sachin
commited on
Commit
·
94b0142
1
Parent(s):
abca105
fix-endpoint
Browse files- src/server/main.py +114 -51
src/server/main.py
CHANGED
@@ -21,14 +21,27 @@ from IndicTransToolkit import IndicProcessor
|
|
21 |
from logging_config import logger
|
22 |
from tts_config import SPEED, ResponseFormat, config as tts_config
|
23 |
from gemma_llm import LLMManager
|
|
|
|
|
24 |
|
25 |
import time
|
26 |
from contextlib import asynccontextmanager
|
27 |
-
from typing import Annotated, Any, OrderedDict
|
28 |
import zipfile
|
29 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
30 |
import numpy as np
|
31 |
from config import SPEED, ResponseFormat, config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Device setup
|
34 |
if torch.cuda.is_available():
|
@@ -76,13 +89,29 @@ class TTSModelManager:
|
|
76 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
78 |
|
|
|
79 |
if tokenizer.pad_token is None:
|
80 |
tokenizer.pad_token = tokenizer.eos_token
|
81 |
if description_tokenizer.pad_token is None:
|
82 |
description_tokenizer.pad_token = description_tokenizer.eos_token
|
|
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
86 |
warmup_inputs = tokenizer("Warmup text for compilation",
|
87 |
return_tensors="pt",
|
88 |
padding="max_length",
|
@@ -95,7 +124,8 @@ class TTSModelManager:
|
|
95 |
"prompt_attention_mask": warmup_inputs["attention_mask"],
|
96 |
}
|
97 |
|
98 |
-
|
|
|
99 |
_ = model.generate(**model_kwargs)
|
100 |
|
101 |
logger.info(
|
@@ -122,14 +152,16 @@ async def lifespan(_: FastAPI):
|
|
122 |
tts_model_manager.get_or_load_model(config.model)
|
123 |
yield
|
124 |
|
|
|
125 |
app = FastAPI(
|
126 |
title="Dhwani API",
|
127 |
-
description="AI Chat API supporting
|
128 |
version="1.0.0",
|
129 |
redirect_slashes=False,
|
130 |
lifespan=lifespan
|
131 |
)
|
132 |
|
|
|
133 |
def chunk_text(text, chunk_size):
|
134 |
words = text.split()
|
135 |
chunks = []
|
@@ -165,6 +197,7 @@ async def generate_audio(
|
|
165 |
padding="max_length",
|
166 |
max_length=tts_model_manager.max_length).to(device)
|
167 |
|
|
|
168 |
input_ids = desc_inputs["input_ids"]
|
169 |
attention_mask = desc_inputs["attention_mask"]
|
170 |
prompt_input_ids = prompt_inputs["input_ids"]
|
@@ -290,23 +323,14 @@ async def generate_audio_batch(
|
|
290 |
|
291 |
return StreamingResponse(in_memory_zip, media_type="application/zip")
|
292 |
|
|
|
293 |
# Supported language codes
|
294 |
SUPPORTED_LANGUAGES = {
|
295 |
-
# Indian languages
|
296 |
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
297 |
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
|
298 |
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
|
299 |
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
|
300 |
-
"kan_Knda", "ory_Orya"
|
301 |
-
# European languages
|
302 |
-
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
|
303 |
-
"por_Latn", "rus_Cyrl", "pol_Latn"
|
304 |
-
}
|
305 |
-
|
306 |
-
# Define European languages for direct processing
|
307 |
-
EUROPEAN_LANGUAGES = {
|
308 |
-
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
|
309 |
-
"por_Latn", "rus_Cyrl", "pol_Latn"
|
310 |
}
|
311 |
|
312 |
class Settings(BaseSettings):
|
@@ -328,6 +352,7 @@ class Settings(BaseSettings):
|
|
328 |
|
329 |
settings = Settings()
|
330 |
|
|
|
331 |
app.add_middleware(
|
332 |
CORSMiddleware,
|
333 |
allow_origins=["*"],
|
@@ -341,6 +366,7 @@ app.state.limiter = limiter
|
|
341 |
|
342 |
llm_manager = LLMManager(settings.llm_model_name)
|
343 |
|
|
|
344 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
345 |
|
346 |
class TranslateManager:
|
@@ -356,7 +382,7 @@ class TranslateManager:
|
|
356 |
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
357 |
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
|
358 |
else:
|
359 |
-
raise ValueError("Invalid language combination: English to English
|
360 |
|
361 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
362 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
@@ -389,7 +415,7 @@ class ModelManager:
|
|
