Spaces:
Paused
Paused
sachin
commited on
Commit
·
998f798
1
Parent(s):
950f17d
merge code
Browse files- Dockerfile +1 -1
- intruct.py +212 -30
- merged_code.py +461 -0
- requirements.txt +3 -1
Dockerfile
CHANGED
@@ -35,4 +35,4 @@ USER appuser
|
|
35 |
EXPOSE 7860
|
36 |
|
37 |
# Run the server
|
38 |
-
CMD ["python", "/app/
|
|
|
35 |
EXPOSE 7860
|
36 |
|
37 |
# Run the server
|
38 |
+
CMD ["python", "/app/merged_code.py"]
|
intruct.py
CHANGED
@@ -15,10 +15,32 @@ from io import BytesIO
|
|
15 |
import os
|
16 |
import base64
|
17 |
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Initialize FastAPI app
|
20 |
app = FastAPI()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Load the pre-trained InstructPix2Pix model for editing
|
23 |
model_id = "timbrooks/instruct-pix2pix"
|
24 |
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
@@ -101,36 +123,6 @@ async def generate_image(prompt: str):
|
|
101 |
except Exception as e:
|
102 |
return {"error": str(e)}
|
103 |
|
104 |
-
@app.get("/generate_multiple")
|
105 |
-
async def generate_multiple_images(prompts: List[str]):
|
106 |
-
try:
|
107 |
-
# List to store base64-encoded images
|
108 |
-
generated_images = []
|
109 |
-
|
110 |
-
# Generate an image for each prompt
|
111 |
-
for prompt in prompts:
|
112 |
-
image = pipe_generate(
|
113 |
-
prompt,
|
114 |
-
num_inference_steps=4,
|
115 |
-
guidance_scale=0
|
116 |
-
).images[0]
|
117 |
-
|
118 |
-
# Save image to buffer
|
119 |
-
buffer = BytesIO()
|
120 |
-
image.save(buffer, format="PNG")
|
121 |
-
buffer.seek(0)
|
122 |
-
|
123 |
-
# Encode the image as base64
|
124 |
-
image_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
125 |
-
generated_images.append({
|
126 |
-
"prompt": prompt,
|
127 |
-
"image_base64": image_base64
|
128 |
-
})
|
129 |
-
|
130 |
-
return {"images": generated_images}
|
131 |
-
|
132 |
-
except Exception as e:
|
133 |
-
return {"error": str(e)}
|
134 |
|
135 |
@app.get("/health")
|
136 |
async def health_check():
|
@@ -274,6 +266,196 @@ async def root():
|
|
274 |
"""
|
275 |
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
if __name__ == "__main__":
|
278 |
import uvicorn
|
279 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
15 |
import os
|
16 |
import base64
|
17 |
from typing import List
|
18 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
19 |
+
from fastapi.responses import StreamingResponse
|
20 |
+
from PIL import Image, ImageDraw, ImageFilter
|
21 |
+
import io
|
22 |
+
import torch
|
23 |
+
import numpy as np
|
24 |
+
from diffusers import StableDiffusionInpaintPipeline
|
25 |
+
import cv2
|
26 |
+
|
27 |
+
|
28 |
|
29 |
# Initialize FastAPI app
|
30 |
app = FastAPI()
|
31 |
|
32 |
+
|
33 |
+
model_id_runway = "runwayml/stable-diffusion-inpainting"
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
|
36 |
+
try:
|
37 |
+
pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway)
|
38 |
+
pipe_runway.to(device)
|
39 |
+
except Exception as e:
|
40 |
+
raise RuntimeError(f"Failed to load model: {e}")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
# Load the pre-trained InstructPix2Pix model for editing
|
45 |
model_id = "timbrooks/instruct-pix2pix"
|
46 |
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
|
|
123 |
except Exception as e:
|
124 |
return {"error": str(e)}
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
@app.get("/health")
|
128 |
async def health_check():
|
|
|
266 |
"""
|
267 |
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
|
268 |
|
269 |
+
|
270 |
+
|
271 |
+
# Helper functions
|
272 |
+
def prepare_guided_image(original_image: Image, reference_image: Image, mask_image: Image) -> Image:
|
273 |
+
original_array = np.array(original_image)
|
274 |
+
reference_array = np.array(reference_image)
|
275 |
+
mask_array = np.array(mask_image) / 255.0
|
276 |
+
mask_array = mask_array[:, :, np.newaxis]
|
277 |
+
blended_array = original_array * (1 - mask_array) + reference_array * mask_array
|
278 |
+
return Image.fromarray(blended_array.astype(np.uint8))
|
279 |
