / 32768.0
|
338 |
-
buffer = io.BytesIO()
|
339 |
-
sf.write(buffer, audio, 24000, format='WAV')
|
340 |
-
buffer.seek(0)
|
341 |
-
return buffer
|
342 |
-
|
343 |
-
# Supported languages
|
344 |
-
SUPPORTED_LANGUAGES = {
|
345 |
-
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
346 |
-
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
|
347 |
-
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
|
348 |
-
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
|
349 |
-
"kan_Knda", "ory_Orya",
|
350 |
-
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
|
351 |
-
"por_Latn", "rus_Cyrl", "pol_Latn"
|
352 |
-
}
|
353 |
-
|
354 |
-
# Translation Manager
|
355 |
-
class TranslateManager:
|
356 |
-
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
|
357 |
-
self.device_type = device_type
|
358 |
-
self.tokenizer = None
|
359 |
-
self.model = None
|
360 |
-
self.src_lang = src_lang
|
361 |
-
self.tgt_lang = tgt_lang
|
362 |
-
self.use_distilled = use_distilled
|
363 |
-
|
364 |
-
async def load(self):
|
365 |
-
if not self.tokenizer or not self.model:
|
366 |
-
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
367 |
-
local_path = "/app/models/trans_en_indic"
|
368 |
-
elif not self.src_lang.startswith("eng") and self.tgt_lang.startswith("eng"):
|
369 |
-
local_path = "/app/models/trans_indic_en"
|
370 |
-
elif not self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
371 |
-
local_path = "/app/models/trans_indic_indic"
|
372 |
-
else:
|
373 |
-
raise ValueError("Invalid language combination")
|
374 |
-
|
375 |
-
self.tokenizer = await asyncio.to_thread(
|
376 |
-
AutoTokenizer.from_pretrained,
|
377 |
-
local_path,
|
378 |
-
trust_remote_code=True
|
379 |
-
)
|
380 |
-
self.model = await asyncio.to_thread(
|
381 |
-
AutoModelForSeq2SeqLM.from_pretrained,
|
382 |
-
local_path,
|
383 |
-
trust_remote_code=True,
|
384 |
-
torch_dtype=torch.float16,
|
385 |
-
attn_implementation="flash_attention_2"
|
386 |
-
)
|
387 |
-
self.model = self.model.to(self.device_type)
|
388 |
-
self.model = torch.compile(self.model, mode="reduce-overhead")
|
389 |
-
logger.info(f"Translation model loaded from {local_path} asynchronously")
|
390 |
-
|
391 |
-
class ModelManager:
|
392 |
-
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
|
393 |
-
self.models = {}
|
394 |
-
self.device_type = device_type
|
395 |
-
self.use_distilled = use_distilled
|
396 |
-
self.is_lazy_loading = is_lazy_loading
|
397 |
-
|
398 |
-
async def load_model(self, src_lang, tgt_lang, key):
|
399 |
-
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang} from local path")
|
400 |
-
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
|
401 |
-
await translate_manager.load()
|
402 |
-
self.models[key] = translate_manager
|
403 |
-
logger.info(f"Loaded translation model for {key} from local path")
|
404 |
-
|
405 |
-
def get_model(self, src_lang, tgt_lang):
|
406 |
-
key = self._get_model_key(src_lang, tgt_lang)
|
407 |
-
if key not in self.models:
|
408 |
-
if self.is_lazy_loading:
|
409 |
-
asyncio.create_task(self.load_model(src_lang, tgt_lang, key))
|
410 |
-
else:
|
411 |
-
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
|
412 |
-
return self.models.get(key)
|
413 |
-
|
414 |
-
def _get_model_key(self, src_lang, tgt_lang):
|
415 |
-
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
416 |
-
return 'eng_indic'
|
417 |
-
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
|
418 |
-
return 'indic_eng'
|
419 |
-
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
420 |
-
return 'indic_indic'
|
421 |
-
raise ValueError("Invalid language combination")
|
422 |
-
|
423 |
-
# ASR Manager
|
424 |
-
class ASRModelManager:
|
425 |
-
def __init__(self, device_type="cuda"):
|
426 |
-
self.device_type = device_type
|
427 |
-
self.model = None
|
428 |
-
self.model_language = {"kannada": "kn"}
|
429 |
-
|
430 |
-
async def load(self):
|
431 |
-
if not self.model:
|
432 |
-
logger.info("Loading ASR model from local path asynchronously...")