389 |
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
390 |
key = 'indic_indic'
|
391 |
else:
|
392 |
-
raise ValueError("Invalid language combination
|
393 |
|
394 |
if key not in self.models:
|
395 |
if self.is_lazy_loading:
|
@@ -406,10 +432,11 @@ class ModelManager:
|
|
406 |
ip = IndicProcessor(inference=True)
|
407 |
model_manager = ModelManager()
|
408 |
|
|
|
409 |
class ChatRequest(BaseModel):
|
410 |
prompt: str
|
411 |
-
src_lang: str = "kan_Knda"
|
412 |
-
tgt_lang: str = "kan_Knda"
|
413 |
|
414 |
@field_validator("prompt")
|
415 |
def prompt_must_be_valid(cls, v):
|
@@ -434,9 +461,11 @@ class TranslationRequest(BaseModel):
|
|
434 |
class TranslationResponse(BaseModel):
|
435 |
translations: List[str]
|
436 |
|
|
|
437 |
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
|
438 |
return model_manager.get_model(src_lang, tgt_lang)
|
439 |
|
|
|
440 |
@app.post("/translate", response_model=TranslationResponse)
|
441 |
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
442 |
input_sentences = request.sentences
|
@@ -476,12 +505,14 @@ async def translate(request: TranslationRequest, translate_manager: TranslateMan
|
|
476 |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
477 |
return TranslationResponse(translations=translations)
|
478 |
|
|
|
479 |
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
480 |
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
481 |
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
482 |
response = await translate(request, translate_manager)
|
483 |
return response.translations
|
484 |
|
|
|
485 |
@app.get("/v1/health")
|
486 |
async def health_check():
|
487 |
return {"status": "healthy", "model": settings.llm_model_name}
|
@@ -533,14 +564,14 @@ async def chat(request: Request, chat_request: ChatRequest):
|
|
533 |
if not chat_request.prompt:
|
534 |
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
535 |
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
536 |
-
|
|
|
|
|
|
|
537 |
try:
|
538 |
-
#
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
if is_indian_language:
|
543 |
-
# Translate prompt to English for Indian languages
|
544 |
translated_prompt = await perform_internal_translation(
|
545 |
sentences=[chat_request.prompt],
|
546 |
src_lang=chat_request.src_lang,
|
@@ -553,12 +584,13 @@ async def chat(request: Request, chat_request: ChatRequest):
|
|
553 |
prompt_to_process = chat_request.prompt
|
554 |
logger.info("Prompt in English or European language, no translation needed")
|
555 |
|
556 |
-
# Generate response
|
557 |
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
558 |
logger.info(f"Generated response: {response}")
|
559 |
|
560 |
-
if
|
561 |
-
|
|
|
562 |
translated_response = await perform_internal_translation(
|
563 |
sentences=[response],
|
564 |
src_lang="eng_Latn",
|
@@ -588,10 +620,8 @@ async def visual_query(
|
|
588 |
if image.size == (0, 0):
|
589 |
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
590 |
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
if is_indian_language:
|
595 |
translated_query = await perform_internal_translation(
|
596 |
sentences=[query],
|
597 |
src_lang=src_lang,
|
@@ -601,12 +631,14 @@ async def visual_query(
|
|
601 |
logger.info(f"Translated query to English: {query_to_process}")
|
602 |
else:
|
603 |
query_to_process = query
|
604 |
-
logger.info("Query in English
|
605 |
|
|
|
606 |
answer = await llm_manager.vision_query(image, query_to_process)
|
607 |
logger.info(f"Generated English answer: {answer}")
|
608 |
|
609 |
-
|
|
|
610 |
translated_answer = await perform_internal_translation(
|
611 |
sentences=[answer],
|
612 |
src_lang="eng_Latn",
|
@@ -616,7 +648,7 @@ async def visual_query(
|
|
616 |
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
|
617 |
else:
|
618 |
final_answer = answer
|
619 |
-
logger.info(
|
620 |
|
621 |
return {"answer": final_answer}
|
622 |
except Exception as e:
|
@@ -640,16 +672,14 @@ async def chat_v2(
|
|
640 |
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
