sachin
commited on
Commit
·
564e070
1
Parent(s):
230a925
add- llm optimisation
Browse files- src/server/main.py +93 -55
- src/server/main_v0.py +929 -0
src/server/main.py
CHANGED
@@ -79,31 +79,44 @@ quantization_config = BitsAndBytesConfig(
|
|
79 |
|
80 |
# LLM Manager
|
81 |
class LLMManager:
|
82 |
-
def __init__(self, model_name: str, device: str =
|
83 |
self.model_name = model_name
|
84 |
self.device = torch.device(device)
|
85 |
-
self.torch_dtype =
|
86 |
self.model = None
|
87 |
self.processor = None
|
88 |
self.is_loaded = False
|
|
|
89 |
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
|
91 |
def load(self):
|
92 |
if not self.is_loaded:
|
93 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
self.model = Gemma3ForConditionalGeneration.from_pretrained(
|
95 |
self.model_name,
|
96 |
device_map="auto",
|
97 |
quantization_config=quantization_config,
|
98 |
-
torch_dtype=self.torch_dtype
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
self.is_loaded = True
|
103 |
-
logger.info(f"LLM {self.model_name} loaded on {self.device}")
|
104 |
except Exception as e:
|
105 |
logger.error(f"Failed to load LLM: {str(e)}")
|
106 |
-
raise
|
107 |
|
108 |
def unload(self):
|
109 |
if self.is_loaded:
|
@@ -113,12 +126,18 @@ class LLMManager:
|
|
113 |
torch.cuda.empty_cache()
|
114 |
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
115 |
self.is_loaded = False
|
|
|
116 |
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
117 |
|
118 |
-
async def generate(self, prompt: str, max_tokens: int =
|
119 |
if not self.is_loaded:
|
120 |
self.load()
|
121 |
|
|
|
|
|
|
|
|
|
|
|
122 |
messages_vlm = [
|
123 |
{
|
124 |
"role": "system",
|
@@ -131,29 +150,37 @@ class LLMManager:
|
|
131 |
]
|
132 |
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
logger.error(f"Error in tokenization: {str(e)}")
|
143 |
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
144 |
|
145 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
|
|
146 |
|
147 |
with torch.inference_mode():
|
148 |
generation = self.model.generate(
|
149 |
**inputs_vlm,
|
150 |
-
max_new_tokens=
|
151 |
do_sample=True,
|
|
|
152 |
temperature=temperature
|
153 |
)
|
154 |
generation = generation[0][input_len:]
|
155 |
|
156 |
response = self.processor.decode(generation, skip_special_tokens=True)
|
|
|
157 |
logger.info(f"Generated response: {response}")
|
158 |
return response
|
159 |
|
@@ -164,47 +191,53 @@ class LLMManager:
|
|
164 |
messages_vlm = [
|
165 |
{
|
166 |
"role": "system",
|
167 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in
|
168 |
},
|
169 |
{
|
170 |
"role": "user",
|
171 |
-
"content": []
|
172 |
}
|
173 |
]
|
174 |
|
175 |
-
|
176 |
-
if
|
177 |
-
|
178 |
-
|
179 |
-
else:
|
180 |
-
logger.info("No valid image provided, processing text only")
|
181 |
|
182 |
try:
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
except Exception as e:
|
191 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
192 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
193 |
|
194 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
|
|
195 |
|
196 |
with torch.inference_mode():
|
197 |
generation = self.model.generate(
|
198 |
**inputs_vlm,
|
199 |
-
max_new_tokens=
|
200 |
do_sample=True,
|
|
|
201 |
temperature=0.7
|
202 |
)
|
203 |
generation = generation[0][input_len:]
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
210 |
if not self.is_loaded:
|
@@ -217,43 +250,49 @@ class LLMManager:
|
|
217 |
},
|
218 |
{
|
219 |
"role": "user",
|
220 |
-
"content": []
|
221 |
}
|
222 |
]
|
223 |
|
224 |
-
|
225 |
-
if
|
226 |
-
|
227 |
-
|
228 |
-
else:
|
229 |
-
logger.info("No valid image provided, processing text only")
|
230 |
|
231 |
try:
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
except Exception as e:
|
240 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
241 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
242 |
|
243 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
|
|
244 |
|
245 |
with torch.inference_mode():
|
246 |
generation = self.model.generate(
|
247 |
**inputs_vlm,
|
248 |
-
max_new_tokens=
|
249 |
do_sample=True,
|
|
|
250 |
temperature=0.7
|
251 |
)
|
252 |
generation = generation[0][input_len:]
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
257 |
|
258 |
# TTS Manager
|
259 |
class TTSManager:
|
@@ -453,7 +492,6 @@ class ChatRequest(BaseModel):
|
|
453 |
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
454 |
return v
|
455 |
|
456 |
-
|
457 |
class ChatResponse(BaseModel):
|
458 |
response: str
|
459 |
|
|
|
79 |
|
80 |
# LLM Manager
|
81 |
class LLMManager:
|
82 |
+
def __init__(self, model_name: str, device: str = device):
|
83 |
self.model_name = model_name
|
84 |
self.device = torch.device(device)
|
85 |
+
self.torch_dtype = torch_dtype
|
86 |
self.model = None
|
87 |
self.processor = None
|
88 |
self.is_loaded = False
|
89 |
+
self.token_cache = {}
|
90 |
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
91 |
|
92 |
def load(self):
|
93 |
if not self.is_loaded:
|
94 |
try:
|
95 |
+
if self.device.type == "cuda":
|
96 |
+
torch.set_float32_matmul_precision('high')
|
97 |
+
logger.info("Enabled TF32 matrix multiplication for improved performance")
|
98 |
+
|
99 |
+
quantization_config = BitsAndBytesConfig(
|
100 |
+
load_in_4bit=True,
|
101 |
+
bnb_4bit_quant_type="nf4",
|
102 |
+
bnb_4bit_compute_dtype=self.torch_dtype,
|
103 |
+
bnb_4bit_use_double_quant=True
|
104 |
+
)
|
105 |
+
|
106 |
self.model = Gemma3ForConditionalGeneration.from_pretrained(
|
107 |
self.model_name,
|
108 |
device_map="auto",
|
109 |
quantization_config=quantization_config,
|
110 |
+
torch_dtype=self.torch_dtype,
|
111 |
+
max_memory={0: "10GiB"}
|
112 |
+
).eval()
|
113 |
+
|
114 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True)
|
115 |
self.is_loaded = True
|
116 |
+