|
433 |
-
local_path = "/app/models/asr_model"
|
434 |
-
self.model = await asyncio.to_thread(
|
435 |
-
AutoModel.from_pretrained,
|
436 |
-
local_path,
|
437 |
-
trust_remote_code=True
|
438 |
-
)
|
439 |
-
self.model = self.model.to(self.device_type)
|
440 |
-
logger.info("ASR model loaded from local path asynchronously")
|
441 |
-
|
442 |
-
# Global Managers
|
443 |
-
llm_manager = LLMManager(settings.llm_model_name)
|
444 |
-
model_manager = ModelManager()
|
445 |
-
asr_manager = ASRModelManager()
|
446 |
-
tts_manager = TTSManager()
|
447 |
-
ip = IndicProcessor(inference=True)
|
448 |
-
|
449 |
-
# Pydantic Models
|
450 |
-
class ChatRequest(BaseModel):
|
451 |
-
prompt: str
|
452 |
-
src_lang: str = "kan_Knda"
|
453 |
-
tgt_lang: str = "kan_Knda"
|
454 |
-
|
455 |
-
@field_validator("prompt")
|
456 |
-
def prompt_must_be_valid(cls, v):
|
457 |
-
if len(v) > 1000:
|
458 |
-
raise ValueError("Prompt cannot exceed 1000 characters")
|
459 |
-
return v.strip()
|
460 |
-
|
461 |
-
@field_validator("src_lang", "tgt_lang")
|
462 |
-
def validate_language(cls, v):
|
463 |
-
if v not in SUPPORTED_LANGUAGES:
|
464 |
-
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
465 |
-
return v
|
466 |
-
|
467 |
-
class ChatResponse(BaseModel):
|
468 |
-
response: str
|
469 |
-
|
470 |
-
class TranslationRequest(BaseModel):
|
471 |
-
sentences: List[str]
|
472 |
-
src_lang: str
|
473 |
-
tgt_lang: str
|
474 |
-
|
475 |
-
class TranscriptionResponse(BaseModel):
|
476 |
-
text: str
|
477 |
-
|
478 |
-
class TranslationResponse(BaseModel):
|
479 |
-
translations: List[str]
|
480 |
-
|
481 |
-
# Dependency
|
482 |
-
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
|
483 |
-
return model_manager.get_model(src_lang, tgt_lang)
|
484 |
-
|
485 |
-
# Lifespan Event Handler
|
486 |
-
translation_configs = []
|
487 |
-
|
488 |
-
@asynccontextmanager
|
489 |
-
async def lifespan(app: FastAPI):
|
490 |
-
async def load_all_models():
|
491 |
-
try:
|
492 |
-
tasks = [
|
493 |
-
llm_manager.load(),
|
494 |
-
tts_manager.load(),
|
495 |
-
asr_manager.load(),
|
496 |
-
]
|
497 |
-
|
498 |
-
translation_tasks = [
|
499 |
-
model_manager.load_model('eng_Latn', 'kan_Knda', 'eng_indic'),
|
500 |
-
model_manager.load_model('kan_Knda', 'eng_Latn', 'indic_eng'),
|
501 |
-
model_manager.load_model('kan_Knda', 'hin_Deva', 'indic_indic'),
|
502 |
-
]
|
503 |
-
|
504 |
-
for config in translation_configs:
|
505 |
-
src_lang = config["src_lang"]
|
506 |
-
tgt_lang = config["tgt_lang"]
|
507 |
-
key = model_manager._get_model_key(src_lang, tgt_lang)
|
508 |
-
translation_tasks.append(model_manager.load_model(src_lang, tgt_lang, key))
|
509 |
-
|
510 |
-
await asyncio.gather(*tasks, *translation_tasks)
|
511 |
-
logger.info("All models loaded successfully from local paths")
|
512 |
-
except Exception as e:
|
513 |
-
logger.error(f"Error loading models: {str(e)}")
|
514 |
-
raise
|
515 |
-
|
516 |
-
logger.info("Starting asynchronous model loading from local paths...")