+
|
280 |
+
def soften_mask(mask_image: Image, softness: int = 5) -> Image:
|
281 |
+
from PIL import ImageFilter
|
282 |
+
return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))
|
283 |
+
|
284 |
+
def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image:
|
285 |
+
mask = Image.new("L", image_size, 0)
|
286 |
+
draw = ImageDraw.Draw(mask)
|
287 |
+
draw.rectangle([x1, y1, x2, y2], fill=255)
|
288 |
+
return mask
|
289 |
+
|
290 |
+
def segment_tank(tank_image: Image) -> tuple[Image, Image]:
|
291 |
+
tank_array = np.array(tank_image.convert("RGB"))
|
292 |
+
tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
|
293 |
+
hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
|
294 |
+
lower_snow = np.array([0, 0, 180])
|
295 |
+
upper_snow = np.array([180, 50, 255])
|
296 |
+
snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
|
297 |
+
tank_mask = cv2.bitwise_not(snow_mask)
|
298 |
+
kernel = np.ones((5, 5), np.uint8)
|
299 |
+
tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
|
300 |
+
tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
|
301 |
+
tank_mask_image = Image.fromarray(tank_mask, mode="L")
|
302 |
+
tank_array_rgb = np.array(tank_image.convert("RGB"))
|
303 |
+
mask_array = tank_mask / 255.0
|
304 |
+
mask_array = mask_array[:, :, np.newaxis]
|
305 |
+
segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
|
306 |
+
alpha = tank_mask
|
307 |
+
segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
|
308 |
+
segmented_tank_rgba[:, :, :3] = segmented_tank
|
309 |
+
segmented_tank_rgba[:, :, 3] = alpha
|
310 |
+
segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
|
311 |
+
return segmented_tank_image, tank_mask_image
|
312 |
+
|
313 |
+
async def apply_camouflage_to_tank(tank_image: Image) -> Image:
|
314 |
+
segmented_tank, tank_mask = segment_tank(tank_image)
|
315 |
+
segmented_tank.save("segmented_tank.png")
|
316 |
+
tank_mask.save("tank_mask.png")
|
317 |
+
camouflaged_tank = pipe_runway(
|
318 |
+
prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
|
319 |
+
image=segmented_tank.convert("RGB"),
|
320 |
+
mask_image=tank_mask,
|
321 |
+
strength=0.5,
|
322 |
+
guidance_scale=8.0,
|
323 |
+
num_inference_steps=50,
|
324 |
+
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
|
325 |
+
).images[0]
|
326 |
+
camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
|
327 |
+
camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
|
328 |
+
camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
|
329 |
+
camouflaged_tank_image = Image.fromarray(camouflaged_tank_rgba, mode="RGBA")
|
330 |
+
camouflaged_tank_image.save("camouflaged_tank.png")
|
331 |
+
return camouflaged_tank_image
|
332 |
+
|
333 |
+
def fit_image_to_mask(original_image: Image, reference_image: Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
|
334 |
+
mask_width = mask_x2 - mask_x1
|
335 |
+
mask_height = mask_y2 - mask_y1
|
336 |
+
if mask_width <= 0 or mask_height <= 0:
|
337 |
+
raise ValueError("Mask dimensions must be positive")
|
338 |
+
ref_width, ref_height = reference_image.size
|
339 |
+
aspect_ratio = ref_width / ref_height
|
340 |
+
if mask_width / mask_height > aspect_ratio:
|
341 |
+
new_height = mask_height
|
342 |
+
new_width = int(new_height * aspect_ratio)
|
343 |
+
else:
|
344 |
+
new_width = mask_width
|
345 |
+
new_height = int(new_width / aspect_ratio)
|
346 |
+
reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
347 |
+
guided_image = original_image.copy().convert("RGB")
|
348 |
+
paste_x = mask_x1 + (mask_width - new_width) // 2
|
349 |
+
paste_y = mask_y1 + (mask_height - new_height) // 2
|
350 |
+
guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
|
351 |
+
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
|
352 |
+
return guided_image, mask_image
|
353 |
+
|
354 |
+
# Endpoints
|
355 |
+
@app.post("/inpaint/")
|
356 |
+
async def inpaint_image(
|
357 |
+
image: UploadFile = File(...),
|
358 |
+
mask: UploadFile = File(...),
|
359 |
+
prompt: str = "Fill the masked area with appropriate content."
