Spaces:
Running
on
L4
Running
on
L4
sachin
commited on
Commit
·
a0887d0
1
Parent(s):
9e8036b
add qunatizat
Browse files- src/server/gemma_llm.py +94 -71
src/server/gemma_llm.py
CHANGED
@@ -1,83 +1,101 @@
|
|
1 |
import torch
|
2 |
from logging_config import logger
|
3 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
from fastapi import HTTPException
|
6 |
from io import BytesIO
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class LLMManager:
|
10 |
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
11 |
self.model_name = model_name
|
12 |
self.device = torch.device(device)
|
13 |
-
self.torch_dtype = torch.
|
14 |
self.model = None
|
15 |
self.is_loaded = False
|
16 |
self.processor = None
|
|
|
17 |
|
18 |
def unload(self):
|
19 |
if self.is_loaded:
|
20 |
-
# Delete the model and processor to free memory
|
21 |
del self.model
|
22 |
del self.processor
|
23 |
-
# If using CUDA, clear the cache to free GPU memory
|
24 |
if self.device.type == "cuda":
|
25 |
torch.cuda.empty_cache()
|
|
|
26 |
self.is_loaded = False
|
27 |
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
|
|
28 |
def load(self):
|
29 |
if not self.is_loaded:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
).eval()
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
if not self.is_loaded:
|
44 |
self.load()
|
45 |
-
|
46 |
messages_vlm = [
|
47 |
{
|
48 |
"role": "system",
|
49 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and
|
50 |
},
|
51 |
{
|
52 |
"role": "user",
|
53 |
-
"content": []
|
54 |
}
|
55 |
]
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
70 |
|
71 |
-
# Generate response
|
72 |
with torch.inference_mode():
|
73 |
-
generation = self.model.generate(
|
|
|
|
|
|
|
|
|
|
|
74 |
generation = generation[0][input_len:]
|
75 |
|
76 |
# Decode the output
|
77 |
response = self.processor.decode(generation, skip_special_tokens=True)
|
78 |
-
|
79 |
return response
|
80 |
-
|
81 |
async def vision_query(self, image: Image.Image, query: str) -> str:
|
82 |
if not self.is_loaded:
|
83 |
self.load()
|
@@ -85,7 +103,7 @@ class LLMManager:
|
|
85 |
messages_vlm = [
|
86 |
{
|
87 |
"role": "system",
|
88 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant.
|
89 |
},
|
90 |
{
|
91 |
"role": "user",
|
@@ -93,18 +111,17 @@ class LLMManager:
|
|
93 |
}
|
94 |
]
|
95 |
|
96 |
-
# Add text prompt
|
97 |
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
98 |
|
99 |
-
# Handle image if
|
100 |
-
if image and image.size[0] > 0 and image.size[1] > 0:
|
101 |
-
# Image is already a PIL Image, no need to read or reopen
|
102 |
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
103 |
logger.info(f"Received valid image for processing")
|
104 |
else:
|
105 |
logger.info("No valid image provided, processing text only")
|
106 |
|
107 |
-
# Process the chat template
|
108 |
try:
|
109 |
inputs_vlm = self.processor.apply_chat_template(
|
110 |
messages_vlm,
|
@@ -112,7 +129,8 @@ class LLMManager:
|
|
112 |
tokenize=True,
|
113 |
return_dict=True,
|
114 |
return_tensors="pt"
|
115 |
-
).to(self.
|
|
|
116 |
except Exception as e:
|
117 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
118 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
@@ -121,23 +139,27 @@ class LLMManager:
|
|
121 |
|
122 |
# Generate response
|
123 |
with torch.inference_mode():
|
124 |
-
generation = self.model.generate(
|
|
|
|
|
|
|
|
|
|
|
125 |
generation = generation[0][input_len:]
|
126 |
|
127 |
# Decode the output
|
128 |
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
129 |
-
logger.info(f"
|
130 |
-
|
131 |
return decoded
|
132 |
-
|
133 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
134 |
if not self.is_loaded:
|
135 |
self.load()
|
136 |
-
|
137 |
messages_vlm = [
|
138 |
{
|
139 |
"role": "system",
|
140 |
-
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and
|
141 |
},
|
142 |
{
|
143 |
"role": "user",
|
@@ -145,42 +167,43 @@ class LLMManager:
|
|
145 |
}
|
146 |
]
|
147 |
|
148 |
-
# Add text prompt
|
149 |
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
150 |
|
151 |
-
# Handle image
|
152 |
-
if image and image.