logger.info(f"LLM {self.model_name} loaded on {self.device} with 4-bit quantization and fast processor")
|
117 |
except Exception as e:
|
118 |
logger.error(f"Failed to load LLM: {str(e)}")
|
119 |
+
raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")
|
120 |
|
121 |
def unload(self):
|
122 |
if self.is_loaded:
|
|
|
126 |
torch.cuda.empty_cache()
|
127 |
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
128 |
self.is_loaded = False
|
129 |
+
self.token_cache.clear()
|
130 |
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
131 |
|
132 |
+
async def generate(self, prompt: str, max_tokens: int = settings.max_tokens, temperature: float = 0.7) -> str:
|
133 |
if not self.is_loaded:
|
134 |
self.load()
|
135 |
|
136 |
+
cache_key = f"prompt_{prompt}"
|
137 |
+
if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
|
138 |
+
logger.info("Using cached response")
|
139 |
+
return self.token_cache[cache_key]["response"]
|
140 |
+
|
141 |
messages_vlm = [
|
142 |
{
|
143 |
"role": "system",
|
|
|
150 |
]
|
151 |
|
152 |
try:
|
153 |
+
if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
|
154 |
+
inputs_vlm = self.token_cache[cache_key]["inputs"]
|
155 |
+
logger.info("Using cached tokenized input")
|
156 |
+
else:
|
157 |
+
inputs_vlm = self.processor.apply_chat_template(
|
158 |
+
messages_vlm,
|
159 |
+
add_generation_prompt=True,
|
160 |
+
tokenize=True,
|
161 |
+
return_dict=True,
|
162 |
+
return_tensors="pt"
|
163 |
+
).to(self.device, dtype=torch.bfloat16)
|
164 |
+
self.token_cache[cache_key] = {"inputs": inputs_vlm}
|
165 |
except Exception as e:
|
166 |
logger.error(f"Error in tokenization: {str(e)}")
|
167 |
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
168 |
|
169 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
170 |
+
adjusted_max_tokens = min(max_tokens, max(20, input_len * 2))
|
171 |
|
172 |
with torch.inference_mode():
|
173 |
generation = self.model.generate(
|
174 |
**inputs_vlm,
|
175 |
+
max_new_tokens=adjusted_max_tokens,
|
176 |
do_sample=True,
|
177 |
+
top_p=0.9,
|
178 |
temperature=temperature
|
179 |
)
|
180 |
generation = generation[0][input_len:]
|
181 |
|
182 |
response = self.processor.decode(generation, skip_special_tokens=True)
|
183 |
+
self.token_cache[cache_key]["response"] = response
|
184 |
logger.info(f"Generated response: {response}")
|
185 |
return response
|
186 |
|
|
|
191 |
messages_vlm = [
|
192 |
{
|
193 |
"role": "system",
|
194 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in one sentence maximum."}]
|
195 |
},
|
196 |
{
|
197 |
"role": "user",
|
198 |
+
"content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image else [])
|
199 |
}
|
200 |
]
|
201 |
|
202 |
+
cache_key = f"vision_{query}_{'image' if image else 'no_image'}"
|
203 |
+
if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
|
204 |
+
logger.info("Using cached response")
|
205 |
+
return self.token_cache[cache_key]["response"]
|
|
|
|
|
206 |
|
207 |
try:
|
208 |
+
if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
|
209 |
+
inputs_vlm = self.token_cache[cache_key]["inputs"]
|
210 |
+
logger.info("Using cached tokenized input")
|
211 |
+
else:
|
212 |
+
inputs_vlm = self.processor.apply_chat_template(
|
213 |
+
messages_vlm,
|
214 |
+
add_generation_prompt=True,
|
215 |
+
tokenize=True,
|
216 |
+
return_dict=True,
|
217 |
+
return_tensors="pt"
|
218 |
+
).to(self.device, dtype=torch.bfloat16)
|
219 |
+
self.token_cache[cache_key] = {"inputs": inputs_vlm}
|
220 |
except Exception as e:
|
221 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
222 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
223 |
|
224 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
225 |
+
adjusted_max_tokens = min(512, max(20, input_len * 2))
|
226 |
|
227 |
with torch.inference_mode():
|
228 |
generation = self.model.generate(
|
229 |
**inputs_vlm,
|
230 |
+
max_new_tokens=adjusted_max_tokens,
|
231 |
do_sample=True,
|
232 |
+
top_p=0.9,
|
233 |
temperature=0.7
|
234 |
)
|
235 |
generation = generation[0][input_len:]
|
236 |
|
237 |
+
response = self.processor.decode(generation, skip_special_tokens=True)
|
238 |
+
self.token_cache[cache_key]["response"] = response
|
239 |
+
logger.info(f"Vision query response: {response}")
|
240 |
+
return response
|
241 |
|
242 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
243 |
if not self.is_loaded:
|
|
|
250 |
},
|
251 |
{
|
252 |
"role": "user",
|
253 |
+
"content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image else [])
|
254 |
}
|
255 |
]
|
256 |
|
257 |
+
cache_key = f"chat_v2_{query}_{'image' if image else 'no_image'}"
|
258 |
+
if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
|
259 |
+
logger.info("Using cached response")
|
260 |
+
return self.token_cache[cache_key]["response"]
|
|
|
|
|
261 |
|
262 |
try:
|
263 |
+
if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
|
264 |
+
inputs_vlm = self.token_cache[cache_key]["inputs"]
|
265 |
+
logger.info("Using cached tokenized input")
|
266 |
+
else:
|
267 |
+
inputs_vlm = self.processor.apply_chat_template(
|
268 |
+
messages_vlm,
|
269 |
+
add_generation_prompt=True,
|
270 |
+
tokenize=True,
|
271 |
+
return_dict=True,
|
272 |
+
return_tensors="pt"
|
273 |
+
).to(self.device, dtype=torch.bfloat16)
|
274 |
+
self.token_cache[cache_key] = {"inputs": inputs_vlm}
|
275 |
except Exception as e:
|
276 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
277 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
278 |
|
279 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
280 |
+
adjusted_max_tokens = min(512, max(20, input_len * 2))
|
281 |
|
282 |
with torch.inference_mode():
|
283 |
generation = self.model.generate(
|
284 |
**inputs_vlm,
|
285 |
+
max_new_tokens=adjusted_max_tokens,
|
286 |
do_sample=True,
|
287 |
+
top_p=0.9,
|
288 |
temperature=0.7
|
289 |
)
|
290 |
generation = generation[0][input_len:]
|
291 |
|
292 |
+