641 |
|
642 |
try:
|
643 |
-
is_indian_language = src_lang not in EUROPEAN_LANGUAGES and src_lang != "eng_Latn"
|
644 |
-
is_target_indian = tgt_lang not in EUROPEAN_LANGUAGES and tgt_lang != "eng_Latn"
|
645 |
-
|
646 |
if image:
|
647 |
image_data = await image.read()
|
648 |
if not image_data:
|
649 |
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
650 |
img = Image.open(io.BytesIO(image_data))
|
651 |
|
652 |
-
if
|
|
|
653 |
translated_prompt = await perform_internal_translation(
|
654 |
sentences=[prompt],
|
655 |
src_lang=src_lang,
|
@@ -659,12 +689,13 @@ async def chat_v2(
|
|
659 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
660 |
else:
|
661 |
prompt_to_process = prompt
|
662 |
-
logger.info("Prompt in English
|
663 |
|
664 |
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
665 |
-
logger.info(f"Generated response: {decoded}")
|
666 |
|
667 |
-
|
|
|
668 |
translated_response = await perform_internal_translation(
|
669 |
sentences=[decoded],
|
670 |
src_lang="eng_Latn",
|
@@ -674,9 +705,10 @@ async def chat_v2(
|
|
674 |
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
675 |
else:
|
676 |
final_response = decoded
|
677 |
-
logger.info(
|
678 |
else:
|
679 |
-
if
|
|
|
680 |
translated_prompt = await perform_internal_translation(
|
681 |
sentences=[prompt],
|
682 |
src_lang=src_lang,
|
@@ -686,12 +718,13 @@ async def chat_v2(
|
|
686 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
687 |
else:
|
688 |
prompt_to_process = prompt
|
689 |
-
logger.info("Prompt in English
|
690 |
|
691 |
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
692 |
-
logger.info(f"Generated response: {decoded}")
|
693 |
|
694 |
-
|
|
|
695 |
translated_response = await perform_internal_translation(
|
696 |
sentences=[decoded],
|
697 |
src_lang="eng_Latn",
|
@@ -701,7 +734,7 @@ async def chat_v2(
|
|
701 |
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
702 |
else:
|
703 |
final_response = decoded
|
704 |
-
logger.info(
|
705 |
|
706 |
return ChatResponse(response=final_response)
|
707 |
except Exception as e:
|
@@ -711,6 +744,7 @@ async def chat_v2(
|
|
711 |
class TranscriptionResponse(BaseModel):
|
712 |
text: str
|
713 |
|
|
|
714 |
class ASRModelManager:
|
715 |
def __init__(self, device_type="cuda"):
|
716 |
self.device_type = device_type
|
@@ -722,25 +756,54 @@ class ASRModelManager:
|
|
722 |
"telugu": "te", "urdu": "ur"
|
723 |
}
|
724 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True)
|
726 |
-
|
|
|
|
|
|
|
|
|
727 |
|
728 |
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
729 |
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
|
|
730 |
wav, sr = torchaudio.load(file.file)
|
731 |
wav = torch.mean(wav, dim=0, keepdim=True)
|
732 |
|
733 |
-
|
|
|
734 |
if sr != target_sample_rate:
|
735 |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
|
736 |
wav = resampler(wav)
|
737 |
|
|
|
|
|
|
|
|
|
738 |
transcription_rnnt = model(wav, "kn", "rnnt")
|
|
|
739 |
return JSONResponse(content={"text": transcription_rnnt})
|
740 |
|
|
|
|
|
741 |
class BatchTranscriptionResponse(BaseModel):
|
742 |
transcriptions: List[str]
|
743 |
|
|
|
|
|
744 |
if __name__ == "__main__":
|
745 |
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
|
746 |
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
|
|
|
21 |
from logging_config import logger
|
22 |
from tts_config import SPEED, ResponseFormat, config as tts_config
|
23 |
from gemma_llm import LLMManager
|
24 |
+
# from auth import get_api_key, settings as auth_settings
|
25 |
+
|
26 |
|
27 |
import time
|
28 |
from contextlib import asynccontextmanager
|
29 |
+
from typing import Annotated, Any, OrderedDict, List
|
30 |
import zipfile
|
31 |
import soundfile as sf
|
32 |
+
import torch
|
33 |
+
from fastapi import Body, FastAPI, HTTPException, Response
|
34 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
35 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
36 |
import numpy as np
|
37 |
from config import SPEED, ResponseFormat, config
|
