sachin
commited on
Commit
·
7a61b58
1
Parent(s):
224556e
add-tts
Browse files- Dockerfile +3 -1
- requirements.txt +15 -0
- src/server/config.py +32 -0
- src/server/logger.py +32 -0
- src/server/main.py +299 -6
Dockerfile
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
FROM
|
2 |
WORKDIR /app
|
3 |
|
4 |
RUN apt-get update && apt-get install -y \
|
@@ -17,6 +17,8 @@ RUN export CC=/usr/bin/gcc
|
|
17 |
RUN export CXX=/usr/bin/g++
|
18 |
|
19 |
RUN pip install --upgrade pip setuptools setuptools-rust torch
|
|
|
|
|
20 |
COPY requirements.txt .
|
21 |
#RUN pip install --no-cache-dir torch==2.6.0 torchvision
|
22 |
#RUN pip install --no-cache-dir transformers
|
|
|
1 |
+
FROM nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04
|
2 |
WORKDIR /app
|
3 |
|
4 |
RUN apt-get update && apt-get install -y \
|
|
|
17 |
RUN export CXX=/usr/bin/g++
|
18 |
|
19 |
RUN pip install --upgrade pip setuptools setuptools-rust torch
|
20 |
+
RUN pip install flash-attn --no-build-isolation
|
21 |
+
|
22 |
COPY requirements.txt .
|
23 |
#RUN pip install --no-cache-dir torch==2.6.0 torchvision
|
24 |
#RUN pip install --no-cache-dir transformers
|
requirements.txt
CHANGED
@@ -9,3 +9,18 @@ pydantic_settings
|
|
9 |
slowapi
|
10 |
python-multipart
|
11 |
IndicTransToolkit @ git+https://github.com/VarunGumma/IndicTransToolkit.git@399b3fec93d2ee85cb998cb7a4fb7a7d83afcbcf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
slowapi
|
10 |
python-multipart
|
11 |
IndicTransToolkit @ git+https://github.com/VarunGumma/IndicTransToolkit.git@399b3fec93d2ee85cb998cb7a4fb7a7d83afcbcf
|
12 |
+
packaging
|
13 |
+
|
14 |
+
sentencepiece
|
15 |
+
descript-audio-codec
|
16 |
+
descript-audiotools @ git+https://github.com/descriptinc/audiotools
|
17 |
+
protobuf>=4.0.0
|
18 |
+
fastapi
|
19 |
+
uvicorn
|
20 |
+
pydantic-settings
|
21 |
+
huggingface-hub
|
22 |
+
openai
|
23 |
+
torch
|
24 |
+
parler_tts @ git+https://github.com/slabstech/parler-tts.git
|
25 |
+
packaging # Added to resolve flash-attn dependency
|
26 |
+
flash-attn
|
src/server/config.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
|
3 |
+
from pydantic_settings import BaseSettings
|
4 |
+
|
5 |
+
SPEED = 1.0
|
6 |
+
|
7 |
+
class StrEnum(str, enum.Enum):
|
8 |
+
"""Custom implementation of StrEnum for Python versions < 3.11"""
|
9 |
+
def __str__(self):
|
10 |
+
return str(self.value)
|
11 |
+
|
12 |
+
# NOTE: commented out response formats don't work
|
13 |
+
class ResponseFormat(StrEnum):
|
14 |
+
MP3 = "mp3"
|
15 |
+
# OPUS = "opus"
|
16 |
+
# AAC = "aac"
|
17 |
+
FLAC = "flac"
|
18 |
+
WAV = "wav"
|
19 |
+
# PCM = "pcm"
|
20 |
+
|
21 |
+
class Config(BaseSettings):
|
22 |
+
log_level: str = "info" # env: LOG_LEVEL
|
23 |
+
model: str = "ai4bharat/indic-parler-tts" # env: MODEL
|
24 |
+
max_models: int = 1 # env: MAX_MODELS
|
25 |
+
lazy_load_model: bool = False # env: LAZY_LOAD_MODEL
|
26 |
+
input: str = ("ನಿಮ್ಮ ಇನ್ಪುಟ್ ಪಠ್ಯವನ್ನು ಇಲ್ಲಿ ಸೇರಿಸಿ")
|
27 |
+
voice: str = (
|
28 |
+
"Anu speaks with a high pitch at a normal pace in a clear, close-sounding environment. Her neutral tone is captured with excellent audio quality" # env: VOICE
|
29 |
+
)
|
30 |
+
response_format: ResponseFormat = ResponseFormat.MP3 # env: RESPONSE_FORMAT
|
31 |
+
|
32 |
+
config = Config()
|
src/server/logger.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import logging.config
|
3 |
+
|
4 |
+
from config import config
|
5 |
+
|
6 |
+
logger = logging.getLogger("tts_indic_server")
|
7 |
+
|
8 |
+
# https://www.youtube.com/watch?v=9L77QExPmI0
|
9 |
+
# https://docs.python.org/3/library/logging.config.html
|