response = self.processor.decode(generation, skip_special_tokens=True)
|
293 |
+
self.token_cache[cache_key]["response"] = response
|
294 |
+
logger.info(f"Chat_v2 response: {response}")
|
295 |
+
return response
|
296 |
|
297 |
# TTS Manager
|
298 |
class TTSManager:
|
|
|
492 |
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
493 |
return v
|
494 |
|
|
|
495 |
class ChatResponse(BaseModel):
|
496 |
response: str
|
497 |
|
src/server/main_v0.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
from time import time
|
5 |
+
from typing import List
|
6 |
+
import tempfile
|
7 |
+
import uvicorn
|
8 |
+
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
+
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
|
11 |
+
from PIL import Image
|
12 |
+
from pydantic import BaseModel, field_validator
|
13 |
+
from pydantic_settings import BaseSettings
|
14 |
+
from slowapi import Limiter
|
15 |
+
from slowapi.util import get_remote_address
|
16 |
+
import torch
|
17 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, AutoModel, Gemma3ForConditionalGeneration
|
18 |
+
from IndicTransToolkit import IndicProcessor
|
19 |
+
import json
|
20 |
+
import asyncio
|
21 |
+
from contextlib import asynccontextmanager
|
22 |
+
import soundfile as sf
|
23 |
+
import numpy as np
|
24 |
+
import requests
|
25 |
+
from starlette.responses import StreamingResponse
|
26 |
+
from logging_config import logger
|
27 |
+
from tts_config import SPEED, ResponseFormat, config as tts_config
|
28 |
+
import torchaudio
|
29 |
+
|
30 |
+
# Device setup
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
device = "cuda:0"
|
33 |
+
logger.info("GPU will be used for inference")
|
34 |
+
else:
|
35 |
+
device = "cpu"
|
36 |
+
logger.info("CPU will be used for inference")
|
37 |
+
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
38 |
+
|
39 |
+
# Check CUDA availability and version
|
40 |
+
cuda_available = torch.cuda.is_available()
|
41 |
+
cuda_version = torch.version.cuda if cuda_available else None
|
42 |
+
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
device_idx = torch.cuda.current_device()
|
45 |
+
capability = torch.cuda.get_device_capability(device_idx)
|
46 |
+
compute_capability_float = float(f"{capability[0]}.{capability[1]}")
|
47 |
+
print(f"CUDA version: {cuda_version}")
|
48 |
+
print(f"CUDA Compute Capability: {compute_capability_float}")
|
49 |
+
else:
|
50 |
+
print("CUDA is not available on this system.")
|
51 |
+
|
52 |
+
# Settings
|
53 |
+
class Settings(BaseSettings):
|
54 |
+
llm_model_name: str = "google/gemma-3-4b-it"
|
55 |
+
max_tokens: int = 512
|
56 |
+
host: str = "0.0.0.0"
|
57 |
+
port: int = 7860
|
58 |
+
chat_rate_limit: str = "100/minute"
|
59 |
+
speech_rate_limit: str = "5/minute"
|
60 |
+
|
61 |
+
@field_validator("chat_rate_limit", "speech_rate_limit")
|
62 |
+
def validate_rate_limit(cls, v):
|
63 |
+
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
|
64 |
+
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
|
65 |
+
return v
|
66 |
+
|
67 |
+
class Config:
|
68 |
+
env_file = ".env"
|
69 |
+
|
70 |
+
settings = Settings()
|
71 |
+
|
72 |
+
# Quantization config for LLM
|
73 |
+
quantization_config = BitsAndBytesConfig(
|
74 |
+
load_in_4bit=True,
|
75 |
+
bnb_4bit_quant_type="nf4",
|
76 |
+
bnb_4bit_use_double_quant=True,
|
77 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
78 |
+
)
|
79 |
+
|
80 |
+
# LLM Manager
|
81 |
+
class LLMManager:
|
82 |
+
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
83 |
+
self.model_name = model_name
|
84 |
+
self.device = torch.device(device)
|
85 |
+
self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32
|
86 |
+
self.model = None
|
87 |
+
self.processor = None
|
88 |
+
self.is_loaded = False
|
89 |
+
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
90 |
+
|
91 |
+
def load(self):
|
92 |
+
if not self.is_loaded:
|
93 |
+
try:
|
94 |
+
self.model = Gemma3ForConditionalGeneration.from_pretrained(
|
95 |
+
self.model_name,
|
96 |
+
device_map="auto",
|
97 |
+
quantization_config=quantization_config,
|
98 |
+
torch_dtype=self.torch_dtype
|
99 |
+
)
|
100 |
+
self.model.eval()
|
101 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
102 |
+
self.is_loaded = True
|
103 |
+
logger.info(f"LLM {self.model_name} loaded on {self.device}")
|
104 |
+
except Exception as e:
|
105 |
+
logger.error(f"Failed to load LLM: {str(e)}")
|
106 |
+
raise
|
107 |
+
|
108 |
+
def unload(self):
|
109 |
+
if self.is_loaded:
|
110 |
+
del self.model
|
111 |
+
del self.processor
|
112 |
+
if self.device.type == "cuda":
|
113 |
+
torch.cuda.empty_cache()
|
114 |
+
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
115 |
+
self.is_loaded = False
|
116 |
+
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
117 |
+
|
118 |
+
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
119 |
+
if not self.is_loaded:
|
120 |
+
self.load()
|
121 |
+
|
122 |
+
messages_vlm = [
|
123 |
+
{
|
124 |
+
"role": "system",
|
125 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"role": "user",
|
129 |
+
"content": [{"type": "text", "text": prompt}]
|
130 |
+
}
|
131 |
+
]
|
132 |
+
|
133 |
+
try:
|
134 |
+
inputs_vlm = self.processor.apply_chat_template(
|
135 |
+
messages_vlm,
|
136 |
+
add_generation_prompt=True,
|
137 |
+
tokenize=True,
|
138 |
+
return_dict=True,
|
139 |
+
return_tensors="pt"
|
140 |
+
).to(self.device, dtype=torch.bfloat16)
|
141 |
+
except Exception as e:
|
142 |
+
logger.error(f"Error in tokenization: {str(e)}")
|
143 |
+
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
144 |
+
|
145 |
+
input_len = inputs_vlm["input_ids"].shape[-1]
|
146 |
+
|
147 |
+
with torch.inference_mode():
|
148 |
+
generation = self.model.generate(
|
149 |
+
**inputs_vlm,
|
150 |
+
max_new_tokens=max_tokens,
|
151 |
+
do_sample=True,
|
152 |
+
temperature=temperature
|
153 |
+
)
|
154 |
+
generation = generation[0][input_len:]