38 |
+
from logger import logger
|
39 |
+
import uvicorn
|
40 |
+
import argparse
|
41 |
+
from fastapi.responses import RedirectResponse, StreamingResponse
|
42 |
+
import io
|
43 |
+
import os
|
44 |
+
import logging
|
45 |
|
46 |
# Device setup
|
47 |
if torch.cuda.is_available():
|
|
|
89 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
90 |
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
91 |
|
92 |
+
# Set pad tokens
|
93 |
if tokenizer.pad_token is None:
|
94 |
tokenizer.pad_token = tokenizer.eos_token
|
95 |
if description_tokenizer.pad_token is None:
|
96 |
description_tokenizer.pad_token = description_tokenizer.eos_token
|
97 |
+
|
98 |
|
99 |
+
# TODO - temporary disable -torch.compile
|
100 |
+
'''
|
101 |
+
# Update model configuration
|
102 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
103 |
+
# Update for deprecation: use max_batch_size instead of batch_size
|
104 |
+
if hasattr(model.generation_config.cache_config, 'max_batch_size'):
|
105 |
+
model.generation_config.cache_config.max_batch_size = 1
|
106 |
+
model.generation_config.cache_implementation = "static"
|
107 |
+
'''
|
108 |
+
# Compile the model
|
109 |
+
compile_mode = "default"
|
110 |
+
#compile_mode = "reduce-overhead"
|
111 |
+
|
112 |
+
model.forward = torch.compile(model.forward, mode=compile_mode)
|
113 |
|
114 |
+
# Warmup
|
115 |
warmup_inputs = tokenizer("Warmup text for compilation",
|
116 |
return_tensors="pt",
|
117 |
padding="max_length",
|
|
|
124 |
"prompt_attention_mask": warmup_inputs["attention_mask"],
|
125 |
}
|
126 |
|
127 |
+
n_steps = 1 if compile_mode == "default" else 2
|
128 |
+
for _ in range(n_steps):
|
129 |
_ = model.generate(**model_kwargs)
|
130 |
|
131 |
logger.info(
|
|
|
152 |
tts_model_manager.get_or_load_model(config.model)
|
153 |
yield
|
154 |
|
155 |
+
#app = FastAPI(lifespan=lifespan)
|
156 |
app = FastAPI(
|
157 |
title="Dhwani API",
|
158 |
+
description="AI Chat API supporting Indian languages",
|
159 |
version="1.0.0",
|
160 |
redirect_slashes=False,
|
161 |
lifespan=lifespan
|
162 |
)
|
163 |
|
164 |
+
|
165 |
def chunk_text(text, chunk_size):
|
166 |
words = text.split()
|
167 |
chunks = []
|
|
|
197 |
padding="max_length",
|
198 |
max_length=tts_model_manager.max_length).to(device)
|
199 |
|
200 |
+
# Use the tensor fields directly instead of BatchEncoding object
|
201 |
input_ids = desc_inputs["input_ids"]
|
202 |
attention_mask = desc_inputs["attention_mask"]
|
203 |
prompt_input_ids = prompt_inputs["input_ids"]
|
|
|
323 |
|
324 |
return StreamingResponse(in_memory_zip, media_type="application/zip")
|
325 |
|
326 |
+
|
327 |
# Supported language codes
|
328 |
SUPPORTED_LANGUAGES = {
|
|
|
329 |
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
|
330 |
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
|
331 |
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
|
332 |
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
|
333 |
+
"kan_Knda", "ory_Orya"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
}
|
335 |
|
336 |
class Settings(BaseSettings):
|
|
|
352 |
|
353 |
settings = Settings()
|
354 |
|
355 |
+
|
356 |
app.add_middleware(
|
357 |
CORSMiddleware,
|
358 |
allow_origins=["*"],
|
|
|
366 |
|
367 |
llm_manager = LLMManager(settings.llm_model_name)
|
368 |
|
369 |
+
# Translation Manager and Model Manager
|
370 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
371 |
|
372 |
class TranslateManager:
|
|
|
382 |
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
383 |
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
|
384 |
else:
|
385 |
+
raise ValueError("Invalid language combination: English to English translation is not supported.")
|
386 |
|
387 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
388 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
415 |
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
|
416 |
key = 'indic_indic'
|
417 |
else:
|
418 |
+
raise ValueError("Invalid language combination: English to English translation is not supported.")