|
360 |
+
):
|
361 |
+
try:
|
362 |
+
image_bytes = await image.read()
|
363 |
+
mask_bytes = await mask.read()
|
364 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
365 |
+
mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
|
366 |
+
if original_image.size != mask_image.size:
|
367 |
+
raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
|
368 |
+
result = pipe_runway(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
|
369 |
+
result_bytes = io.BytesIO()
|
370 |
+
result.save(result_bytes, format="PNG")
|
371 |
+
result_bytes.seek(0)
|
372 |
+
return StreamingResponse(
|
373 |
+
result_bytes,
|
374 |
+
media_type="image/png",
|
375 |
+
headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
|
376 |
+
)
|
377 |
+
except Exception as e:
|
378 |
+
raise HTTPException(status_code=500, detail=f"Error during inpainting: {e}")
|
379 |
+
|
380 |
+
@app.post("/inpaint-with-reference/")
|
381 |
+
async def inpaint_with_reference(
|
382 |
+
image: UploadFile = File(...),
|
383 |
+
reference_image: UploadFile = File(...),
|
384 |
+
prompt: str = "Integrate the reference content naturally into the masked area, matching style and lighting.",
|
385 |
+
mask_x1: int = 100,
|
386 |
+
mask_y1: int = 100,
|
387 |
+
mask_x2: int = 200,
|
388 |
+
mask_y2: int = 200
|
389 |
+
):
|
390 |
+
try:
|
391 |
+
image_bytes = await image.read()
|
392 |
+
reference_bytes = await reference_image.read()
|
393 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
394 |
+
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
|
395 |
+
if original_image.size != reference_image.size:
|
396 |
+
reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
|
397 |
+
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
|
398 |
+
softened_mask = soften_mask(mask_image, softness=5)
|
399 |
+
guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
|
400 |
+
result = pipe_runway(
|
401 |
+
prompt=prompt,
|
402 |
+
image=guided_image,
|
403 |
+
mask_image=softened_mask,
|
404 |
+
strength=0.75,
|
405 |
+
guidance_scale=7.5
|
406 |
+
).images[0]
|
407 |
+
result_bytes = io.BytesIO()
|
408 |
+
result.save(result_bytes, format="PNG")
|
409 |
+
result_bytes.seek(0)
|
410 |
+
return StreamingResponse(
|
411 |
+
result_bytes,
|
412 |
+
media_type="image/png",
|
413 |
+
headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
|
414 |
+
)
|
415 |
+
except Exception as e:
|
416 |
+
raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {e}")
|
417 |
+
|
418 |
+
@app.post("/fit-image-to-mask/")
|
419 |
+
async def fit_image_to_mask_endpoint(
|
420 |
+
image: UploadFile = File(...),
|
421 |
+
reference_image: UploadFile = File(...),
|
422 |
+
mask_x1: int = 200,
|
423 |
+
mask_y1: int = 200,
|
424 |
+
mask_x2: int = 500,
|
425 |
+
mask_y2: int = 500
|
426 |
+
):
|
427 |
+
try:
|
428 |
+
image_bytes = await image.read()
|
429 |
+
reference_bytes = await reference_image.read()
|
430 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
431 |
+
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
|
432 |
+
camouflaged_tank = await apply_camouflage_to_tank(reference_image)
|
433 |
+
guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
|
434 |
+
guided_image.save("guided_image_before_blending.png")
|
435 |
+
softened_mask = soften_mask(mask_image, softness=2)
|
436 |
+
result = pipe_runway(
|
437 |
+
prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
|
438 |
+
image=guided_image,
|
439 |
+
mask_image=softened_mask,
|
440 |
+
strength=0.2,
|
441 |
+
guidance_scale=7.5,
|
442 |
+
num_inference_steps=50,
|
443 |
+
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
|
444 |
+
).images[0]
|
445 |
+
result_bytes = io.BytesIO()
|
446 |
+
result.save(result_bytes, format="PNG")
|
447 |
+
result_bytes.seek(0)
|
448 |
+
return StreamingResponse(
|
449 |
+
result_bytes,
|
450 |
+
media_type="image/png",
|
451 |
+
headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
|
452 |
+
)
|
453 |
+
except ValueError as ve:
|
454 |
+
raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
|
455 |
+
except Exception as e:
|
456 |
+
raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")
|
457 |
+
|
458 |
+
|
459 |
if __name__ == "__main__":
|
460 |
import uvicorn
|
461 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
merged_code.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
+
import io
|
4 |
+
import math
|
5 |
+
from PIL import Image, ImageOps, ImageDraw
|
6 |
+
import torch
|
7 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionInpaintPipeline
|
8 |
+
from fastapi import FastAPI, Response
|
9 |
+
from fastapi.responses import FileResponse
|
10 |
+
import torch
|
11 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
12 |
+
from huggingface_hub import hf_hub_download, login
|
13 |
+
from safetensors.torch import load_file
|
14 |
+
from io import BytesIO
|
15 |
+
import os
|
16 |
+
import base64
|
17 |
+
from typing import List
|
18 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
19 |
+
from fastapi.responses import StreamingResponse
|
20 |
+
from PIL import Image, ImageDraw, ImageFilter
|
21 |
+
import io
|
22 |
+
import torch
|
23 |
+
import numpy as np
|
24 |
+
from diffusers import StableDiffusionInpaintPipeline
|
25 |
+
import cv2
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# Initialize FastAPI app
|
30 |
+
app = FastAPI()
|
31 |
+
|
32 |
+
|
33 |
+
model_id_runway = "runwayml/stable-diffusion-inpainting"
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
|
36 |
+
try:
|
37 |
+
pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway)
|
38 |
+
pipe_runway.to(device)
|
39 |
+
except Exception as e:
|
40 |
+
raise RuntimeError(f"Failed to load model: {e}")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
# Load the pre-trained InstructPix2Pix model for editing
|
45 |
+
model_id = "timbrooks/instruct-pix2pix"
|
46 |
+
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
47 |
+
model_id, torch_dtype=torch.float16, safety_checker=None
|
48 |
+
).to("cuda")
|
49 |
+
|
50 |
+
# Load the pre-trained Inpainting model
|
51 |
+
inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
|
52 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
53 |
+
inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
|
54 |
+
).to("cuda")
|
55 |
+
|
56 |
+
# Default configuration values
|
57 |
+
DEFAULT_STEPS = 50
|
58 |
+
DEFAULT_TEXT_CFG = 7.5
|
59 |
+
DEFAULT_IMAGE_CFG = 1.5
|
60 |
+
DEFAULT_SEED = 1371
|
61 |
+
|
62 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
63 |
+
|
64 |
+
def load_model():
|
65 |
+
try:
|
66 |
+
# Login to Hugging Face if token is provided
|
67 |
+
if HF_TOKEN:
|
68 |
+
login(token=HF_TOKEN)
|
69 |
+
|
70 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
