File size: 13,059 Bytes
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6faeb
844386f
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b03edb
9781b82
 
 
 
 
 
 
 
 
8d6faeb
 
 
 
 
 
 
 
 
 
9781b82
 
 
 
 
 
 
 
844386f
9781b82
 
 
 
 
844386f
9781b82
 
 
 
 
 
 
 
844386f
 
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5948a
 
844386f
ce5948a
 
 
 
 
 
 
 
 
 
 
9781b82
844386f
 
 
 
 
ce5948a
 
844386f
9781b82
 
643e32f
ce5948a
844386f
 
 
ce5948a
9781b82
 
 
ce5948a
 
 
 
 
1b03edb
9781b82
844386f
9781b82
ce5948a
844386f
 
 
9781b82
 
ce5948a
 
9781b82
ce5948a
 
 
 
 
9781b82
 
 
 
 
 
844386f
9781b82
 
 
 
 
844386f
 
9781b82
 
 
 
 
 
 
 
 
 
 
 
1b03edb
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844386f
9781b82
 
 
 
 
 
 
 
 
 
 
 
1b03edb
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844386f
9781b82
 
 
 
 
 
 
 
844386f
 
9781b82
 
 
 
 
 
 
 
 
844386f
2f5178f
 
 
 
 
 
 
 
 
844386f
 
 
 
 
2f5178f
643e32f
2f5178f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844386f
2f5178f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9781b82
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
import io
from time import time
from typing import List, Optional
from abc import ABC, abstractmethod

import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from pydantic import BaseModel, Field, field_validator
from slowapi import Limiter
from slowapi.util import get_remote_address
import requests
from PIL import Image

from utils.auth import get_current_user, login, refresh_token, TokenResponse, Settings, LoginRequest

# Assuming these are in your project structure
from config.tts_config import SPEED, ResponseFormat, config as tts_config
from config.logging_config import logger

settings = Settings()

# FastAPI app setup
app = FastAPI(
    title="Dhwani API",
    description="AI Chat API supporting Indian languages",
    version="1.0.0",
    redirect_slashes=False,
)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"],
)

limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

# Request/Response Models
class SpeechRequest(BaseModel):
    input: str
    voice: str
    model: str
    response_format: ResponseFormat = tts_config.response_format
    speed: float = SPEED

    @field_validator("input")
    def input_must_be_valid(cls, v):
        if len(v) > 1000:
            raise ValueError("Input cannot exceed 1000 characters")
        return v.strip()

    @field_validator("response_format")
    def validate_response_format(cls, v):
        supported_formats = [ResponseFormat.MP3, ResponseFormat.FLAC, ResponseFormat.WAV]
        if v not in supported_formats:
            raise ValueError(f"Response format must be one of {[fmt.value for fmt in supported_formats]}")
        return v

class TranscriptionResponse(BaseModel):
    text: str

class TextGenerationResponse(BaseModel):
    text: str

class AudioProcessingResponse(BaseModel):
    result: str

# TTS Service Interface
class TTSService(ABC):
    @abstractmethod
    async def generate_speech(self, payload: dict) -> requests.Response:
        pass

class ExternalTTSService(TTSService):
    async def generate_speech(self, payload: dict) -> requests.Response:
        try:
            return requests.post(
                settings.external_tts_url,
                json=payload,
                headers={"accept": "application/json", "Content-Type": "application/json"},
                stream=True,
                timeout=60
            )
        except requests.Timeout:
            raise HTTPException(status_code=504, detail="External TTS API timeout")
        except requests.RequestException as e:
            raise HTTPException(status_code=500, detail=f"External TTS API error: {str(e)}")

def get_tts_service() -> TTSService:
    return ExternalTTSService()



@app.post("/v1/token", response_model=TokenResponse)
async def token(login_request: LoginRequest):
    return await login(login_request)

@app.post("/v1/refresh", response_model=TokenResponse)
async def refresh(token_response: TokenResponse = Depends(refresh_token)):
    return token_response

@app.get("/v1/health")
async def health_check():
    return {"status": "healthy", "model": settings.llm_model_name}

@app.get("/")
async def home():
    return RedirectResponse(url="/docs")


@app.post("/v1/audio/speech")
@limiter.limit(settings.speech_rate_limit)
async def generate_audio(
    request: Request,
    speech_request: SpeechRequest = Depends(),
    user_id: str = Depends(get_current_user),
    tts_service: TTSService = Depends(get_tts_service)
):
    if not speech_request.input.strip():
        raise HTTPException(status_code=400, detail="Input cannot be empty")
    
    logger.info("Processing speech request", extra={
        "endpoint": "/v1/audio/speech",
        "input_length": len(speech_request.input),
        "client_ip": get_remote_address(request),
        "user_id": user_id
    })
    
    payload = {
        "input": speech_request.input,
        "voice": speech_request.voice,
        "model": speech_request.model,
        "response_format": speech_request.response_format.value,
        "speed": speech_request.speed
    }
    
    response = await tts_service.generate_speech(payload)
    response.raise_for_status()
    
    headers = {
        "Content-Disposition": f"inline; filename=\"speech.{speech_request.response_format.value}\"",
        "Cache-Control": "no-cache",
        "Content-Type": f"audio/{speech_request.response_format.value}"
    }
    
    return StreamingResponse(
        response.iter_content(chunk_size=8192),
        media_type=f"audio/{speech_request.response_format.value}",
        headers=headers
    )

class ChatRequest(BaseModel):
    prompt: str
    src_lang: str = "kan_Knda"