10 |
+
logging_config = {
|
11 |
+
"version": 1, # required
|
12 |
+
"disable_existing_loggers": False,
|
13 |
+
"formatters": {
|
14 |
+
"simple": {"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s"},
|
15 |
+
},
|
16 |
+
"handlers": {
|
17 |
+
"stdout": {
|
18 |
+
"class": "logging.StreamHandler",
|
19 |
+
"formatter": "simple",
|
20 |
+
"stream": "ext://sys.stdout",
|
21 |
+
},
|
22 |
+
},
|
23 |
+
"loggers": {
|
24 |
+
"root": {
|
25 |
+
"level": config.log_level.upper(),
|
26 |
+
"handlers": ["stdout"],
|
27 |
+
},
|
28 |
+
},
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
logging.config.dictConfig(logging_config)
|
src/server/main.py
CHANGED
@@ -23,6 +23,304 @@ from tts_config import SPEED, ResponseFormat, config as tts_config
|
|
23 |
from gemma_llm import LLMManager
|
24 |
# from auth import get_api_key, settings as auth_settings
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Supported language codes
|
27 |
SUPPORTED_LANGUAGES = {
|
28 |
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
@@ -51,12 +349,7 @@ class Settings(BaseSettings):
|
|
51 |
|
52 |
settings = Settings()
|
53 |
|
54 |
-
|
55 |
-
title="Dhwani API",
|
56 |
-
description="AI Chat API supporting Indian languages",
|
57 |
-
version="1.0.0",
|
58 |
-
redirect_slashes=False,
|
59 |
-
)
|
60 |
app.add_middleware(
|
61 |
CORSMiddleware,
|
62 |
allow_origins=["*"],
|
|
|
23 |
from gemma_llm import LLMManager
|
24 |
# from auth import get_api_key, settings as auth_settings
|
25 |
|
26 |
+
|
27 |
+
import time
|
28 |
+
from contextlib import asynccontextmanager
|
29 |
+
from typing import Annotated, Any, OrderedDict, List
|
30 |
+
import zipfile
|
31 |
+
import soundfile as sf
|
32 |
+
import torch
|
33 |
+
from fastapi import Body, FastAPI, HTTPException, Response
|
34 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
35 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
36 |
+
import numpy as np
|
37 |
+
from config import SPEED, ResponseFormat, config
|
38 |
+
from logger import logger
|
39 |
+
import uvicorn
|
40 |
+
import argparse
|
41 |
+
from fastapi.responses import RedirectResponse, StreamingResponse
|
42 |
+
import io
|
43 |
+
import os
|
44 |
+
import logging
|
45 |
+
|
46 |
+
# Device setup
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
device = "cuda:0"
|
49 |
+
logger.info("GPU will be used for inference")
|
50 |
+
else:
|
51 |
+
device = "cpu"
|
52 |
+
logger.info("CPU will be used for inference")
|
53 |
+
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
54 |
+
|
55 |
+
# Check CUDA availability and version
|
56 |
+
cuda_available = torch.cuda.is_available()
|
57 |
+
cuda_version = torch.version.cuda if cuda_available else None
|
58 |
+
|
59 |
+
if torch.cuda.is_available():
|
60 |
+
device_idx = torch.cuda.current_device()
|
61 |
+
capability = torch.cuda.get_device_capability(device_idx)
|
62 |
+
compute_capability_float = float(f"{capability[0]}.{capability[1]}")
|
63 |
+
print(f"CUDA version: {cuda_version}")
|
64 |
+
print(f"CUDA Compute Capability: {compute_capability_float}")
|
65 |
+
else:
|
66 |
+
print("CUDA is not available on this system.")
|
67 |
+
|
68 |
+
class TTSModelManager:
|
69 |
+
def __init__(self):
|
70 |
+
self.model_tokenizer: OrderedDict[
|
71 |
+
str, tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]
|
72 |
+
] = OrderedDict()
|
73 |
+
self.max_length = 50
|
74 |
+
|
75 |
+
def load_model(
|
76 |
+
self, model_name: str
|
77 |
+
) -> tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]:
|
78 |
+
logger.debug(f"Loading {model_name}...")
