Spaces:
Running
Running
File size: 3,852 Bytes
6ea2bcc a10c7a6 6ea2bcc 6ddaa39 a10c7a6 6ddaa39 a10c7a6 6ea2bcc a10c7a6 6ddaa39 a10c7a6 6ea2bcc a10c7a6 6ea2bcc a10c7a6 6ddaa39 a10c7a6 6ea2bcc a10c7a6 6ea2bcc 6ddaa39 6ea2bcc a10c7a6 6ea2bcc a10c7a6 6ea2bcc 6ddaa39 6ea2bcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
import requests
from PyPDF2 import PdfReader
import os
# Function to validate PDF file
def is_valid_pdf(file_path):
try:
# If file_path is a string (Gradio provides a temporary file path)
if isinstance(file_path, str) and os.path.exists(file_path):
with open(file_path, "rb") as f:
pdf = PdfReader(f)
if len(pdf.pages) > 0:
return True, f"Valid PDF with {len(pdf.pages)} pages"
return False, "Invalid PDF: No pages found"
else:
return False, "Invalid PDF: File path is not valid"
except Exception as e:
return False, f"Invalid PDF: {str(e)}"
# Function to send the POST request to the API
def extract_text_from_pdf(pdf_file, page_number, src_lang, tgt_lang, prompt):
if not pdf_file:
return "Error: No file uploaded. Please upload a PDF file."
# Validate the PDF
valid, message = is_valid_pdf(pdf_file)
if not valid:
return f"Error: {message}. Please upload a valid PDF file or repair the current one."
# API endpoint
url = "http://209.20.158.215:7861/extract-text-eng/"
# Prepare the payload
with open(pdf_file, "rb") as f:
files = {
"file": ("uploaded.pdf", f, "application/pdf")
}
data = {
"page_number": str(page_number),
"src_lang": src_lang,
"tgt_lang": tgt_lang,
"prompt": prompt
}
# Headers
headers = {
"accept": "application/json"
}
try:
# Send the POST request
response = requests.post(url, files=files, data=data, headers=headers)
# Check if the request was successful
if response.status_code == 200:
result = response.json()
page_content = result.get("page_content", "No description returned from API")
return page_content
else:
return f"Error: {response.status_code} - {response.text}"
except Exception as e:
return f"Error: Failed to connect to the API - {str(e)}"
# Gradio interface
with gr.Blocks(title="PDF Content Description") as demo:
gr.Markdown("# PDF Content Description Extractor")
gr.Markdown(
"""
Upload a PDF file (e.g., Dhwani-AI-Pitch-Europe.pdf) and specify parameters to extract a description of its content.
The API will analyze the page and return a textual description based on the provided prompt and languages.
"""
)
# Input components
pdf_input = gr.File(label="Upload PDF File", file_types=[".pdf"], type="filepath")
page_number_input = gr.Number(label="Page Number", value=1, precision=0, minimum=1)
src_lang_input = gr.Textbox(
label="Source Language",
value="eng_Latn",
placeholder="Enter source language (e.g., eng_Latn)"
)
tgt_lang_input = gr.Textbox(
label="Target Language",
value="eng_Latn",
placeholder="Enter target language (e.g., eng_Latn)"
)
prompt_input = gr.Textbox(
label="Prompt",
value="describe the image",
placeholder="Enter prompt (e.g., describe the image)"
)
# Submit button
submit_button = gr.Button("Extract Description")
# Output component
output_text = gr.Textbox(
label="Content Description",
lines=10,
placeholder="The API response will appear here, describing the content of the specified PDF page."
)
# Connect the button to the function
submit_button.click(
fn=extract_text_from_pdf,
inputs=[pdf_input, page_number_input, src_lang_input, tgt_lang_input, prompt_input],
outputs=output_text
)
# Launch the Gradio app
demo.launch() |