import torch from logging_config import logger from transformers import AutoProcessor, Gemma3ForConditionalGeneration, BitsAndBytesConfig from PIL import Image from fastapi import HTTPException from io import BytesIO # Define 4-bit quantization config for better precision and performance quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", # Normalized float 4-bit bnb_4bit_use_double_quant=True, # Double quantization for better accuracy bnb_4bit_compute_dtype=torch.bfloat16 # Consistent compute dtype ) class LLMManager: def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"): self.model_name = model_name self.device = torch.device(device) self.torch_dtype = torch.bfloat16 if self.device.type != "cpu" else torch.float32 # Align dtype with quantization self.model = None self.is_loaded = False self.processor = None logger.info(f"LLMManager initialized with model {model_name} on {self.device}") def unload(self): if self.is_loaded: del self.model del self.processor if self.device.type == "cuda": torch.cuda.empty_cache() logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}") self.is_loaded = False logger.info(f"LLM {self.model_name} unloaded from {self.device}") def load(self): if not self.is_loaded: try: self.model = Gemma3ForConditionalGeneration.from_pretrained( self.model_name, device_map="auto", #quantization_config=quantization_config, torch_dtype=self.torch_dtype ).eval() self.processor = AutoProcessor.from_pretrained(self.model_name) self.is_loaded = True logger.info(f"LLM {self.model_name} loaded on {self.device} with 4-bit quantization") except Exception as e: logger.error(f"Failed to load model: {str(e)}") raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}") async def generate(self, prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str: if not self.is_loaded: self.load() messages_vlm = [ { "role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}] }, { "role": "user", "content": [{"type": "text", "text": prompt}] } ] # Process the chat template try: inputs_vlm = self.processor.apply_chat_template( messages_vlm, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(self.device, dtype=torch.bfloat16) logger.info(f"Input IDs: {inputs_vlm['input_ids']}") logger.info(f"Decoded input: {self.processor.decode(inputs_vlm['input_ids'][0])}") except Exception as e: logger.error(f"Error in tokenization: {str(e)}") raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}") input_len = inputs_vlm["input_ids"].shape[-1] # Generate response with improved settings with torch.inference_mode(): generation = self.model.generate( **inputs_vlm, max_new_tokens=max_tokens, # Increased for coherence do_sample=True, # Enable sampling for variability temperature=temperature # Control creativity ) generation = generation[0][input_len:] # Decode the output response = self.processor.decode(generation, skip_special_tokens=True) logger.info(f"Generated response: {response}") return response async def vision_query(self, image: Image.Image, query: str) -> str: if not self.is_loaded: self.load() messages_vlm = [ { "role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}] }, { "role": "user", "content": [] } ] # Add text prompt messages_vlm[1]["content"].append({"type": "text", "text": query}) # Handle image if valid if image and image.size[0] > 0 and image.size[1] > 0: messages_vlm[1]["content"].insert(0, {"type": "image", "image": image}) logger.info(f"Received valid image for processing") else: logger.info("No valid image provided, processing text only") # Process the chat template try: inputs_vlm = self.processor.apply_chat_template( messages_vlm, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(self.device, dtype=torch.bfloat16) logger.info(f"Input IDs: {inputs_vlm['input_ids']}") except Exception as e: logger.error(f"Error in apply_chat_template: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}") input_len = inputs_vlm["input_ids"].shape[-1] # Generate response with torch.inference_mode(): generation = self.model.generate( **inputs_vlm, max_new_tokens=512, # Increased for coherence do_sample=True, # Enable sampling temperature=0.7 # Control creativity ) generation = generation[0][input_len:] # Decode the output decoded = self.processor.decode(generation, skip_special_tokens=True) logger.info(f"Vision query response: {decoded}") return decoded async def chat_v2(self, image: Image.Image, query: str) -> str: if not self.is_loaded: self.load() messages_vlm = [ { "role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}] }, { "role": "user", "content": [] } ] # Add text prompt messages_vlm[1]["content"].append({"type": "text", "text": query}) # Handle image if valid if image and image.size[0] > 0 and image.size[1] > 0: messages_vlm[1]["content"].insert(0, {"type": "image", "image": image}) logger.info(f"Received valid image for processing") else: logger.info("No valid image provided, processing text only") # Process the chat template try: inputs_vlm = self.processor.apply_chat_template( messages_vlm, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(self.device, dtype=torch.bfloat16) logger.info(f"Input IDs: {inputs_vlm['input_ids']}") except Exception as e: logger.error(f"Error in apply_chat_template: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}") input_len = inputs_vlm["input_ids"].shape[-1] # Generate response with torch.inference_mode(): generation = self.model.generate( **inputs_vlm, max_new_tokens=512, # Increased for coherence do_sample=True, # Enable sampling temperature=0.7 # Control creativity ) generation = generation[0][input_len:] # Decode the output decoded = self.processor.decode(generation, skip_special_tokens=True) logger.info(f"Chat_v2 response: {decoded}") return decoded