71 |
+
repo = "ByteDance/SDXL-Lightning"
|
72 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
73 |
+
|
74 |
+
# Load model with explicit error handling
|
75 |
+
unet = UNet2DConditionModel.from_config(
|
76 |
+
base,
|
77 |
+
subfolder="unet"
|
78 |
+
).to("cuda", torch.float16)
|
79 |
+
|
80 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
81 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
82 |
+
base,
|
83 |
+
unet=unet,
|
84 |
+
torch_dtype=torch.float16,
|
85 |
+
variant="fp16"
|
86 |
+
).to("cuda")
|
87 |
+
|
88 |
+
# Configure scheduler
|
89 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
90 |
+
pipe.scheduler.config,
|
91 |
+
timestep_spacing="trailing"
|
92 |
+
)
|
93 |
+
|
94 |
+
return pipe
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
raise Exception(f"Failed to load model: {str(e)}")
|
98 |
+
|
99 |
+
# Load model at startup with error handling
|
100 |
+
try:
|
101 |
+
pipe_generate = load_model()
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Model initialization failed: {str(e)}")
|
104 |
+
raise
|
105 |
+
|
106 |
+
@app.get("/generate")
|
107 |
+
async def generate_image(prompt: str):
|
108 |
+
try:
|
109 |
+
# Generate image
|
110 |
+
image = pipe_generate(
|
111 |
+
prompt,
|
112 |
+
num_inference_steps=4,
|
113 |
+
guidance_scale=0
|
114 |
+
).images[0]
|
115 |
+
|
116 |
+
# Save image to buffer
|
117 |
+
buffer = BytesIO()
|
118 |
+
image.save(buffer, format="PNG")
|
119 |
+
buffer.seek(0)
|
120 |
+
|
121 |
+
return Response(content=buffer.getvalue(), media_type="image/png")
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
return {"error": str(e)}
|
125 |
+
|
126 |
+
|
127 |
+
@app.get("/health")
|
128 |
+
async def health_check():
|
129 |
+
return {"status": "healthy"}
|
130 |
+
|
131 |
+
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
|
132 |
+
"""
|
133 |
+
Process the input image with the given instruction using InstructPix2Pix.
|
134 |
+
"""
|
135 |
+
# Resize image to fit model requirements
|
136 |
+
width, height = input_image.size
|
137 |
+
factor = 512 / max(width, height)
|
138 |
+
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
139 |
+
width = int((width * factor) // 64) * 64
|
140 |
+
height = int((height * factor) // 64) * 64
|
141 |
+
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
142 |
+
|
143 |
+
if not instruction:
|
144 |
+
return input_image
|
145 |
+
|
146 |
+
# Set the random seed for reproducibility
|
147 |
+
generator = torch.manual_seed(seed)
|
148 |
+
|
149 |
+
# Generate the edited image
|
150 |
+
edited_image = pipe_edit(
|
151 |
+
instruction,
|
152 |
+
image=input_image,
|
153 |
+
guidance_scale=text_cfg_scale,
|
154 |
+
image_guidance_scale=image_cfg_scale,
|
155 |
+
num_inference_steps=steps,
|
156 |
+
generator=generator,
|
157 |
+
).images[0]
|
158 |
+
|
159 |
+
return edited_image
|
160 |
+
|
161 |
+
@app.post("/edit-image/")
|
162 |
+
async def edit_image(
|
163 |
+
file: UploadFile = File(...),
|
164 |
+
instruction: str = Form(...),
|
165 |
+
steps: int = Form(default=DEFAULT_STEPS),
|
166 |
+
text_cfg_scale: float = Form(default=DEFAULT_TEXT_CFG),
|
167 |
+
image_cfg_scale: float = Form(default=DEFAULT_IMAGE_CFG),
|
168 |
+
seed: int = Form(default=DEFAULT_SEED)
|
169 |
+
):
|
170 |
+
"""
|
171 |
+
Endpoint to edit an image based on a text instruction.