|
155 |
+
|
156 |
+
response = self.processor.decode(generation, skip_special_tokens=True)
|
157 |
+
logger.info(f"Generated response: {response}")
|
158 |
+
return response
|
159 |
+
|
160 |
+
async def vision_query(self, image: Image.Image, query: str) -> str:
|
161 |
+
if not self.is_loaded:
|
162 |
+
self.load()
|
163 |
+
|
164 |
+
messages_vlm = [
|
165 |
+
{
|
166 |
+
"role": "system",
|
167 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"role": "user",
|
171 |
+
"content": []
|
172 |
+
}
|
173 |
+
]
|
174 |
+
|
175 |
+
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
176 |
+
if image and image.size[0] > 0 and image.size[1] > 0:
|
177 |
+
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
178 |
+
logger.info(f"Received valid image for processing")
|
179 |
+
else:
|
180 |
+
logger.info("No valid image provided, processing text only")
|
181 |
+
|
182 |
+
try:
|
183 |
+
inputs_vlm = self.processor.apply_chat_template(
|
184 |
+
messages_vlm,
|
185 |
+
add_generation_prompt=True,
|
186 |
+
tokenize=True,
|
187 |
+
return_dict=True,
|
188 |
+
return_tensors="pt"
|
189 |
+
).to(self.device, dtype=torch.bfloat16)
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"Error in apply_chat_template: {str(e)}")
|
192 |
+
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
193 |
+
|
194 |
+
input_len = inputs_vlm["input_ids"].shape[-1]
|
195 |
+
|
196 |
+
with torch.inference_mode():
|
197 |
+
generation = self.model.generate(
|
198 |
+
**inputs_vlm,
|
199 |
+
max_new_tokens=512,
|
200 |
+
do_sample=True,
|
201 |
+
temperature=0.7
|
202 |
+
)
|
203 |
+
generation = generation[0][input_len:]
|
204 |
+
|
205 |
+
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
206 |
+
logger.info(f"Vision query response: {decoded}")
|
207 |
+
return decoded
|
208 |
+
|
209 |
+
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
210 |
+
if not self.is_loaded:
|
211 |
+
self.load()
|
212 |
+
|
213 |
+
messages_vlm = [
|
214 |
+
{
|
215 |
+
"role": "system",
|
216 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"role": "user",
|
220 |
+
"content": []
|
221 |
+
}
|
222 |
+
]
|
223 |
+
|
224 |
+
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
225 |
+
if image and image.size[0] > 0 and image.size[1] > 0:
|
226 |
+
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
227 |
+
logger.info(f"Received valid image for processing")
|
228 |
+
else:
|
229 |
+
logger.info("No valid image provided, processing text only")
|
230 |
+
|
231 |
+
try:
|
232 |
+
inputs_vlm = self.processor.apply_chat_template(
|
233 |
+
messages_vlm,
|
234 |
+
add_generation_prompt=True,
|
235 |
+
tokenize=True,
|
236 |
+
return_dict=True,
|
237 |
+
return_tensors="pt"
|
238 |
+
).to(self.device, dtype=torch.bfloat16)
|
239 |
+
except Exception as e:
|
240 |
+
logger.error(f"Error in apply_chat_template: {str(e)}")
|
241 |
+
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
242 |
+
|
243 |
+
input_len = inputs_vlm["input_ids"].shape[-1]
|
244 |
+
|
245 |
+
with torch.inference_mode():
|
246 |
+
generation = self.model.generate(
|
247 |
+
**inputs_vlm,
|
248 |
+
max_new_tokens=512,
|
249 |
+
do_sample=True,
|
250 |
+
temperature=0.7
|
251 |
+
)
|
252 |
+
generation = generation[0][input_len:]
|
253 |
+
|
254 |
+
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
255 |
+
logger.info(f"Chat_v2 response: {decoded}")
|
256 |
+
return decoded
|
257 |
+
|
258 |
+
# TTS Manager
|
259 |
+
class TTSManager:
|
260 |
+
def __init__(self, device_type=device):
|
261 |
+
self.device_type = device_type
|
262 |
+
self.model = None
|
263 |
+
self.repo_id = "ai4bharat/IndicF5"
|
264 |
+
|
265 |
+
def load(self):
|
266 |
+
if not self.model:
|
267 |
+
logger.info("Loading TTS model IndicF5...")
|
268 |
+
self.model = AutoModel.from_pretrained(
|
269 |
+
self.repo_id,
|
270 |
+
trust_remote_code=True
|
271 |
+
)
|
272 |
+
self.model = self.model.to(self.device_type)
|
273 |
+
logger.info("TTS model IndicF5 loaded")
|
274 |
+
|
275 |
+
def synthesize(self, text, ref_audio_path, ref_text):
|
276 |
+
if not self.model:
|
277 |
+
raise ValueError("TTS model not loaded")
|
278 |
+
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
|
279 |
+
|
280 |
+
# TTS Constants
|
281 |
+
EXAMPLES = [
|
282 |
+
{
|
283 |
+
"audio_name": "KAN_F (Happy)",
|
284 |
+
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
|
285 |
+
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ.",
|
286 |
+
"synth_text": "ಚೆನ್ನೈನ ಶೇರ್ ಆಟೋ ಪ್ರಯಾಣಿಕರ ನಡುವೆ ಆಹಾರವನ್ನು ಹಂಚಿಕೊಂಡು ತಿನ್ನುವುದು ನನಗೆ ಮನಸ್ಸಿಗೆ ತುಂಬಾ ಒಳ್ಳೆಯದೆನಿಸುವ ವಿಷಯ."
|
287 |
+
},
|
288 |
+
]
|
289 |
+
|
290 |
+
# Pydantic models for TTS
|
291 |
+
class SynthesizeRequest(BaseModel):
|
292 |
+
text: str
|
293 |
+
ref_audio_name: str
|
294 |
+
ref_text: str = None
|
295 |
+
|
296 |
+
class KannadaSynthesizeRequest(BaseModel):
|
297 |
+
text: str
|
298 |
+
|
299 |
+
# TTS Functions
|
300 |
+
def load_audio_from_url(url: str):
|
301 |
+
response = requests.get(url)
|
302 |
+
if response.status_code == 200:
|
303 |
+
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
|
304 |
+
return sample_rate, audio_data
|
305 |
+
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL.")
|
306 |
+
|
307 |
+
def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str):
|
308 |
+
ref_audio_url = None
|
309 |
+
for example in EXAMPLES:
|
310 |
+
if example["audio_name"] == ref_audio_name:
|
311 |
+
ref_audio_url = example["audio_url"]
|
312 |
+
if not ref_text:
|
313 |
+
ref_text = example["ref_text"]
|
314 |
+
break
|
315 |
+
|
316 |
+
if not ref_audio_url:
|
317 |
+
raise HTTPException(status_code=400, detail="Invalid reference audio name.")
|
318 |
+
if not text.strip():
|
319 |
+
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
320 |
+
if not ref_text or not ref_text.strip():
|
321 |
+
raise HTTPException(status_code=400, detail="Reference text cannot be empty.")