|
517 |
-
await load_all_models()
|
518 |
-
yield
|
519 |
-
llm_manager.unload()
|
520 |
-
logger.info("Server shutdown complete")
|
521 |
-
|
522 |
-
# FastAPI App
|
523 |
-
app = FastAPI(
|
524 |
-
title="Dhwani API",
|
525 |
-
description="AI Chat API supporting Indian languages",
|
526 |
-
version="1.0.0",
|
527 |
-
redirect_slashes=False,
|
528 |
-
lifespan=lifespan
|
529 |
-
)
|
530 |
-
|
531 |
-
app.add_middleware(
|
532 |
-
CORSMiddleware,
|
533 |
-
allow_origins=["*"],
|
534 |
-
allow_credentials=False,
|
535 |
-
allow_methods=["*"],
|
536 |
-
allow_headers=["*"],
|
537 |
-
)
|
538 |
-
|
539 |
-
limiter = Limiter(key_func=get_remote_address)
|
540 |
-
app.state.limiter = limiter
|
541 |
-
|
542 |
-
# API Endpoints
|
543 |
-
@app.post("/audio/speech", response_class=StreamingResponse)
|
544 |
-
async def synthesize_kannada(request: KannadaSynthesizeRequest):
|
545 |
-
if not tts_manager.model:
|
546 |
-
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
547 |
-
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
|
548 |
-
if not request.text.strip():
|
549 |
-
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
550 |
-
|
551 |
-
audio_buffer = synthesize_speech(
|
552 |
-
tts_manager,
|
553 |
-
text=request.text,
|
554 |
-
ref_audio_name="KAN_F (Happy)",
|
555 |
-
ref_text=kannada_example["ref_text"]
|
556 |
-
)
|
557 |
-
|
558 |
-
return StreamingResponse(
|
559 |
-
audio_buffer,
|
560 |
-
media_type="audio/wav",
|
561 |
-
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
|
562 |
-
)
|
563 |
-
|
564 |
-
@app.post("/translate", response_model=TranslationResponse)
|
565 |
-
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
566 |
-
input_sentences = request.sentences
|
567 |
-
src_lang = request.src_lang
|
568 |
-
tgt_lang = request.tgt_lang
|
569 |
-
|
570 |
-
if not input_sentences:
|
571 |
-
raise HTTPException(status_code=400, detail="Input sentences are required")
|
572 |
-
|
573 |
-
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
574 |
-
inputs = translate_manager.tokenizer(
|
575 |
-
batch,
|
576 |
-
truncation=True,
|
577 |
-
padding="longest",
|
578 |
-
return_tensors="pt",
|
579 |
-
return_attention_mask=True,
|
580 |
-
).to(translate_manager.device_type)
|
581 |
-
|
582 |
-
with torch.no_grad():
|
583 |
-
generated_tokens = translate_manager.model.generate(
|
584 |
-
**inputs,
|
585 |
-
use_cache=True,
|
586 |
-
min_length=0,
|
587 |
-
max_length=256,
|
588 |
-
num_beams=5,
|
589 |
-
num_return_sequences=1,
|
590 |
-
)
|
591 |
-
|
592 |
-
with translate_manager.tokenizer.as_target_tokenizer():
|
593 |
-
generated_tokens = translate_manager.tokenizer.batch_decode(
|
594 |
-
generated_tokens.detach().cpu().tolist(),
|
595 |
-
skip_special_tokens=True,
|
596 |
-
clean_up_tokenization_spaces=True,
|
597 |
-
)
|
598 |
-
|
599 |
-
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
600 |
-
return TranslationResponse(translations=translations)
|
601 |
-
|
602 |
-
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
603 |
-
try:
|
604 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
605 |
-
except ValueError as e:
|
606 |
-
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
607 |
-
key = model_manager._get_model_key(src_lang, tgt_lang)
|
608 |
-
await model_manager.load_model(src_lang, tgt_lang, key)
|
609 |
-
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
610 |
-
|
611 |
-
if not translate_manager.model:
|
612 |
-
await translate_manager.load()
|
613 |
-
|
614 |
-
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
615 |
-
response = await translate(request, translate_manager)
|
616 |
-
return response.translations
|
617 |
-
|
618 |
-
@app.get("/v1/health")
|
619 |
-
async def health_check():
|
620 |
-
return {"status": "healthy", "model": settings.llm_model_name}
|
621 |
-
|
622 |
-
@app.get("/")
|
623 |
-
async def home():
|
624 |
-
return RedirectResponse(url="/docs")
|
625 |
-
|
626 |
-
@app.post("/v1/unload_all_models")
|
627 |
-
async def unload_all_models():
|
628 |
-
try:
|
629 |
-
logger.info("Starting to unload all models...")
