sachin commited on
Commit
475ca6b
·
1 Parent(s): d70006d
Files changed (4) hide show
  1. Dockerfile +1 -1
  2. blender_script.py +58 -0
  3. main.py +91 -0
  4. requirements.txt +4 -1
Dockerfile CHANGED
@@ -35,4 +35,4 @@ USER appuser
35
  EXPOSE 7860
36
 
37
  # Run the server
38
- CMD ["python", "/app/server.py"]
 
35
  EXPOSE 7860
36
 
37
  # Run the server
38
+ CMD ["python", "/app/main.py"]
blender_script.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bpy
2
+ import os
3
+ import json
4
+ from mathutils import Vector
5
+
6
+ def clear_scene():
7
+ bpy.ops.object.select_all(action="SELECT")
8
+ bpy.ops.object.delete()
9
+
10
+ def setup_scene(objects, environment):
11
+ clear_scene()
12
+ # Load environment (e.g., desert)
13
+ bpy.ops.wm.open_mainfile(filepath=f"models/{environment}.blend")
14
+
15
+ # Import military assets
16
+ for obj in objects:
17
+ bpy.ops.import_scene.obj(filepath=f"models/{obj}.obj")
18
+
19
+ # Setup camera
20
+ bpy.ops.object.camera_add(location=(0, -10, 5), rotation=(1.0, 0, 0))
21
+ bpy.context.scene.camera = bpy.context.object
22
+
23
+ def render_image(output_dir, image_id):
24
+ bpy.context.scene.render.filepath = os.path.join(output_dir, f"image_{image_id}.png")
25
+ bpy.ops.render.render(write_still=True)
26
+
27
+ # Generate labels (bounding boxes)
28
+ labels = []
29
+ for obj in bpy.data.objects:
30
+ if obj.type == "MESH":
31
+ # Project 3D bounds to 2D
32
+ coords_2d = [bpy.context.scene.camera.matrix_world @ Vector(corner) for corner in obj.bound_box]
33
+ coords_2d = [bpy_extras.object_utils.world_to_camera_view(bpy.context.scene, bpy.context.scene.camera, coord) for coord in coords_2d]
34
+ x_coords = [coord.x * bpy.context.scene.render.resolution_x for coord in coords_2d]
35
+ y_coords = [(1 - coord.y) * bpy.context.scene.render.resolution_y for coord in coords_2d] # Invert y-axis
36
+ x_min, x_max = min(x_coords), max(x_coords)
37
+ y_min, y_max = min(y_coords), max(y_coords)
38
+ labels.append({
39
+ "category": obj.name,
40
+ "bbox": [x_min, y_min, x_max - x_min, y_max - y_min]
41
+ })
42
+ return labels
43
+
44
+ def generate_images(objects, environment, num_images, output_dir):
45
+ setup_scene(objects, environment)
46
+ annotations = []
47
+ for i in range(num_images):
48
+ # Randomize object positions, camera angles, etc. (simplified here)
49
+ labels = render_image(output_dir, i)
50
+ annotations.append({"image_id": i, "file_name": f"image_{i}.png", "labels": labels})
51
+
52
+ with open(os.path.join(output_dir, "annotations.json"), "w") as f:
53
+ json.dump(annotations, f)
54
+
55
+ if __name__ == "__main__":
56
+ import sys
57
+ objects, env, num, out_dir = sys.argv[1], sys.argv[2], int(sys.argv[3]), sys.argv[4]
58
+ generate_images(objects.split(","), env, num, out_dir)
main.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from fastapi.responses import FileResponse
3
+ from pydantic import BaseModel
4
+ import subprocess
5
+ import os
6
+ import shutil
7
+ import tempfile
8
+ import zipfile
9
+ from diffusers import StableDiffusionInstructPix2PixPipeline
10
+ import torch
11
+ from PIL import Image
12
+ import json
13
+ app = FastAPI()
14
+
15
+ # Load InstructPix2Pix model
16
+ pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
17
+ "timm/instruct-pix2pix",
18
+ torch_dtype=torch.float16,
19
+ safety_checker=None,
20
+ ).to("cuda")
21
+
22
+ class DatasetRequest(BaseModel):
23
+ objects: list[str]
24
+ environment: str
25
+ num_images: int
26
+ augmentation_prompts: list[str]
27
+
28
+ def augment_image(image_path, prompt):
29
+ image = Image.open(image_path).convert("RGB")
30
+ augmented = pipe(prompt=prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5).images[0]
31
+ return augmented
32
+
33
+ @app.post("/generate_dataset")
34
+ async def generate_dataset(request: DatasetRequest):
35
+ try:
36
+ with tempfile.TemporaryDirectory() as tmpdirname:
37
+ # Step 1: Generate base images with Blender
38
+ base_dir = os.path.join(tmpdirname, "base")
39
+ os.makedirs(base_dir)
40
+ subprocess.run([
41
+ "blender", "--background", "--python", "blender_script.py", "--",
42
+ ",".join(request.objects), request.environment, str(request.num_images), base_dir
43
+ ], check=True)
44
+
45
+ # Load base annotations
46
+ with open(os.path.join(base_dir, "annotations.json"), "r") as f:
47
+ base_annotations = json.load(f)
48
+
49
+ # Step 2: Augment images
50
+ output_dir = os.path.join(tmpdirname, "output/images")
51
+ os.makedirs(output_dir)
52
+ annotations = []
53
+ image_id = 0
54
+ for base_anno in base_annotations:
55
+ base_image_path = os.path.join(base_dir, base_anno["file_name"])
56
+ for prompt in request.augmentation_prompts:
57
+ augmented = augment_image(base_image_path, prompt)
58
+ new_filename = f"image_{image_id}.png"
59
+ augmented.save(os.path.join(output_dir, new_filename))
60
+ annotations.append({
61
+ "image_id": image_id,
62
+ "file_name": new_filename,
63
+ "labels": base_anno["labels"]
64
+ })
65
+ image_id += 1
66
+
67
+ # Save annotations
68
+ anno_file = os.path.join(tmpdirname, "output/annotations.json")
69
+ with open(anno_file, "w") as f:
70
+ json.dump(annotations, f)
71
+
72
+ # Step 3: Create zip file
73
+ zip_path = os.path.join(tmpdirname, "dataset.zip")
74
+ with zipfile.ZipFile(zip_path, "w") as zipf:
75
+ for root, _, files in os.walk(output_dir):
76
+ for file in files:
77
+ zipf.write(os.path.join(root, file), os.path.join("images", file))
78
+ zipf.write(anno_file, "annotations.json")
79
+
80
+ return FileResponse(zip_path, media_type="application/zip", filename="dataset.zip")
81
+ except Exception as e:
82
+ raise HTTPException(status_code=500, detail=str(e))
83
+
84
+ @app.get("/health")
85
+ async def health_check():
86
+ return {"status": "healthy"}
87
+
88
+
89
+ if __name__ == "__main__":
90
+ import uvicorn
91
+ uvicorn.run(app, host="0.0.0.0", port=7860)
requirements.txt CHANGED
@@ -4,4 +4,7 @@ torch
4
  diffusers
5
  huggingface_hub
6
  safetensors
7
- transformers
 
 
 
 
4
  diffusers
5
  huggingface_hub
6
  safetensors
7
+ transformers
8
+ pillow
9
+ numpy
10
+ blenderproc