|
172 |
+
"""
|
173 |
+
# Read and convert the uploaded image
|
174 |
+
image_data = await file.read()
|
175 |
+
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
176 |
+
|
177 |
+
# Process the image
|
178 |
+
edited_image = process_image(input_image, instruction, steps, text_cfg_scale, image_cfg_scale, seed)
|
179 |
+
|
180 |
+
# Convert the edited image to bytes
|
181 |
+
img_byte_arr = io.BytesIO()
|
182 |
+
edited_image.save(img_byte_arr, format="PNG")
|
183 |
+
img_byte_arr.seek(0)
|
184 |
+
|
185 |
+
# Return the image as a streaming response
|
186 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
187 |
+
|
188 |
+
# New endpoint for inpainting
|
189 |
+
@app.post("/inpaint/")
|
190 |
+
async def inpaint_image(
|
191 |
+
file: UploadFile = File(...),
|
192 |
+
prompt: str = Form(...),
|
193 |
+
mask_coordinates: str = Form(...), # Format: "x1,y1,x2,y2" (top-left and bottom-right of the rectangle to inpaint)
|
194 |
+
steps: int = Form(default=DEFAULT_STEPS),
|
195 |
+
guidance_scale: float = Form(default=7.5),
|
196 |
+
seed: int = Form(default=DEFAULT_SEED)
|
197 |
+
):
|
198 |
+
"""
|
199 |
+
Endpoint to perform inpainting on an image.
|
200 |
+
- file: The input image to inpaint.
|
201 |
+
- prompt: The text prompt describing what to generate in the inpainted area.
|
202 |
+
- mask_coordinates: Coordinates of the rectangular area to inpaint (format: "x1,y1,x2,y2").
|
203 |
+
- steps: Number of inference steps.
|
204 |
+
- guidance_scale: Guidance scale for the inpainting process.
|
205 |
+
- seed: Random seed for reproducibility.
|
206 |
+
"""
|
207 |
+
try:
|
208 |
+
# Read and convert the uploaded image
|
209 |
+
image_data = await file.read()
|
210 |
+
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
211 |
+
|
212 |
+
# Resize image to fit model requirements (must be divisible by 8 for inpainting)
|
213 |
+
width, height = input_image.size
|
214 |
+
factor = 512 / max(width, height)
|
215 |
+
factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
|
216 |
+
width = int((width * factor) // 8) * 8
|
217 |
+
height = int((height * factor) // 8) * 8
|
218 |
+
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
219 |
+
|
220 |
+
# Create a mask for inpainting
|
221 |
+
mask = Image.new("L", (width, height), 0) # Black image (0 = no inpainting)
|
222 |
+
draw = ImageDraw.Draw(mask)
|
223 |
+
|
224 |
+
# Parse the mask coordinates
|
225 |
+
try:
|
226 |
+
x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
|
227 |
+
# Adjust coordinates based on resized image
|
228 |
+
x1 = int(x1 * factor)
|
229 |
+
y1 = int(y1 * factor)
|
230 |
+
x2 = int(x2 * factor)
|
231 |
+
y2 = int(y2 * factor)
|
232 |
+
except ValueError:
|
233 |
+
return {"error": "Invalid mask coordinates format. Use 'x1,y1,x2,y2'."}
|
234 |
+
|
235 |
+
# Draw a white rectangle on the mask (255 = area to inpaint)
|
236 |
+
draw.rectangle([x1, y1, x2, y2], fill=255)
|
237 |
+
|
238 |
+
# Set the random seed for reproducibility
|
239 |
+
generator = torch.manual_seed(seed)
|
240 |
+
|
241 |
+
# Perform inpainting
|
242 |
+
inpainted_image = pipe_inpaint(
|
243 |
+
prompt=prompt,
|
244 |
+
image=input_image,
|
245 |
+
mask_image=mask,
|
246 |
+
num_inference_steps=steps,
|
247 |
+
guidance_scale=guidance_scale,
|
248 |
+
generator=generator,
|
249 |
+
).images[0]
|
250 |
+
|
251 |
+
# Convert the inpainted image to bytes
|
252 |
+
img_byte_arr = io.BytesIO()
|
253 |
+
inpainted_image.save(img_byte_arr, format="PNG")
|
254 |
+
img_byte_arr.seek(0)
|
255 |
+
|
256 |
+
# Return the image as a streaming response
|
257 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
return {"error": str(e)}
|
261 |
+
|
262 |
+
@app.get("/")
|
263 |
+
async def root():
|
264 |
+
"""
|
265 |
+
Root endpoint for basic health check.