|
322 |
+
|
323 |
+
sample_rate, audio_data = load_audio_from_url(ref_audio_url)
|
324 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
325 |
+
sf.write(temp_audio.name, audio_data, samplerate=sample_rate, format='WAV')
|
326 |
+
temp_audio.flush()
|
327 |
+
audio = tts_manager.synthesize(text, ref_audio_path=temp_audio.name, ref_text=ref_text)
|
328 |
+
|
329 |
+
if audio.dtype == np.int16:
|
330 |
+
audio = audio.astype(np.float32) / 32768.0
|
331 |
+
buffer = io.BytesIO()
|
332 |
+
sf.write(buffer, audio, 24000, format='WAV')
|
333 |
+
buffer.seek(0)
|
334 |
+
return buffer
|
335 |
+
|
336 |
+
# Supported languages
|
337 |
+
SUPPORTED_LANGUAGES = {
|
338 |
+
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
339 |
+
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
|
340 |
+
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
|
341 |
+
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
|
342 |
+
"kan_Knda", "ory_Orya",
|
343 |
+
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
|
344 |
+
"por_Latn", "rus_Cyrl", "pol_Latn"
|
345 |
+
}
|
346 |
+
|
347 |
+
# Translation Manager
|
348 |
+
class TranslateManager:
|
349 |
+
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
|
350 |
+
self.device_type = device_type
|
351 |
+
self.tokenizer = None
|
352 |
+
self.model = None
|
353 |
+
self.src_lang = src_lang
|
354 |
+
self.tgt_lang = tgt_lang
|
355 |
+
self.use_distilled = use_distilled
|
356 |
+
|
357 |
+
def load(self):
|
358 |
+
if not self.tokenizer or not self.model:
|
359 |
+
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
360 |
+
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B"
|
361 |
+
elif not self.src_lang.startswith("eng") and self.tgt_lang.startswith("eng"):
|
362 |
+
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-indic-en-1B"
|
363 |
+
elif not self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
|
364 |
+
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if self.use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
|
365 |
+
else:
|
366 |
+
raise ValueError("Invalid language combination")
|
367 |
+
|
368 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
369 |
+
model_name,
|
370 |
+
trust_remote_code=True
|
371 |
+
)
|
372 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
373 |
+
model_name,
|
374 |
+
trust_remote_code=True,
|
375 |
+
torch_dtype=torch.float16,
|
376 |
+
attn_implementation="flash_attention_2"
|
377 |
+
)
|
378 |
+
self.model = self.model.to(self.device_type)
|
379 |
+
self.model = torch.compile(self.model, mode="reduce-overhead")
|
380 |
+
logger.info(f"Translation model {model_name} loaded")
|
381 |
+
|
382 |
+
class ModelManager:
|
383 |
+
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
|
384 |
+
self.models = {}
|
385 |
+
self.device_type = device_type
|
386 |
+
self.use_distilled = use_distilled
|
387 |
+
self.is_lazy_loading = is_lazy_loading
|
388 |
+
|
389 |
+
def load_model(self, src_lang, tgt_lang, key):
|
390 |
+
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}")
|
391 |
+
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
|
392 |
+
translate_manager.load()
|
393 |
+
self.models[key] = translate_manager
|
394 |
+
logger.info(f"Loaded translation model for {key}")
|
395 |
+
|
396 |
+
def get_model(self, src_lang, tgt_lang):
|
397 |
+
key = self._get_model_key(src_lang, tgt_lang)
|
398 |
+
if key not in self.models:
|
399 |
+
if self.is_lazy_loading:
|
400 |
+
self.load_model(src_lang, tgt_lang, key)
|
401 |
+
else:
|
402 |
+
raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
|
403 |
+
return self.models.get(key)
|
404 |
+
|
405 |
+
def _get_model_key(self, src_lang, tgt_lang):
|
406 |
+
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
407 |
+
return 'eng_indic'
|
408 |
+
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
|
409 |
+
return 'indic_eng'
|
410 |
+
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
411 |
+
return 'indic_indic'
|
412 |
+
raise ValueError("Invalid language combination")
|
413 |
+
|
414 |
+
# ASR Manager
|
415 |
+
class ASRModelManager:
|
416 |
+
def __init__(self, device_type="cuda"):
|
417 |
+
self.device_type = device_type
|
418 |
+
self.model = None
|
419 |
+
self.model_language = {"kannada": "kn"}
|
420 |
+
|
421 |
+
def load(self):
|
422 |
+
if not self.model:
|
423 |
+
logger.info("Loading ASR model...")
|
424 |
+
self.model = AutoModel.from_pretrained(
|
425 |
+
"ai4bharat/indic-conformer-600m-multilingual",
|
426 |
+
trust_remote_code=True
|
427 |
+
)
|
428 |
+
self.model = self.model.to(self.device_type)
|
429 |
+
logger.info("ASR model loaded")
|
430 |
+
|
431 |
+
# Global Managers
|
432 |
+
llm_manager = LLMManager(settings.llm_model_name)
|
433 |
+
model_manager = ModelManager()
|
434 |
+
asr_manager = ASRModelManager()
|
435 |
+
tts_manager = TTSManager()
|
436 |
+
ip = IndicProcessor(inference=True)
|
437 |
+
|
438 |
+
# Pydantic Models
|
439 |
+
class ChatRequest(BaseModel):
|
440 |
+
prompt: str
|
441 |
+
src_lang: str = "kan_Knda"
|
442 |
+
tgt_lang: str = "kan_Knda"
|
443 |
+
|
444 |
+
@field_validator("prompt")
|
445 |
+
def prompt_must_be_valid(cls, v):
|
446 |
+
if len(v) > 1000:
|
447 |
+
raise ValueError("Prompt cannot exceed 1000 characters")
|
448 |
+
return v.strip()
|
449 |
+
|
450 |
+
@field_validator("src_lang", "tgt_lang")
|
451 |
+
def validate_language(cls, v):
|
452 |
+
if v not in SUPPORTED_LANGUAGES:
|
453 |
+
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
454 |
+
return v
|
455 |
+
|
456 |
+
|
457 |
+
class ChatResponse(BaseModel):
|
458 |
+
response: str
|
459 |
+
|
460 |
+
class TranslationRequest(BaseModel):
|
461 |
+
sentences: List[str]
|
462 |
+
src_lang: str
|
463 |
+
tgt_lang: str
|
464 |
+
|
465 |
+
class TranscriptionResponse(BaseModel):
|
466 |
+
text: str
|
467 |
+
|
468 |
+
class TranslationResponse(BaseModel):
|
469 |
+
translations: List[str]
|
470 |
+
|
471 |
+
# Dependency
|
472 |
+
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
|
473 |
+
return model_manager.get_model(src_lang, tgt_lang)
|
474 |
+
|
475 |
+
# Lifespan Event Handler
|
476 |
+
translation_configs = []
|
477 |
+
|
478 |
+
@asynccontextmanager
|
479 |
+
async def lifespan(app: FastAPI):
|
480 |
+
def load_all_models():
|
481 |
+
try:
|
482 |
+
# Load LLM model
|
483 |
+
logger.info("Loading LLM model...")