|
630 |
-
llm_manager.unload()
|
631 |
-
logger.info("All models unloaded successfully")
|
632 |
-
return {"status": "success", "message": "All models unloaded"}
|
633 |
-
except Exception as e:
|
634 |
-
logger.error(f"Error unloading models: {str(e)}")
|
635 |
-
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
|
636 |
-
|
637 |
-
@app.post("/v1/load_all_models")
|
638 |
-
async def load_all_models():
|
639 |
-
try:
|
640 |
-
logger.info("Starting to load all models...")
|
641 |
-
await llm_manager.load()
|
642 |
-
logger.info("All models loaded successfully")
|
643 |
-
return {"status": "success", "message": "All models loaded"}
|
644 |
-
except Exception as e:
|
645 |
-
logger.error(f"Error loading models: {str(e)}")
|
646 |
-
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
|
647 |
-
|
648 |
-
@app.post("/v1/translate", response_model=TranslationResponse)
|
649 |
-
async def translate_endpoint(request: TranslationRequest):
|
650 |
-
logger.info(f"Received translation request: {request.dict()}")
|
651 |
-
try:
|
652 |
-
translations = await perform_internal_translation(
|
653 |
-
sentences=request.sentences,
|
654 |
-
src_lang=request.src_lang,
|
655 |
-
tgt_lang=request.tgt_lang
|
656 |
-
)
|
657 |
-
logger.info(f"Translation successful: {translations}")
|
658 |
-
return TranslationResponse(translations=translations)
|
659 |
-
except Exception as e:
|
660 |
-
logger.error(f"Unexpected error during translation: {str(e)}")
|
661 |
-
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
662 |
-
|
663 |
-
@app.post("/v1/chat", response_model=ChatResponse)
|
664 |
-
@limiter.limit(settings.chat_rate_limit)
|
665 |
-
async def chat(request: Request, chat_request: ChatRequest):
|
666 |
-
if not chat_request.prompt:
|
667 |
-
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
668 |
-
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
669 |
-
|
670 |
-
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
|
671 |
-
|
672 |
-
try:
|
673 |
-
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
|
674 |
-
translated_prompt = await perform_internal_translation(
|
675 |
-
sentences=[chat_request.prompt],
|
676 |
-
src_lang=chat_request.src_lang,
|
677 |
-
tgt_lang="eng_Latn"
|
678 |
-
)
|
679 |
-
prompt_to_process = translated_prompt[0]
|
680 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
681 |
-
else:
|
682 |
-
prompt_to_process = chat_request.prompt
|
683 |
-
logger.info("Prompt in English or European language, no translation needed")
|
684 |
-
|
685 |
-
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
686 |
-
logger.info(f"Generated response: {response}")
|
687 |
-
|
688 |
-
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
|
689 |
-
translated_response = await perform_internal_translation(
|
690 |
-
sentences=[response],
|
691 |
-
src_lang="eng_Latn",
|
692 |
-
tgt_lang=chat_request.tgt_lang
|
693 |
-
)
|
694 |
-
final_response = translated_response[0]
|
695 |
-
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
|
696 |
-
else:
|
697 |
-
final_response = response
|
698 |
-
logger.info(f"Response in {chat_request.tgt_lang}, no translation needed")
|
699 |
-
|
700 |
-
return ChatResponse(response=final_response)
|
701 |
-
except Exception as e:
|
702 |
-
logger.error(f"Error processing request: {str(e)}")
|
703 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
704 |
-
|
705 |
-
@app.post("/v1/visual_query/")
|
706 |
-
async def visual_query(
|
707 |
-
file: UploadFile = File(...),
|
708 |
-
query: str = Body(...),
|
709 |
-
src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
710 |
-
tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
711 |
-
):
|
712 |
-
try:
|
713 |
-
image = Image.open(file.file)
|
714 |
-
if image.size == (0, 0):
|
715 |
-
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
716 |
-
|
717 |
-
if src_lang != "eng_Latn":
|
718 |
-
translated_query = await perform_internal_translation(
|
719 |
-
sentences=[query],
|
720 |
-
src_lang=src_lang,
|
721 |
-
tgt_lang="eng_Latn"
|
722 |
-
)
|
723 |
-
query_to_process = translated_query[0]