|
266 |
+
"""
|
267 |
+
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
# Helper functions
|
272 |
+
def prepare_guided_image(original_image: Image, reference_image: Image, mask_image: Image) -> Image:
|
273 |
+
original_array = np.array(original_image)
|
274 |
+
reference_array = np.array(reference_image)
|
275 |
+
mask_array = np.array(mask_image) / 255.0
|
276 |
+
mask_array = mask_array[:, :, np.newaxis]
|
277 |
+
blended_array = original_array * (1 - mask_array) + reference_array * mask_array
|
278 |
+
return Image.fromarray(blended_array.astype(np.uint8))
|
279 |
+
|
280 |
+
def soften_mask(mask_image: Image, softness: int = 5) -> Image:
|
281 |
+
from PIL import ImageFilter
|
282 |
+
return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))
|
283 |
+
|
284 |
+
def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image:
|
285 |
+
mask = Image.new("L", image_size, 0)
|
286 |
+
draw = ImageDraw.Draw(mask)
|
287 |
+
draw.rectangle([x1, y1, x2, y2], fill=255)
|
288 |
+
return mask
|
289 |
+
|
290 |
+
def segment_tank(tank_image: Image) -> tuple[Image, Image]:
|
291 |
+
tank_array = np.array(tank_image.convert("RGB"))
|
292 |
+
tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
|
293 |
+
hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
|
294 |
+
lower_snow = np.array([0, 0, 180])
|
295 |
+
upper_snow = np.array([180, 50, 255])
|
296 |
+
snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
|
297 |
+
tank_mask = cv2.bitwise_not(snow_mask)
|
298 |
+
kernel = np.ones((5, 5), np.uint8)
|
299 |
+
tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
|
300 |
+
tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
|
301 |
+
tank_mask_image = Image.fromarray(tank_mask, mode="L")
|
302 |
+
tank_array_rgb = np.array(tank_image.convert("RGB"))
|
303 |
+
mask_array = tank_mask / 255.0
|
304 |
+
mask_array = mask_array[:, :, np.newaxis]
|
305 |
+
segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
|
306 |
+
alpha = tank_mask
|
307 |
+
segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
|
308 |
+
segmented_tank_rgba[:, :, :3] = segmented_tank
|
309 |
+
segmented_tank_rgba[:, :, 3] = alpha
|
310 |
+
segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
|
311 |
+
return segmented_tank_image, tank_mask_image
|
312 |
+
|
313 |
+
async def apply_camouflage_to_tank(tank_image: Image) -> Image:
|
314 |
+
segmented_tank, tank_mask = segment_tank(tank_image)
|
315 |
+
segmented_tank.save("segmented_tank.png")
|
316 |
+
tank_mask.save("tank_mask.png")
|
317 |
+
camouflaged_tank = pipe_runway(
|
318 |
+
prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
|
319 |
+
image=segmented_tank.convert("RGB"),
|
320 |
+
mask_image=tank_mask,
|
321 |
+
strength=0.5,
|
322 |
+
guidance_scale=8.0,
|
323 |
+
num_inference_steps=50,
|
324 |
+
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
|
325 |
+
).images[0]
|
326 |
+
camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
|
327 |
+
camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
|
328 |
+
camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
|
329 |
+
camouflaged_tank_image = Image.fromarray(camouflaged_tank_rgba, mode="RGBA")
|
330 |
+
camouflaged_tank_image.save("camouflaged_tank.png")
|
331 |
+
return camouflaged_tank_image
|
332 |
+
|
333 |
+
def fit_image_to_mask(original_image: Image, reference_image: Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
