Spaces:
Running
Running
import gradio as gr | |
import requests | |
import json | |
# List of supported languages | |
LANGUAGES = [ | |
"Assamese (asm_Beng)", "Kashmiri (Arabic) (kas_Arab)", "Punjabi (pan_Guru)", | |
"Bengali (ben_Beng)", "Kashmiri (Devanagari) (kas_Deva)", "Sanskrit (san_Deva)", | |
"Bodo (brx_Deva)", "Maithili (mai_Deva)", "Santali (sat_Olck)", | |
"Dogri (doi_Deva)", "Malayalam (mal_Mlym)", "Sindhi (Arabic) (snd_Arab)", | |
"English (eng_Latn)", "Marathi (mar_Deva)", "Sindhi (Devanagari) (snd_Deva)", | |
"Konkani (gom_Deva)", "Manipuri (Bengali) (mni_Beng)", "Tamil (tam_Taml)", | |
"Gujarati (guj_Gujr)", "Manipuri (Meitei) (mni_Mtei)", "Telugu (tel_Telu)", | |
"Hindi (hin_Deva)", "Nepali (npi_Deva)", "Urdu (urd_Arab)", | |
"Kannada (kan_Knda)", "Odia (ory_Orya)" | |
] | |
# Function to extract language code from selection | |
def get_lang_code(lang_string): | |
return lang_string.split("(")[-1].rstrip(")") | |
def translate_api(sentences, src_lang, tgt_lang): | |
url = "https://slabstech-dhwani-server-workshop.hf.space/v1/translate" | |
headers = { | |
"accept": "application/json", | |
"Content-Type": "application/json" | |
} | |
# Convert sentences string to list if it's a string | |
if isinstance(sentences, str): | |
try: | |
sentences_list = json.loads(sentences) | |
except json.JSONDecodeError: | |
sentences_list = [sentences] | |
else: | |
sentences_list = sentences | |
payload = { | |
"sentences": sentences_list, | |
"src_lang": get_lang_code(src_lang), | |
"tgt_lang": get_lang_code(tgt_lang) | |
} | |
try: | |
response = requests.post(url, headers=headers, json=payload) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.HTTPError as e: | |
return {"error": f"HTTP Error: {str(e)}"} | |
except requests.exceptions.RequestException as e: | |
return {"error": f"Request Error: {str(e)}"} | |
# Create Gradio interface | |
with gr.Blocks(title="Translation API Interface") as demo: | |
gr.Markdown("# Translation API Interface") | |
gr.Markdown("Enter sentences and select languages to translate.") | |
with gr.Row(): | |
with gr.Column(): | |
# Input components | |
sentences_input = gr.Textbox( | |
label="Sentences", | |
placeholder='Enter sentences as JSON array or single sentence (e.g., ["Hello", "Good morning"] or "Hello")', | |
lines=3, | |
value='["Hi"]' | |
) | |
src_lang_input = gr.Dropdown( | |
label="Source Language", | |
choices=LANGUAGES, | |
value="English (eng_Latn)" | |
) | |
tgt_lang_input = gr.Dropdown( | |
label="Target Language", | |
choices=LANGUAGES, | |
value="Kannada (kan_Knda)" | |
) | |
submit_btn = gr.Button("Translate") | |
with gr.Column(): | |
# Output component | |
output = gr.JSON(label="Translation Response") | |
# Connect the button click to the API function | |
submit_btn.click( | |
fn=translate_api, | |
inputs=[sentences_input, src_lang_input, tgt_lang_input], | |
outputs=output | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch() |