|
484 |
+
llm_manager.load()
|
485 |
+
logger.info("LLM model loaded successfully")
|
486 |
+
|
487 |
+
# Load TTS model
|
488 |
+
logger.info("Loading TTS model...")
|
489 |
+
tts_manager.load()
|
490 |
+
logger.info("TTS model loaded successfully")
|
491 |
+
|
492 |
+
# Load ASR model
|
493 |
+
logger.info("Loading ASR model...")
|
494 |
+
asr_manager.load()
|
495 |
+
logger.info("ASR model loaded successfully")
|
496 |
+
|
497 |
+
# Load translation models
|
498 |
+
translation_tasks = [
|
499 |
+
('eng_Latn', 'kan_Knda', 'eng_indic'),
|
500 |
+
('kan_Knda', 'eng_Latn', 'indic_eng'),
|
501 |
+
('kan_Knda', 'hin_Deva', 'indic_indic'),
|
502 |
+
]
|
503 |
+
|
504 |
+
for config in translation_configs:
|
505 |
+
src_lang = config["src_lang"]
|
506 |
+
tgt_lang = config["tgt_lang"]
|
507 |
+
key = model_manager._get_model_key(src_lang, tgt_lang)
|
508 |
+
translation_tasks.append((src_lang, tgt_lang, key))
|
509 |
+
|
510 |
+
for src_lang, tgt_lang, key in translation_tasks:
|
511 |
+
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}...")
|
512 |
+
model_manager.load_model(src_lang, tgt_lang, key)
|
513 |
+
logger.info(f"Translation model for {key} loaded successfully")
|
514 |
+
|
515 |
+
logger.info("All models loaded successfully")
|
516 |
+
except Exception as e:
|
517 |
+
logger.error(f"Error loading models: {str(e)}")
|
518 |
+
raise
|
519 |
+
|
520 |
+
logger.info("Starting sequential model loading...")
|
521 |
+
load_all_models()
|
522 |
+
yield
|
523 |
+
llm_manager.unload()
|
524 |
+
logger.info("Server shutdown complete")
|
525 |
+
|
526 |
+
# FastAPI App
|
527 |
+
app = FastAPI(
|
528 |
+
title="Dhwani API",
|
529 |
+
description="AI Chat API supporting Indian languages",
|
530 |
+
version="1.0.0",
|
531 |
+
redirect_slashes=False,
|
532 |
+
lifespan=lifespan
|
533 |
+
)
|
534 |
+
|
535 |
+
# Add CORS Middleware
|
536 |
+
app.add_middleware(
|
537 |
+
CORSMiddleware,
|
538 |
+
allow_origins=["*"],
|
539 |
+
allow_credentials=False,
|
540 |
+
allow_methods=["*"],
|
541 |
+
allow_headers=["*"],
|
542 |
+
)
|
543 |
+
|
544 |
+
# Add Timing Middleware
|
545 |
+
@app.middleware("http")
|
546 |
+
async def add_request_timing(request: Request, call_next):
|
547 |
+
start_time = time()
|
548 |
+
response = await call_next(request)
|
549 |
+
end_time = time()
|
550 |
+
duration = end_time - start_time
|
551 |
+
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds")
|
552 |
+
response.headers["X-Response-Time"] = f"{duration:.3f}"
|
553 |
+
return response
|
554 |
+
|
555 |
+
limiter = Limiter(key_func=get_remote_address)
|
556 |
+
app.state.limiter = limiter
|
557 |
+
|
558 |
+
# API Endpoints
|
559 |
+
@app.post("/audio/speech", response_class=StreamingResponse)
|
560 |
+
async def synthesize_kannada(request: KannadaSynthesizeRequest):
|
561 |
+
if not tts_manager.model:
|
562 |
+
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
563 |
+
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
|
564 |
+
if not request.text.strip():
|
565 |
+
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
|
566 |
+
|
567 |
+
audio_buffer = synthesize_speech(
|
568 |
+
tts_manager,
|
569 |
+
text=request.text,
|
570 |
+
ref_audio_name="KAN_F (Happy)",
|
571 |
+
ref_text=kannada_example["ref_text"]
|
572 |
+
)
|
573 |
+
|
574 |
+
return StreamingResponse(
|
575 |
+
audio_buffer,
|
576 |
+
media_type="audio/wav",
|
577 |
+
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
|
578 |
+
)
|
579 |
+
|
580 |
+
@app.post("/translate", response_model=TranslationResponse)
|
581 |
+
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
582 |
+
input_sentences = request.sentences
|
583 |
+
src_lang = request.src_lang
|
584 |
+
tgt_lang = request.tgt_lang
|
585 |
+
|
586 |
+
if not input_sentences:
|
587 |
+
raise HTTPException(status_code=400, detail="Input sentences are required")
|
588 |
+
|
589 |
+
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
590 |
+
inputs = translate_manager.tokenizer(
|
591 |
+
batch,
|
592 |
+
truncation=True,
|
593 |
+
padding="longest",
|
594 |
+
return_tensors="pt",
|
595 |
+
return_attention_mask=True,
|
596 |
+
).to(translate_manager.device_type)
|
597 |
+
|
598 |
+
with torch.no_grad():
|
599 |
+
generated_tokens = translate_manager.model.generate(
|
600 |
+
**inputs,
|
601 |
+
use_cache=True,
|
602 |
+
min_length=0,
|
603 |
+
max_length=256,
|
604 |
+
num_beams=5,
|
605 |
+
num_return_sequences=1,
|
606 |
+
)
|
607 |
+
|
608 |
+
with translate_manager.tokenizer.as_target_tokenizer():
|
609 |
+
generated_tokens = translate_manager.tokenizer.batch_decode(
|
610 |
+
generated_tokens.detach().cpu().tolist(),
|
611 |
+
skip_special_tokens=True,
|
612 |
+
clean_up_tokenization_spaces=True,
|
613 |
+
)
|
614 |
+
|
615 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
616 |
+
return TranslationResponse(translations=translations)
|
617 |
+
|
618 |
+
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
619 |
+
try:
|
620 |
+
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
621 |
+
except ValueError as e:
|
622 |
+
logger.info(f"Model not preloaded: {str(e)}, loading now...")