|
79 |
+
start = time.perf_counter()
|
80 |
+
|
81 |
+
model_name = "ai4bharat/indic-parler-tts"
|
82 |
+
attn_implementation = "flash_attention_2"
|
83 |
+
|
84 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
attn_implementation=attn_implementation
|
87 |
+
).to(device, dtype=torch_dtype)
|
88 |
+
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
90 |
+
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
91 |
+
|
92 |
+
# Set pad tokens
|
93 |
+
if tokenizer.pad_token is None:
|
94 |
+
tokenizer.pad_token = tokenizer.eos_token
|
95 |
+
if description_tokenizer.pad_token is None:
|
96 |
+
description_tokenizer.pad_token = description_tokenizer.eos_token
|
97 |
+
|
98 |
+
# Update model configuration
|
99 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
100 |
+
# Update for deprecation: use max_batch_size instead of batch_size
|
101 |
+
if hasattr(model.generation_config.cache_config, 'max_batch_size'):
|
102 |
+
model.generation_config.cache_config.max_batch_size = 1
|
103 |
+
model.generation_config.cache_implementation = "static"
|
104 |
+
|
105 |
+
# Compile the model
|
106 |
+
##compile_mode = "default"
|
107 |
+
compile_mode = "reduce-overhead"
|
108 |
+
|
109 |
+
model.forward = torch.compile(model.forward, mode=compile_mode)
|
110 |
+
|
111 |
+
# Warmup
|
112 |
+
warmup_inputs = tokenizer("Warmup text for compilation",
|
113 |
+
return_tensors="pt",
|
114 |
+
padding="max_length",
|
115 |
+
max_length=self.max_length).to(device)
|
116 |
+
|
117 |
+
model_kwargs = {
|
118 |
+
"input_ids": warmup_inputs["input_ids"],
|
119 |
+
"attention_mask": warmup_inputs["attention_mask"],
|
120 |
+
"prompt_input_ids": warmup_inputs["input_ids"],
|
121 |
+
"prompt_attention_mask": warmup_inputs["attention_mask"],
|
122 |
+
}
|
123 |
+
|
124 |
+
n_steps = 1 if compile_mode == "default" else 2
|
125 |
+
for _ in range(n_steps):
|
126 |
+
_ = model.generate(**model_kwargs)
|
127 |
+
|
128 |
+
logger.info(
|
129 |
+
f"Loaded {model_name} with Flash Attention and compilation in {time.perf_counter() - start:.2f} seconds"
|
130 |
+
)
|
131 |
+
return model, tokenizer, description_tokenizer
|
132 |
+
|
133 |
+
def get_or_load_model(
|
134 |
+
self, model_name: str
|
135 |
+
) -> tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]:
|
136 |
+
if model_name not in self.model_tokenizer:
|
137 |
+
logger.info(f"Model {model_name} isn't already loaded")
|
138 |
+
if len(self.model_tokenizer) == config.max_models:
|
139 |
+
logger.info("Unloading the oldest loaded model")
|
140 |
+
del self.model_tokenizer[next(iter(self.model_tokenizer))]
|
141 |
+
self.model_tokenizer[model_name] = self.load_model(model_name)
|
142 |
+
return self.model_tokenizer[model_name]
|
143 |
+
|
144 |
+
tts_model_manager = TTSModelManager()
|
145 |
+
|
146 |
+
@asynccontextmanager
|
147 |
+
async def lifespan(_: FastAPI):
|
148 |
+
if not config.lazy_load_model:
|
149 |
+
tts_model_manager.get_or_load_model(config.model)
|
150 |
+
yield
|
151 |
+
|
152 |
+
#app = FastAPI(lifespan=lifespan)
|
153 |
+
app = FastAPI(
|
154 |
+
title="Dhwani API",
|
155 |
+
description="AI Chat API supporting Indian languages",
|
156 |
+
version="1.0.0",
|
157 |
+
redirect_slashes=False,
|
158 |
+
lifespan=lifespan
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
def chunk_text(text, chunk_size):
|
163 |
+
words = text.split()
|
164 |
+
chunks = []
|
165 |
+
for i in range(0, len(words), chunk_size):
|
166 |
+