    @field_validator("prompt")
    def prompt_must_be_valid(cls, v):
        if len(v) > 1000:
            raise ValueError("Prompt cannot exceed 1000 characters")
        return v.strip()

class ChatResponse(BaseModel):
    response: str

@app.post("/v1/chat", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat(
    request: Request,
    chat_request: ChatRequest,
    user_id: str = Depends(get_current_user)
):
    if not chat_request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, user_id: {user_id}")
    
    try:
        external_url = "https://slabstech-dhwani-internal-api-server.hf.space/v1/chat"
        payload = {
            "prompt": chat_request.prompt,
            "src_lang": chat_request.src_lang,
            "tgt_lang": chat_request.src_lang
        }
        
        response = requests.post(
            external_url,
            json=payload,
            headers={
                "accept": "application/json",
                "Content-Type": "application/json"
            },
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        response_text = response_data.get("response", "")
        logger.info(f"Generated Chat response from external API: {response_text}")
        return ChatResponse(response=response_text)
    
    except requests.Timeout:
        logger.error("External chat API request timed out")
        raise HTTPException(status_code=504, detail="Chat service timeout")
    except requests.RequestException as e:
        logger.error(f"Error calling external chat API: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

@app.post("/v1/process_audio/", response_model=AudioProcessingResponse)
@limiter.limit(settings.chat_rate_limit)
async def process_audio(
    file: UploadFile = File(...),
    language: str = Query(..., enum=["kannada", "hindi", "tamil"]),
    user_id: str = Depends(get_current_user),
    request: Request = None,
):
    logger.info("Processing audio processing request", extra={
        "endpoint": "/v1/process_audio",
        "filename": file.filename,
        "client_ip": get_remote_address(request),
        "user_id": user_id
    })
    
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        
        external_url = f"{settings.external_audio_proc_url}/process_audio/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        processed_result = response.json().get("result", "")
        logger.info(f"Audio processing completed in {time() - start_time:.2f} seconds")
        return AudioProcessingResponse(result=processed_result)
    
    except requests.Timeout:
        raise HTTPException(status_code=504, detail="Audio processing service timeout")
    except requests.RequestException as e:
        logger.error(f"Audio processing request failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Audio processing failed: {str(e)}")

@app.post("/v1/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(
    file: UploadFile = File(...),
    language: str = Query(..., enum=["kannada", "hindi", "tamil"]),
    user_id: str = Depends(get_current_user),
    request: Request = None,
):
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        
        external_url = f"{settings.external_asr_url}/transcribe/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        transcription = response.json().get("text", "")
        return TranscriptionResponse(text=transcription)
    
    except requests.Timeout:
        raise HTTPException(status_code=504, detail="Transcription service timeout")
    except requests.RequestException as e:
        raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")

@app.post("/v1/chat_v2", response_model=TranscriptionResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat_v2(
    request: Request,
    prompt: str = Form(...),
    image: UploadFile = File(default=None),
    user_id: str = Depends(get_current_user)
):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    logger.info("Processing chat_v2 request", extra={
        "endpoint": "/v1/chat_v2",
        "prompt_length": len(prompt),
        "has_image": bool(image),
        "client_ip": get_remote_address(request),
        "user_id": user_id
    })
    
    try:
        image_data = Image.open(await image.read()) if image else None
        response_text = f"Processed: {prompt}" + (" with image" if image_data else "")
        return TranscriptionResponse(text=response_text)
    except Exception as e:
        logger.error(f"Chat_v2 processing failed: {str(e)}", exc_info=True)
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

class TranslationRequest(BaseModel):
    sentences: list[str]
    src_lang: str
    tgt_lang: str

class TranslationResponse(BaseModel):
    translations: list[str]

@app.post("/v1/translate", response_model=TranslationResponse)
async def translate(
    request: TranslationRequest,
    user_id: str = Depends(get_current_user)
):
    logger.info(f"Received translation request: {request.dict()}, user_id: {user_id}")
    
    external_url = f"https://slabstech-dhwani-internal-api-server.hf.space/translate?src_lang={request.src_lang}&tgt_lang={request.tgt_lang}"
    
    payload = {
        "sentences": request.sentences,
        "src_lang": request.src_lang,
        "tgt_lang": request.tgt_lang
    }
    
    try:
        response = requests.post(
            external_url,
            json=payload,
            headers={
                "accept": "application/json",
                "Content-Type": "application/json"
            },
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        translations = response_data.get("translations", [])
        
        if not translations or len(translations) != len(request.sentences):
            logger.warning(f"Unexpected response format: {response_data}")
            raise HTTPException(status_code=500, detail="Invalid response from translation service")
        
        logger.info(f"Translation successful: {translations}")
        return TranslationResponse(translations=translations)
    
    except requests.Timeout:
        logger.error("Translation request timed out")
        raise HTTPException(status_code=504, detail="Translation service timeout")
    except requests.RequestException as e:
        logger.error(f"Error during translation: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from translation service")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the FastAPI server.")
    parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
    parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
    args = parser.parse_args()
    uvicorn.run(app, host=args.host, port=args.port)