|
623 |
+
key = model_manager._get_model_key(src_lang, tgt_lang)
|
624 |
+
model_manager.load_model(src_lang, tgt_lang, key)
|
625 |
+
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
626 |
+
|
627 |
+
if not translate_manager.model:
|
628 |
+
translate_manager.load()
|
629 |
+
|
630 |
+
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
631 |
+
response = await translate(request, translate_manager)
|
632 |
+
return response.translations
|
633 |
+
|
634 |
+
@app.get("/v1/health")
|
635 |
+
async def health_check():
|
636 |
+
return {"status": "healthy", "model": settings.llm_model_name}
|
637 |
+
|
638 |
+
@app.get("/")
|
639 |
+
async def home():
|
640 |
+
return RedirectResponse(url="/docs")
|
641 |
+
|
642 |
+
@app.post("/v1/unload_all_models")
|
643 |
+
async def unload_all_models():
|
644 |
+
try:
|
645 |
+
logger.info("Starting to unload all models...")
|
646 |
+
llm_manager.unload()
|
647 |
+
logger.info("All models unloaded successfully")
|
648 |
+
return {"status": "success", "message": "All models unloaded"}
|
649 |
+
except Exception as e:
|
650 |
+
logger.error(f"Error unloading models: {str(e)}")
|
651 |
+
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
|
652 |
+
|
653 |
+
@app.post("/v1/load_all_models")
|
654 |
+
async def load_all_models():
|
655 |
+
try:
|
656 |
+
logger.info("Starting to load all models...")
|
657 |
+
llm_manager.load()
|
658 |
+
logger.info("All models loaded successfully")
|
659 |
+
return {"status": "success", "message": "All models loaded"}
|
660 |
+
except Exception as e:
|
661 |
+
logger.error(f"Error loading models: {str(e)}")
|
662 |
+
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
|
663 |
+
|
664 |
+
@app.post("/v1/translate", response_model=TranslationResponse)
|
665 |
+
async def translate_endpoint(request: TranslationRequest):
|
666 |
+
logger.info(f"Received translation request: {request.dict()}")
|
667 |
+
try:
|
668 |
+
translations = await perform_internal_translation(
|
669 |
+
sentences=request.sentences,
|
670 |
+
src_lang=request.src_lang,
|
671 |
+
tgt_lang=request.tgt_lang
|
672 |
+
)
|
673 |
+
logger.info(f"Translation successful: {translations}")
|
674 |
+
return TranslationResponse(translations=translations)
|
675 |
+
except Exception as e:
|
676 |
+
logger.error(f"Unexpected error during translation: {str(e)}")
|
677 |
+
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
|
678 |
+
|
679 |
+
@app.post("/v1/chat", response_model=ChatResponse)
|
680 |
+
@limiter.limit(settings.chat_rate_limit)
|
681 |
+
async def chat(request: Request, chat_request: ChatRequest):
|
682 |
+
if not chat_request.prompt:
|
683 |
+
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
684 |
+
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
685 |
+
|
686 |
+
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
|
687 |
+
|
688 |
+
try:
|
689 |
+
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
|
690 |
+
translated_prompt = await perform_internal_translation(
|
691 |
+
sentences=[chat_request.prompt],
|
692 |
+
src_lang=chat_request.src_lang,
|
693 |
+
tgt_lang="eng_Latn"
|
694 |
+
)
|
695 |
+
prompt_to_process = translated_prompt[0]
|
696 |
+
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
697 |
+
else:
|
698 |
+
prompt_to_process = chat_request.prompt
|
699 |
+
logger.info("Prompt in English or European language, no translation needed")
|
700 |
+
|
701 |
+
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
702 |
+
logger.info(f"Generated response: {response}")
|
703 |
+
|
704 |
+
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
|
705 |
+
translated_response = await perform_internal_translation(
|
706 |
+
sentences=[response],
|
707 |
+
src_lang="eng_Latn",
|
708 |
+
tgt_lang=chat_request.tgt_lang
|
709 |
+
)
|
710 |
+
final_response = translated_response[0]
|
711 |
+
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
|
712 |
+
else:
|
713 |
+
final_response = response
|
714 |
+
logger.info(f"Response in {chat_request.tgt_lang}, no translation needed")
|
715 |
+
|
716 |
+
return ChatResponse(response=final_response)
|
717 |
+
except Exception as e:
|
718 |
+
logger.error(f"Error processing request: {str(e)}")
|
719 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
720 |
+
|
721 |
+
@app.post("/v1/visual_query/")
|
722 |
+
async def visual_query(
|
723 |
+
file: UploadFile = File(...),
|
724 |
+
query: str = Body(...),
|
725 |
+
src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
726 |
+
tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
|
727 |
+
):
|
728 |
+
try:
|
729 |
+
image = Image.open(file.file)
|
730 |
+
if image.size == (0, 0):
|
731 |
+
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
732 |
+
|
733 |
+
if src_lang != "eng_Latn":
|
734 |
+
translated_query = await perform_internal_translation(
|
735 |
+
sentences=[query],
|
736 |
+
src_lang=src_lang,
|
737 |
+
tgt_lang="eng_Latn"
|
738 |
+
)
|
739 |
+
query_to_process = translated_query[0]
|
740 |
+
logger.info(f"Translated query to English: {query_to_process}")
|
741 |
+
else:
|
742 |
+
query_to_process = query
|
743 |
+
logger.info("Query already in English, no translation needed")
|
744 |
+
|
745 |
+
answer = await llm_manager.vision_query(image, query_to_process)
|
746 |
+
logger.info(f"Generated English answer: {answer}")
|
747 |
+
|
748 |
+
if tgt_lang != "eng_Latn":
|
749 |
+
translated_answer = await perform_internal_translation(
|
750 |
+
sentences=[answer],
|
751 |
+
src_lang="eng_Latn",
|
752 |
+
tgt_lang=tgt_lang
|
753 |
+
)
|
754 |
+
final_answer = translated_answer[0]
|
755 |
+
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
|
756 |
+
else:
|
757 |
+
final_answer = answer
|
758 |
+
logger.info("Answer kept in English, no translation needed")
|
759 |
+
|
760 |
+
return {"answer": final_answer}
|
761 |
+
except Exception as e:
|
762 |
+
logger.error(f"Error processing request: {str(e)}")
|
763 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
764 |
+
|
765 |
+
@app.post("/v1/chat_v2", response_model=ChatResponse)
|
766 |
+
@limiter.limit(settings.chat_rate_limit)
|
767 |
+
async def chat_v2(
|
768 |
+
request: Request,
|
769 |
+
prompt: str = Form(...),
|
770 |
+
image: UploadFile = File(default=None),
|
771 |
+
src_lang: str = Form("kan_Knda"),
|
772 |
+
tgt_lang: str = Form("kan_Knda"),
|
773 |
+
):
|
774 |
+
if not prompt:
|
775 |
+
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
776 |
+
if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES:
|
777 |
+
raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