chunks.append(' '.join(words[i:i + chunk_size]))
|
167 |
+
return chunks
|
168 |
+
|
169 |
+
@app.post("/v1/audio/speech")
|
170 |
+
async def generate_audio(
|
171 |
+
input: Annotated[str, Body()] = config.input,
|
172 |
+
voice: Annotated[str, Body()] = config.voice,
|
173 |
+
model: Annotated[str, Body()] = config.model,
|
174 |
+
response_format: Annotated[ResponseFormat, Body(include_in_schema=False)] = config.response_format,
|
175 |
+
speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
|
176 |
+
) -> StreamingResponse:
|
177 |
+
tts, tokenizer, description_tokenizer = model_manager.get_or_load_model(model)
|
178 |
+
if speed != SPEED:
|
179 |
+
logger.warning(
|
180 |
+
"Specifying speed isn't supported by this model. Audio will be generated with the default speed"
|
181 |
+
)
|
182 |
+
start = time.perf_counter()
|
183 |
+
|
184 |
+
chunk_size = 15
|
185 |
+
all_chunks = chunk_text(input, chunk_size)
|
186 |
+
|
187 |
+
if len(all_chunks) <= chunk_size:
|
188 |
+
desc_inputs = description_tokenizer(voice,
|
189 |
+
return_tensors="pt",
|
190 |
+
padding="max_length",
|
191 |
+
max_length=model_manager.max_length).to(device)
|
192 |
+
prompt_inputs = tokenizer(input,
|
193 |
+
return_tensors="pt",
|
194 |
+
padding="max_length",
|
195 |
+
max_length=model_manager.max_length).to(device)
|
196 |
+
|
197 |
+
# Use the tensor fields directly instead of BatchEncoding object
|
198 |
+
input_ids = desc_inputs["input_ids"]
|
199 |
+
attention_mask = desc_inputs["attention_mask"]
|
200 |
+
prompt_input_ids = prompt_inputs["input_ids"]
|
201 |
+
prompt_attention_mask = prompt_inputs["attention_mask"]
|
202 |
+
|
203 |
+
generation = tts.generate(
|
204 |
+
input_ids=input_ids,
|
205 |
+
prompt_input_ids=prompt_input_ids,
|
206 |
+
attention_mask=attention_mask,
|
207 |
+
prompt_attention_mask=prompt_attention_mask
|
208 |
+
).to(torch.float32)
|
209 |
+
|
210 |
+
audio_arr = generation.cpu().float().numpy().squeeze()
|
211 |
+
else:
|
212 |
+
all_descriptions = [voice] * len(all_chunks)
|
213 |
+
description_inputs = description_tokenizer(all_descriptions,
|
214 |
+
return_tensors="pt",
|
215 |
+
padding=True).to(device)
|
216 |
+
prompts = tokenizer(all_chunks,
|
217 |
+
return_tensors="pt",
|
218 |
+
padding=True).to(device)
|
219 |
+
|
220 |
+
set_seed(0)
|
221 |
+
generation = tts.generate(
|
222 |
+
input_ids=description_inputs["input_ids"],
|
223 |
+
attention_mask=description_inputs["attention_mask"],
|
224 |
+
prompt_input_ids=prompts["input_ids"],
|
225 |
+
prompt_attention_mask=prompts["attention_mask"],
|
226 |
+
do_sample=True,
|
227 |
+
return_dict_in_generate=True,
|
228 |
+
)
|
229 |
+
|
230 |
+
chunk_audios = []
|
231 |
+
for i, audio in enumerate(generation.sequences):
|
232 |
+
audio_data = audio[:generation.audios_length[i]].cpu().float().numpy().squeeze()
|
233 |
+
chunk_audios.append(audio_data)
|
234 |
+
audio_arr = np.concatenate(chunk_audios)
|
235 |
+
|
236 |
+
device_str = str(device)
|
237 |
+
logger.info(
|
238 |
+
f"Took {time.perf_counter() - start:.2f} seconds to generate audio for {len(input.split())} words using {device_str.upper()}"
|
239 |
+
)
|
240 |
+
|
241 |
+
audio_buffer = io.BytesIO()
|
242 |
+
sf.write(audio_buffer, audio_arr, tts.config.sampling_rate, format=response_format)
|
243 |
+
audio_buffer.seek(0)
|
244 |
+
|
245 |
+
return StreamingResponse(audio_buffer, media_type=f"audio/{response_format}")
|
246 |
+
|
247 |
+