|
153 |
-
|
154 |
-
|
155 |
-
if not image_data:
|
156 |
-
raise HTTPException(status_code=400, detail="Uploaded image is empty")
|
157 |
-
# Open image with PIL for processing
|
158 |
-
img = Image.open(BytesIO(image_data))
|
159 |
-
# Add image to content (assuming processor accepts PIL images)
|
160 |
-
messages_vlm[1]["content"].insert(0, {"type": "image", "image": img})
|
161 |
-
logger.info(f"Received image: {image.filename}")
|
162 |
else:
|
163 |
-
if image and (not image.file or image.size == 0):
|
164 |
-
logger.warning("Received invalid or empty image parameter, treating as text-only")
|
165 |
logger.info("No valid image provided, processing text only")
|
166 |
|
167 |
-
# Process the chat template
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
177 |
|
178 |
# Generate response
|
179 |
with torch.inference_mode():
|
180 |
-
generation = self.model.generate(
|
|
|
|
|
|
|
|
|
|
|
181 |
generation = generation[0][input_len:]
|
182 |
|
183 |
# Decode the output
|
184 |
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
185 |
-
logger.info(f"
|
186 |
return decoded
|
|
|
1 |
import torch
|
2 |
from logging_config import logger
|
3 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, BitsAndBytesConfig
|
4 |
from PIL import Image
|
5 |
from fastapi import HTTPException
|
6 |
from io import BytesIO
|
7 |
|
8 |
+
# Define 4-bit quantization config for better precision and performance
|
9 |
+
quantization_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_quant_type="nf4", # Normalized float 4-bit
|
12 |
+
bnb_4bit_use_double_quant=True, # Double quantization for better accuracy
|
13 |
+
bnb_4bit_compute_dtype=torch.bfloat16 # Consistent compute dtype
|
14 |
+
)
|
15 |
|
16 |
class LLMManager:
|
17 |
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
18 |
self.model_name = model_name
|
19 |
self.device = torch.device(device)
|
20 |
+
self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32 # Align dtype with quantization
|
21 |
self.model = None
|
22 |
self.is_loaded = False
|
23 |
self.processor = None
|
24 |
+
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
|
25 |
|
26 |
def unload(self):
|
27 |
if self.is_loaded:
|
|
|
28 |
del self.model
|
29 |
del self.processor
|
|
|
30 |
if self.device.type == "cuda":
|
31 |
torch.cuda.empty_cache()
|
32 |
+
logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
|
33 |
self.is_loaded = False
|
34 |
logger.info(f"LLM {self.model_name} unloaded from {self.device}")
|
35 |
+
|
36 |
def load(self):
|
37 |
if not self.is_loaded:
|
38 |
+
try:
|
39 |
+
self.model = Gemma3ForConditionalGeneration.from_pretrained(
|
40 |
+
self.model_name,
|
41 |
+
device_map="auto",
|
42 |
+
quantization_config=quantization_config,
|
43 |
+
torch_dtype=self.torch_dtype
|
44 |
).eval()
|
45 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
46 |
+
self.is_loaded = True
|
47 |
+
logger.info(f"LLM {self.model_name} loaded on {self.device} with 4-bit quantization")
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Failed to load model: {str(e)}")
|
50 |
+
raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")
|
51 |
+
|
52 |
+
async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
53 |
if not self.is_loaded:
|
54 |
self.load()
|
55 |
+
|
56 |
messages_vlm = [
|
57 |
{
|
58 |
"role": "system",
|
59 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]
|
60 |
},
|
61 |
{
|
62 |
"role": "user",
|
63 |
+
"content": [{"type": "text", "text": prompt}]
|
64 |
}
|
65 |
]
|
66 |
|
67 |
+
# Process the chat template
|
68 |
+
try:
|
69 |
+
inputs_vlm = self.processor.apply_chat_template(
|
70 |
+
messages_vlm,
|
71 |
+
add_generation_prompt=True,
|
72 |
+
tokenize=True,
|
73 |
+
return_dict=True,
|
74 |
+
return_tensors="pt"
|
75 |
+
).to(self.device, dtype=torch.bfloat16)
|
76 |
+
logger.info(f"Input IDs: {inputs_vlm['input_ids']}")
|
77 |
+
logger.info(f"Decoded input: {self.processor.decode(inputs_vlm['input_ids'][0])}")
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error in tokenization: {str(e)}")
|
80 |
+
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
81 |
|
82 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
83 |
|
84 |
+
# Generate response with improved settings
|
85 |
with torch.inference_mode():