|
778 |
+
|
779 |
+
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
780 |
+
|
781 |
+
try:
|
782 |
+
if image:
|
783 |
+
image_data = await image.read()
|
784 |
+
if not image_data:
|
785 |
+
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
786 |
+
img = Image.open(io.BytesIO(image_data))
|
787 |
+
|
788 |
+
if src_lang != "eng_Latn":
|
789 |
+
translated_prompt = await perform_internal_translation(
|
790 |
+
sentences=[prompt],
|
791 |
+
src_lang=src_lang,
|
792 |
+
tgt_lang="eng_Latn"
|
793 |
+
)
|
794 |
+
prompt_to_process = translated_prompt[0]
|
795 |
+
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
796 |
+
else:
|
797 |
+
prompt_to_process = prompt
|
798 |
+
logger.info("Prompt already in English, no translation needed")
|
799 |
+
|
800 |
+
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
801 |
+
logger.info(f"Generated English response: {decoded}")
|
802 |
+
|
803 |
+
if tgt_lang != "eng_Latn":
|
804 |
+
translated_response = await perform_internal_translation(
|
805 |
+
sentences=[decoded],
|
806 |
+
src_lang="eng_Latn",
|
807 |
+
tgt_lang=tgt_lang
|
808 |
+
)
|
809 |
+
final_response = translated_response[0]
|
810 |
+
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
811 |
+
else:
|
812 |
+
final_response = decoded
|
813 |
+
logger.info("Response kept in English, no translation needed")
|
814 |
+
else:
|
815 |
+
if src_lang != "eng_Latn":
|
816 |
+
translated_prompt = await perform_internal_translation(
|
817 |
+
sentences=[prompt],
|
818 |
+
src_lang=src_lang,
|
819 |
+
tgt_lang="eng_Latn"
|
820 |
+
)
|
821 |
+
prompt_to_process = translated_prompt[0]
|
822 |
+
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
823 |
+
else:
|
824 |
+
prompt_to_process = prompt
|
825 |
+
logger.info("Prompt already in English, no translation needed")
|
826 |
+
|
827 |
+
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
828 |
+
logger.info(f"Generated English response: {decoded}")
|
829 |
+
|
830 |
+
if tgt_lang != "eng_Latn":
|
831 |
+
translated_response = await perform_internal_translation(
|
832 |
+
sentences=[decoded],
|
833 |
+
src_lang="eng_Latn",
|
834 |
+
tgt_lang=tgt_lang
|
835 |
+
)
|
836 |
+
final_response = translated_response[0]
|
837 |
+
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
838 |
+
else:
|
839 |
+
final_response = decoded
|
840 |
+
logger.info("Response kept in English, no translation needed")
|
841 |
+
|
842 |
+
return ChatResponse(response=final_response)
|
843 |
+
except Exception as e:
|
844 |
+
logger.error(f"Error processing request: {str(e)}")
|
845 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
846 |
+
|
847 |
+
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
848 |
+
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
849 |
+
if not asr_manager.model:
|
850 |
+
raise HTTPException(status_code=503, detail="ASR model not loaded")
|
851 |
+
try:
|
852 |
+
wav, sr = torchaudio.load(file.file)
|
853 |
+
wav = torch.mean(wav, dim=0, keepdim=True)
|
854 |
+
target_sample_rate = 16000
|
855 |
+
if sr != target_sample_rate:
|
856 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
|
857 |
+
wav = resampler(wav)
|
858 |
+
transcription_rnnt = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
|
859 |
+
return TranscriptionResponse(text=transcription_rnnt)
|
860 |
+
except Exception as e:
|
861 |
+
logger.error(f"Error in transcription: {str(e)}")
|
862 |
+
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
|
863 |
+
|
864 |
+
@app.post("/v1/speech_to_speech")
|
865 |
+
async def speech_to_speech(
|
866 |
+
request: Request,
|
867 |
+
file: UploadFile = File(...),
|
868 |
+
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
|
869 |
+
) -> StreamingResponse:
|
870 |
+
if not tts_manager.model:
|
871 |
+
raise HTTPException(status_code=503, detail="TTS model not loaded")
|
872 |
+
transcription = await transcribe_audio(file, language)
|
873 |
+
logger.info(f"Transcribed text: {transcription.text}")
|
874 |
+
|
875 |
+
chat_request = ChatRequest(
|
876 |
+
prompt=transcription.text,
|
877 |
+
src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"),
|
878 |
+
tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda")
|
879 |
+
)
|
880 |
+
processed_text = await chat(request, chat_request)
|
881 |
+
logger.info(f"Processed text: {processed_text.response}")
|
882 |
+
|
883 |
+
voice_request = KannadaSynthesizeRequest(text=processed_text.response)
|
884 |
+
audio_response = await synthesize_kannada(voice_request)
|
885 |
+
return audio_response
|
886 |
+
|
887 |
+
LANGUAGE_TO_SCRIPT = {
|
888 |
+
"kannada": "kan_Knda"
|
889 |
+
}
|
890 |
+
|
891 |
+
# Main Execution
|
892 |
+
if __name__ == "__main__":
|
893 |
+
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
|
894 |
+
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
|
895 |
+
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
|
896 |
+
parser.add_argument("--config", type=str, default="config_one", help="Configuration to use")
|
897 |
+
args = parser.parse_args()
|
898 |
+
|
899 |
+
def load_config(config_path="dhwani_config.json"):
|
900 |
+
with open(config_path, "r") as f:
|
901 |
+
return json.load(f)
|
902 |
+
|
903 |
+
config_data = load_config()
|
904 |
+
if args.config not in config_data["configs"]:
|
905 |
+
raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}")
|
906 |
+
|
907 |
+
selected_config = config_data["configs"][args.config]
|
908 |
+
global_settings = config_data["global_settings"]
|
909 |
+
|
910 |
+
settings.llm_model_name = selected_config["components"]["LLM"]["model"]
|
911 |
+
settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"]
|
912 |
+
settings.host = global_settings["host"]
|
913 |
+
settings.port = global_settings["port"]
|
914 |
+
settings.chat_rate_limit = global_settings["chat_rate_limit"]
|
915 |
+
settings.speech_rate_limit = global_settings["speech_rate_limit"]
|
916 |
+
|
917 |
+
llm_manager = LLMManager(settings.llm_model_name)
|
918 |
+
|
919 |
+
if selected_config["components"]["ASR"]:
|
920 |
+
asr_model_name = selected_config["components"]["ASR"]["model"]
|
921 |
+
asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"]
|
922 |
+
|
923 |
+
if selected_config["components"]["Translation"]:
|
924 |
+
translation_configs.extend(selected_config["components"]["Translation"])
|
925 |
+
|
926 |
+
host = args.host if args.host != settings.host else settings.host
|
927 |
+
port = args.port if args.port != settings.port else settings.port
|
928 |
+
|
929 |
+
uvicorn.run(app, host=host, port=port)
|