def create_in_memory_zip(file_data):
|
248 |
+
in_memory_zip = io.BytesIO()
|
249 |
+
with zipfile.ZipFile(in_memory_zip, 'w') as zipf:
|
250 |
+
for file_name, data in file_data.items():
|
251 |
+
zipf.writestr(file_name, data)
|
252 |
+
in_memory_zip.seek(0)
|
253 |
+
return in_memory_zip
|
254 |
+
|
255 |
+
@app.post("/v1/audio/speech_batch")
|
256 |
+
async def generate_audio_batch(
|
257 |
+
input: Annotated[List[str], Body()] = config.input,
|
258 |
+
voice: Annotated[List[str], Body()] = config.voice,
|
259 |
+
model: Annotated[str, Body(include_in_schema=False)] = config.model,
|
260 |
+
response_format: Annotated[ResponseFormat, Body()] = config.response_format,
|
261 |
+
speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
|
262 |
+
) -> StreamingResponse:
|
263 |
+
tts, tokenizer, description_tokenizer = model_manager.get_or_load_model(model)
|
264 |
+
if speed != SPEED:
|
265 |
+
logger.warning(
|
266 |
+
"Specifying speed isn't supported by this model. Audio will be generated with the default speed"
|
267 |
+
)
|
268 |
+
start = time.perf_counter()
|
269 |
+
|
270 |
+
chunk_size = 15
|
271 |
+
all_chunks = []
|
272 |
+
all_descriptions = []
|
273 |
+
for i, text in enumerate(input):
|
274 |
+
chunks = chunk_text(text, chunk_size)
|
275 |
+
all_chunks.extend(chunks)
|
276 |
+
all_descriptions.extend([voice[i]] * len(chunks))
|
277 |
+
|
278 |
+
description_inputs = description_tokenizer(all_descriptions,
|
279 |
+
return_tensors="pt",
|
280 |
+
padding=True).to(device)
|
281 |
+
prompts = tokenizer(all_chunks,
|
282 |
+
return_tensors="pt",
|
283 |
+
padding=True).to(device)
|
284 |
+
|
285 |
+
set_seed(0)
|
286 |
+
generation = tts.generate(
|
287 |
+
input_ids=description_inputs["input_ids"],
|
288 |
+
attention_mask=description_inputs["attention_mask"],
|
289 |
+
prompt_input_ids=prompts["input_ids"],
|
290 |
+
prompt_attention_mask=prompts["attention_mask"],
|
291 |
+
do_sample=True,
|
292 |
+
return_dict_in_generate=True,
|
293 |
+
)
|
294 |
+
|
295 |
+
audio_outputs = []
|
296 |
+
current_index = 0
|
297 |
+
for i, text in enumerate(input):
|
298 |
+
chunks = chunk_text(text, chunk_size)
|
299 |
+
chunk_audios = []
|
300 |
+
for j in range(len(chunks)):
|
301 |
+
audio_arr = generation.sequences[current_index][:generation.audios_length[current_index]].cpu().float().numpy().squeeze()
|
302 |
+
chunk_audios.append(audio_arr)
|
303 |
+
current_index += 1
|
304 |
+
combined_audio = np.concatenate(chunk_audios)
|
305 |
+
audio_outputs.append(combined_audio)
|
306 |
+
|
307 |
+
file_data = {}
|
308 |
+
for i, audio in enumerate(audio_outputs):
|
309 |
+
file_name = f"out_{i}.{response_format}"
|
310 |
+
audio_bytes = io.BytesIO()
|
311 |
+
sf.write(audio_bytes, audio, tts.config.sampling_rate, format=response_format)
|
312 |
+
audio_bytes.seek(0)
|
313 |
+
file_data[file_name] = audio_bytes.read()
|
314 |
+
|
315 |
+
in_memory_zip = create_in_memory_zip(file_data)
|
316 |
+
|
317 |
+
logger.info(
|
318 |
+
f"Took {time.perf_counter() - start:.2f} seconds to generate audio"
|
319 |
+
)
|
320 |
+
|
321 |
+
return StreamingResponse(in_memory_zip, media_type="application/zip")
|
322 |
+
|
323 |
+
|
324 |
# Supported language codes
|
325 |
SUPPORTED_LANGUAGES = {
|
326 |
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
|
|
349 |
|
350 |
settings = Settings()
|
351 |
|
352 |
+
|
|
|
|
|
|
|
|
|
|
|
353 |
app.add_middleware(
|
354 |
CORSMiddleware,
|
355 |
allow_origins=["*"],
|