|
86 |
+
generation = self.model.generate(
|
87 |
+
**inputs_vlm,
|
88 |
+
max_new_tokens=max_tokens, # Increased for coherence
|
89 |
+
do_sample=True, # Enable sampling for variability
|
90 |
+
temperature=temperature # Control creativity
|
91 |
+
)
|
92 |
generation = generation[0][input_len:]
|
93 |
|
94 |
# Decode the output
|
95 |
response = self.processor.decode(generation, skip_special_tokens=True)
|
96 |
+
logger.info(f"Generated response: {response}")
|
97 |
return response
|
98 |
+
|
99 |
async def vision_query(self, image: Image.Image, query: str) -> str:
|
100 |
if not self.is_loaded:
|
101 |
self.load()
|
|
|
103 |
messages_vlm = [
|
104 |
{
|
105 |
"role": "system",
|
106 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in max 2 lines."}]
|
107 |
},
|
108 |
{
|
109 |
"role": "user",
|
|
|
111 |
}
|
112 |
]
|
113 |
|
114 |
+
# Add text prompt
|
115 |
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
116 |
|
117 |
+
# Handle image if valid
|
118 |
+
if image and image.size[0] > 0 and image.size[1] > 0:
|
|
|
119 |
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
120 |
logger.info(f"Received valid image for processing")
|
121 |
else:
|
122 |
logger.info("No valid image provided, processing text only")
|
123 |
|
124 |
+
# Process the chat template
|
125 |
try:
|
126 |
inputs_vlm = self.processor.apply_chat_template(
|
127 |
messages_vlm,
|
|
|
129 |
tokenize=True,
|
130 |
return_dict=True,
|
131 |
return_tensors="pt"
|
132 |
+
).to(self.device, dtype=torch.bfloat16)
|
133 |
+
logger.info(f"Input IDs: {inputs_vlm['input_ids']}")
|
134 |
except Exception as e:
|
135 |
logger.error(f"Error in apply_chat_template: {str(e)}")
|
136 |
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
|
|
139 |
|
140 |
# Generate response
|
141 |
with torch.inference_mode():
|
142 |
+
generation = self.model.generate(
|
143 |
+
**inputs_vlm,
|
144 |
+
max_new_tokens=512, # Increased for coherence
|
145 |
+
do_sample=True, # Enable sampling
|
146 |
+
temperature=0.7 # Control creativity
|
147 |
+
)
|
148 |
generation = generation[0][input_len:]
|
149 |
|
150 |
# Decode the output
|
151 |
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
152 |
+
logger.info(f"Vision query response: {decoded}")
|
|
|
153 |
return decoded
|
154 |
+
|
155 |
async def chat_v2(self, image: Image.Image, query: str) -> str:
|
156 |
if not self.is_loaded:
|
157 |
self.load()
|
158 |
+
|
159 |
messages_vlm = [
|
160 |
{
|
161 |
"role": "system",
|
162 |
+
"content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]
|
163 |
},
|
164 |
{
|
165 |
"role": "user",
|
|
|
167 |
}
|
168 |
]
|
169 |
|
170 |
+
# Add text prompt
|
171 |
messages_vlm[1]["content"].append({"type": "text", "text": query})
|
172 |
|
173 |
+
# Handle image if valid
|
174 |
+
if image and image.size[0] > 0 and image.size[1] > 0:
|
175 |
+
messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
|
176 |
+
logger.info(f"Received valid image for processing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
else:
|
|
|
|
|
178 |
logger.info("No valid image provided, processing text only")
|
179 |
|
180 |
+
# Process the chat template
|
181 |
+
try:
|
182 |
+
inputs_vlm = self.processor.apply_chat_template(
|
183 |
+
messages_vlm,
|
184 |
+
add_generation_prompt=True,
|
185 |
+
tokenize=True,
|
186 |
+
return_dict=True,
|
187 |
+
return_tensors="pt"
|
188 |
+
).to(self.device, dtype=torch.bfloat16)
|
189 |
+
logger.info(f"Input IDs: {inputs_vlm['input_ids']}")
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"Error in apply_chat_template: {str(e)}")
|
192 |
+
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
|
193 |
|
194 |
input_len = inputs_vlm["input_ids"].shape[-1]
|
195 |
|
196 |
# Generate response
|
197 |
with torch.inference_mode():
|
198 |
+
generation = self.model.generate(
|
199 |
+
**inputs_vlm,
|
200 |
+
max_new_tokens=512, # Increased for coherence
|
201 |
+
do_sample=True, # Enable sampling
|
202 |
+
temperature=0.7 # Control creativity
|
203 |
+
)
|
204 |
generation = generation[0][input_len:]
|
205 |
|
206 |
# Decode the output
|
207 |
decoded = self.processor.decode(generation, skip_special_tokens=True)
|
208 |
+
logger.info(f"Chat_v2 response: {decoded}")
|
209 |
return decoded
|