|
419 |
|
420 |
if key not in self.models:
|
421 |
if self.is_lazy_loading:
|
|
|
432 |
ip = IndicProcessor(inference=True)
|
433 |
model_manager = ModelManager()
|
434 |
|
435 |
+
# Pydantic Models
|
436 |
class ChatRequest(BaseModel):
|
437 |
prompt: str
|
438 |
+
src_lang: str = "kan_Knda" # Default to Kannada
|
439 |
+
tgt_lang: str = "kan_Knda" # Default to Kannada
|
440 |
|
441 |
@field_validator("prompt")
|
442 |
def prompt_must_be_valid(cls, v):
|
|
|
461 |
class TranslationResponse(BaseModel):
|
462 |
translations: List[str]
|
463 |
|
464 |
+
# Dependency to get TranslateManager
|
465 |
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
|
466 |
return model_manager.get_model(src_lang, tgt_lang)
|
467 |
|
468 |
+
# Internal Translation Endpoint
|
469 |
@app.post("/translate", response_model=TranslationResponse)
|
470 |
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
|
471 |
input_sentences = request.sentences
|
|
|
505 |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
506 |
return TranslationResponse(translations=translations)
|
507 |
|
508 |
+
# Helper function to perform internal translation
|
509 |
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
510 |
translate_manager = model_manager.get_model(src_lang, tgt_lang)
|
511 |
request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
|
512 |
response = await translate(request, translate_manager)
|
513 |
return response.translations
|
514 |
|
515 |
+
# API Endpoints
|
516 |
@app.get("/v1/health")
|
517 |
async def health_check():
|
518 |
return {"status": "healthy", "model": settings.llm_model_name}
|
|
|
564 |
if not chat_request.prompt:
|
565 |
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
566 |
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
|
567 |
+
|
568 |
+
# Define European languages that gemma-3-4b-it can handle natively
|
569 |
+
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
|
570 |
+
|
571 |
try:
|
572 |
+
# Check if the source language is Indian (requires translation) or European/English (direct processing)
|
573 |
+
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
|
574 |
+
# Translate Indian language prompt to English
|
|
|
|
|
|
|
575 |
translated_prompt = await perform_internal_translation(
|
576 |
sentences=[chat_request.prompt],
|
577 |
src_lang=chat_request.src_lang,
|
|
|
584 |
prompt_to_process = chat_request.prompt
|
585 |
logger.info("Prompt in English or European language, no translation needed")
|
586 |
|
587 |
+
# Generate response with the LLM (assumed to handle multilingual input natively)
|
588 |
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
589 |
logger.info(f"Generated response: {response}")
|
590 |
|
591 |
+
# Check if the target language is Indian (requires translation) or European/English (direct output)
|
592 |
+
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
|
593 |
+
# Translate response to Indian target language
|
594 |
translated_response = await perform_internal_translation(
|
595 |
sentences=[response],
|
596 |
src_lang="eng_Latn",
|
|
|
620 |
if image.size == (0, 0):
|
621 |
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
|
622 |
|
623 |
+
# Translate query to English if src_lang is not English
|
624 |
+
if src_lang != "eng_Latn":
|
|
|
|
|
625 |
translated_query = await perform_internal_translation(
|
626 |
sentences=[query],
|
627 |
src_lang=src_lang,
|
|
|
631 |
logger.info(f"Translated query to English: {query_to_process}")
|
632 |
else:
|
633 |
query_to_process = query
|
634 |
+
logger.info("Query already in English, no translation needed")
|
635 |
|
636 |
+
# Generate response in English
|
637 |
answer = await llm_manager.vision_query(image, query_to_process)
|
638 |
logger.info(f"Generated English answer: {answer}")
|
639 |
|
640 |
+
# Translate answer to target language if tgt_lang is not English
|
641 |
+
if tgt_lang != "eng_Latn":
|
642 |
translated_answer = await perform_internal_translation(
|
643 |
sentences=[answer],
|
644 |
src_lang="eng_Latn",
|
|
|
648 |
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
|
649 |
else:
|
650 |
final_answer = answer
|
651 |
+
logger.info("Answer kept in English, no translation needed")
|
652 |
|
653 |
return {"answer": final_answer}
|
654 |
except Exception as e:
|
|
|
672 |
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
|
673 |
|
674 |
try:
|
|
|
|
|
|
|
675 |
if image:
|
676 |
image_data = await image.read()
|
677 |
if not image_data:
|
678 |
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
679 |
img = Image.open(io.BytesIO(image_data))
|
680 |
|
681 |
+
# Translate prompt to English if src_lang is not English
|
682 |
+
if src_lang != "eng_Latn":
|
683 |
translated_prompt = await perform_internal_translation(
|
684 |
sentences=[prompt],
|
685 |
src_lang=src_lang,
|
|
|
689 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
690 |
else:
|
691 |
prompt_to_process = prompt
|
692 |
+
logger.info("Prompt already in English, no translation needed")
|
693 |
|
694 |
decoded = await llm_manager.chat_v2(img, prompt_to_process)
|
695 |
+
logger.info(f"Generated English response: {decoded}")
|
696 |
|
697 |
+
# Translate response to target language if tgt_lang is not English
|
698 |
+
if tgt_lang != "eng_Latn":
|
699 |
translated_response = await perform_internal_translation(
|
700 |
sentences=[decoded],
|
701 |
src_lang="eng_Latn",
|
|
|
705 |
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
706 |
else:
|
707 |
final_response = decoded
|
708 |
+
logger.info("Response kept in English, no translation needed")
|
709 |
else:
|
710 |
+
# Translate prompt to English if src_lang is not English
|
711 |
+
if src_lang != "eng_Latn":
|
712 |
translated_prompt = await perform_internal_translation(
|
713 |
sentences=[prompt],
|
714 |
src_lang=src_lang,
|
|
|
718 |
logger.info(f"Translated prompt to English: {prompt_to_process}")
|
719 |
else:
|
720 |
prompt_to_process = prompt
|
721 |
+
logger.info("Prompt already in English, no translation needed")
|
722 |
|
723 |
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
|
724 |
+
logger.info(f"Generated English response: {decoded}")
|
725 |
|
726 |
+
# Translate response to target language if tgt_lang is not English
|
727 |
+
if tgt_lang != "eng_Latn":
|
728 |
translated_response = await perform_internal_translation(
|
729 |
sentences=[decoded],
|
730 |
src_lang="eng_Latn",
|
|
|
734 |
logger.info(f"Translated response to {tgt_lang}: {final_response}")
|
735 |
else:
|
736 |
final_response = decoded
|
737 |
+
logger.info("Response kept in English, no translation needed")
|
738 |
|
739 |
return ChatResponse(response=final_response)
|
740 |
except Exception as e:
|
|
|
744 |
class TranscriptionResponse(BaseModel):
|
745 |
text: str
|
746 |
|
747 |
+
|
748 |
class ASRModelManager:
|
749 |
def __init__(self, device_type="cuda"):
|
750 |
self.device_type = device_type
|
|
|
756 |
"telugu": "te", "urdu": "ur"
|
757 |
}
|
758 |
|
759 |
+
|
760 |
+
from fastapi import FastAPI, UploadFile
|
761 |
+
import torch
|
762 |
+
import torchaudio
|
763 |
+
from transformers import AutoModel
|
764 |
+
import argparse
|
765 |
+
import uvicorn
|
766 |
+
from pydantic import BaseModel
|
767 |
+
from pydub import AudioSegment
|
768 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
|
769 |
+
from fastapi.responses import RedirectResponse, JSONResponse
|
770 |
+
from typing import List
|
771 |
+
|
772 |
+
# Load the model
|
773 |
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True)
|
774 |
+
|
775 |
+
asr_manager = ASRModelManager() # Load Kannada, Hindi, Tamil, Telugu, Malayalam
|
776 |
+
|
777 |
+
|
778 |
+
#asr_manager = ASRModelManager(device_type="")
|
779 |
|
780 |
@app.post("/transcribe/", response_model=TranscriptionResponse)
|
781 |
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
|
782 |
+
# Load the uploaded audio file
|
783 |
wav, sr = torchaudio.load(file.file)
|
784 |
wav = torch.mean(wav, dim=0, keepdim=True)
|
785 |
|
786 |
+
# Resample if necessary
|
787 |
+
target_sample_rate = 16000 # Expected sample rate
|
788 |
if sr != target_sample_rate:
|
789 |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
|
790 |
wav = resampler(wav)
|
791 |
|
792 |
+
# Perform ASR with CTC decoding
|
793 |
+
#transcription_ctc = model(wav, "kn", "ctc")
|
794 |
+
|
795 |
+
# Perform ASR with RNNT decoding
|
796 |
transcription_rnnt = model(wav, "kn", "rnnt")
|
797 |
+
|
798 |
return JSONResponse(content={"text": transcription_rnnt})
|
799 |
|
800 |
+
|
801 |
+
|
802 |
class BatchTranscriptionResponse(BaseModel):
|
803 |
transcriptions: List[str]
|
804 |
|
805 |
+
|
806 |
+
|
807 |
if __name__ == "__main__":
|
808 |
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
|
809 |
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
|