sachin
commited on
Commit
·
ba89109
1
Parent(s):
cb770cb
fxi
Browse files- src/server/main.py +2 -2
src/server/main.py
CHANGED
@@ -14,7 +14,7 @@ from pydantic_settings import BaseSettings
|
|
14 |
from slowapi import Limiter
|
15 |
from slowapi.util import get_remote_address
|
16 |
import torch
|
17 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, Gemma3ForConditionalGeneration
|
18 |
from IndicTransToolkit import IndicProcessor
|
19 |
import json
|
20 |
import asyncio
|
@@ -25,6 +25,7 @@ import requests
|
|
25 |
from starlette.responses import StreamingResponse
|
26 |
from logging_config import logger
|
27 |
from tts_config import SPEED, ResponseFormat, config as tts_config
|
|
|
28 |
|
29 |
# Device setup
|
30 |
if torch.cuda.is_available():
|
@@ -815,7 +816,6 @@ async def transcribe_audio(file: UploadFile = File(...), language: str = Query(.
|
|
815 |
if not asr_manager.model:
|
816 |
raise HTTPException(status_code=503, detail="ASR model still loading, please try again later")
|
817 |
try:
|
818 |
-
import torchaudio
|
819 |
wav, sr = torchaudio.load(file.file)
|
820 |
wav = torch.mean(wav, dim=0, keepdim=True)
|
821 |
target_sample_rate = 16000
|
|
|
14 |
from slowapi import Limiter
|
15 |
from slowapi.util import get_remote_address
|
16 |
import torch
|
17 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, Gemma3ForConditionalGeneration, AutoModel
|
18 |
from IndicTransToolkit import IndicProcessor
|
19 |
import json
|
20 |
import asyncio
|
|
|
25 |
from starlette.responses import StreamingResponse
|
26 |
from logging_config import logger
|
27 |
from tts_config import SPEED, ResponseFormat, config as tts_config
|
28 |
+
import torchaudio
|
29 |
|
30 |
# Device setup
|
31 |
if torch.cuda.is_available():
|
|
|
816 |
if not asr_manager.model:
|
817 |
raise HTTPException(status_code=503, detail="ASR model still loading, please try again later")
|
818 |
try:
|
|
|
819 |
wav, sr = torchaudio.load(file.file)
|
820 |
wav = torch.mean(wav, dim=0, keepdim=True)
|
821 |
target_sample_rate = 16000
|