|
724 |
-
logger.info(f"Translated query to English: {query_to_process}")
|
725 |
-
else:
|
726 |
-
query_to_process = query
|
727 |
-
logger.info("Query already in English, no translation needed")
|
728 |
-
|
729 |
-
answer = await llm_manager.vision_query(image, query_to_process)
|
730 |
-
logger.info(f"Generated English answer: {answer}")
|
731 |
-
|
732 |
-
if tgt_lang != "eng_Latn":
|
733 |
-
translated_answer = await perform_internal_translation(
|
734 |
-
sentences=[answer],
|
735 |
-
src_lang="eng_Latn",
|
736 |
-
tgt_lang=tgt_lang
|
737 |
-
)
|
738 |
-
final_answer = translated_answer[0]
|
739 |
-
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
|
740 |
-
else:
|
741 |
-
final_answer = answer
|
742 |
-
logger.info("Answer kept in English, no translation needed")
|
743 |
-
|
744 |
-
return {"answer": final_answer}
|
745 |
-
except Exception as e:
|
746 |
-
logger.error(f"Error processing request: {str(e)}")
|
747 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
748 |
-
|
749 |
-
@app.post("/v1/chat_v2", response_model=ChatResponse)
|
750 |
-
@limiter.limit(settings.chat_rate_limit)
|
751 |
-
async def chat_v2(
|
752 |
-
request: Request,
|
753 |
-
prompt: str = Form(...),
|
754 |
-
image: UploadFile = File(default=None),
|
755 |
-
src_lang: str = Form("kan_Knda"),
|
756 |
-
tgt_lang: str = Form("kan_Knda"),
|
757 |
-
):
|
758 |
-
if not prompt:
|
759 |
-
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
760 |
-
if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES:
|
761 |
-
raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
762 |
-
|
763 |
-
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
764 |
-
|
765 |
-
try:
|
766 |
-
if image:
|
767 |
-
image_data = await image.read()
|
768 |
-
if not image_data:
|
769 |
-
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
770 |
-
img = Image.open(io.BytesIO(image_data))
|
771 |
-
|
772 |
-
if src_lang != "eng_Latn":
|
773 |
-
translated_prompt = await perform_internal_translation(
|
774 |
-
sentences=[prompt],
|
775 |
-
src_lang=src_lang,
|
776 |
-
tgt_lang="eng_Latn"
|
777 |
-
)
|
778 |
-
prompt_to_process = translated_prompt[0]
|
779 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
780 |
-
else:
|
781 |
-
prompt_to_process = prompt
|
782 |
-
logger.info("Prompt already in English, no translation needed")
|
783 |
-
|
784 |
-
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
785 |
-
logger.info(f"Generated English response: {decoded}")
|
786 |
-
|
787 |
-
if tgt_lang != "eng_Latn":
|
788 |
-
translated_response = await perform_internal_translation(
|
789 |
-
sentences=[decoded],
|
790 |
-
src_lang="eng_Latn",
|
791 |
-
tgt_lang=tgt_lang
|
792 |
-
)
|
793 |
-
final_response = translated_response[0]
|
794 |
-
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
795 |
-
else:
|
796 |
-
final_response = decoded
|
797 |
-
logger.info("Response kept in English, no translation needed")
|
798 |
-
else:
|
799 |
-
if src_lang != "eng_Latn":
|
800 |
-
translated_prompt = await perform_internal_translation(
|
801 |
-
sentences=[prompt],
|
802 |
-
src_lang=src_lang,
|
803 |
-
tgt_lang="eng_Latn"
|
804 |
-
)
|
805 |
-
prompt_to_process = translated_prompt[0]
|
806 |
-
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
807 |
-
else:
|
808 |
-
prompt_to_process = prompt
|
809 |
-
logger.info("Prompt already in English, no translation needed")
|
810 |
-
|
811 |
-
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
812 |
-
logger.info(f"Generated English response: {decoded}")
|
813 |
-
|
814 |
-
if tgt_lang != "eng_Latn":
|
815 |
-
translated_response = await perform_internal_translation(
|
816 |
-
sentences=[decoded],
|
817 |
-
src_lang="eng_Latn",
|
818 |
-
tgt_lang=tgt_lang
|
819 |
-
)
|
820 |
-
final_response = translated_response[0]
|
821 |
-
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
822 |
-
else:
|
823 |
-
final_response = decoded
|
824 |
-
logger.info("Response kept in English, no translation needed")
|
825 |
-
|
826 |
-
return ChatResponse(response=final_response)
|
827 |
-
except Exception as e:
|
828 |
-
logger.error(f"Error processing request: {str(e)}")
|
829 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
830 |
-
|
831 |
-
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
832 |
-
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
833 |
-
if not asr_manager.model:
|
834 |
-
raise HTTPException(status_code=503, detail="ASR model not loaded")
|
835 |
-
try:
|
836 |
-
wav, sr = torchaudio.load(file.file)
|
837 |
-
wav = torch.mean(wav, dim=0, keepdim=True)
|
838 |
-
target_sample_rate = 16000
|
839 |
-
if sr != target_sample_rate:
|
840 |
-
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
|
841 |
-
wav = resampler(wav)
|
842 |
-
transcription_rnnt = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
|
843 |
-
return TranscriptionResponse(text=transcription_rnnt)
|
844 |
-
except Exception as e:
|
845 |
-
logger.error(f"Error in transcription: {str(e)}")
|
846 |
-
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
|
847 |
-
|
848 |
-
@app.post("/v1/speech_to_speech")
|
849 |
-
async def speech_to_speech(
|
850 |
-
request: Request,
|
851 |
-
file: UploadFile = File(...),
|
852 |
-
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
|
853 |
-
) -> StreamingResponse:
|
854 |
-
if not tts_manager.model:
|
855 |
-
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
856 |
-
transcription = await transcribe_audio(file, language)
|
857 |
-
logger.info(f"Transcribed text: {transcription.text}")
|
858 |
-
|
859 |
-
chat_request = ChatRequest(
|
860 |
-
prompt=transcription.text,
|
861 |
-
src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"),
|
862 |
-
tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda")
|
863 |
-
)
|
864 |
-
processed_text = await chat(request, chat_request)
|
865 |
-
logger.info(f"Processed text: {processed_text.response}")
|
866 |
-
|
867 |
-
voice_request = KannadaSynthesizeRequest(text=processed_text.response)
|
868 |
-
audio_response = await synthesize_kannada(voice_request)
|
869 |
-
return audio_response
|
870 |
-
|
871 |
-
LANGUAGE_TO_SCRIPT = {
|
872 |
-
"kannada": "kan_Knda"
|
873 |
-
}
|
874 |
-
|
875 |
-
# Main Execution
|
876 |
-
if __name__ == "__main__":
|
877 |
-
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
|
878 |
-
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
|
879 |
-
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
|
880 |
-
parser.add_argument("--config", type=str, default="config_one", help="Configuration to use")
|
881 |
-
args = parser.parse_args()
|
882 |
-
|
883 |
-
def load_config(config_path="dhwani_config.json"):
|
884 |
-
with open(config_path, "r") as f:
|
885 |
-
return json.load(f)
|
886 |
-
|
887 |
-
config_data = load_config()
|
888 |
-
if args.config not in config_data["configs"]:
|
889 |
-
raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}")
|
890 |
-
|
891 |
-
selected_config = config_data["configs"][args.config]
|
892 |
-
global_settings = config_data["global_settings"]
|
893 |
-
|
894 |
-
settings.llm_model_name = selected_config["components"]["LLM"]["model"]
|
895 |
-
settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"]
|
896 |
-
settings.host = global_settings["host"]
|
897 |
-
settings.port = global_settings["port"]
|
898 |
-
settings.chat_rate_limit = global_settings["chat_rate_limit"]
|
899 |
-
settings.speech_rate_limit = global_settings["speech_rate_limit"]
|
900 |
-
|
901 |
-
llm_manager = LLMManager(settings.llm_model_name)
|
902 |
-
|
903 |
-
if selected_config["components"]["ASR"]:
|
904 |
-
asr_model_name = selected_config["components"]["ASR"]["model"]
|
905 |
-
asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"]
|
906 |
-
|
907 |
-
if selected_config["components"]["Translation"]:
|
908 |
-
translation_configs.extend(selected_config["components"]["Translation"])
|
909 |
-
|
910 |
-
host = args.host if args.host != settings.host else settings.host
|
911 |
-
port = args.port if args.port != settings.port else settings.port
|
912 |
-
|
913 |
-
uvicorn.run(app, host=host, port=port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|