|
334 |
+
mask_width = mask_x2 - mask_x1
|
335 |
+
mask_height = mask_y2 - mask_y1
|
336 |
+
if mask_width <= 0 or mask_height <= 0:
|
337 |
+
raise ValueError("Mask dimensions must be positive")
|
338 |
+
ref_width, ref_height = reference_image.size
|
339 |
+
aspect_ratio = ref_width / ref_height
|
340 |
+
if mask_width / mask_height > aspect_ratio:
|
341 |
+
new_height = mask_height
|
342 |
+
new_width = int(new_height * aspect_ratio)
|
343 |
+
else:
|
344 |
+
new_width = mask_width
|
345 |
+
new_height = int(new_width / aspect_ratio)
|
346 |
+
reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
347 |
+
guided_image = original_image.copy().convert("RGB")
|
348 |
+
paste_x = mask_x1 + (mask_width - new_width) // 2
|
349 |
+
paste_y = mask_y1 + (mask_height - new_height) // 2
|
350 |
+
guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
|
351 |
+
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
|
352 |
+
return guided_image, mask_image
|
353 |
+
|
354 |
+
# Endpoints
|
355 |
+
@app.post("/inpaint/")
|
356 |
+
async def inpaint_image(
|
357 |
+
image: UploadFile = File(...),
|
358 |
+
mask: UploadFile = File(...),
|
359 |
+
prompt: str = "Fill the masked area with appropriate content."
|
360 |
+
):
|
361 |
+
try:
|
362 |
+
image_bytes = await image.read()
|
363 |
+
mask_bytes = await mask.read()
|
364 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
365 |
+
mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
|
366 |
+
if original_image.size != mask_image.size:
|
367 |
+
raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
|
368 |
+
result = pipe_runway(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
|
369 |
+
result_bytes = io.BytesIO()
|
370 |
+
result.save(result_bytes, format="PNG")
|
371 |
+
result_bytes.seek(0)
|
372 |
+
return StreamingResponse(
|
373 |
+
result_bytes,
|
374 |
+
media_type="image/png",
|
375 |
+
headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
|
376 |
+
)
|
377 |
+
except Exception as e:
|
378 |
+
raise HTTPException(status_code=500, detail=f"Error during inpainting: {e}")
|
379 |
+
|
380 |
+
@app.post("/inpaint-with-reference/")
|
381 |
+
async def inpaint_with_reference(
|
382 |
+
image: UploadFile = File(...),
|
383 |
+
reference_image: UploadFile = File(...),
|
384 |
+
prompt: str = "Integrate the reference content naturally into the masked area, matching style and lighting.",
|
385 |
+
mask_x1: int = 100,
|
386 |
+
mask_y1: int = 100,
|
387 |
+
mask_x2: int = 200,
|
388 |
+
mask_y2: int = 200
|
389 |
+
):
|
390 |
+
try:
|
391 |
+
image_bytes = await image.read()
|
392 |
+
reference_bytes = await reference_image.read()
|
393 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
394 |
+
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
|
395 |
+
if original_image.size != reference_image.size:
|
396 |
+
reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
|
397 |
+
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
|
398 |
+
softened_mask = soften_mask(mask_image, softness=5)
|
399 |
+
guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
|
400 |
+
result = pipe_runway(
|
401 |
+
prompt=prompt,
|
402 |
+
image=guided_image,
|
403 |
+
mask_image=softened_mask,
|
404 |
+
strength=0.75,
|
405 |
+
guidance_scale=7.5
|
406 |
+
).images[0]
|
407 |
+
result_bytes = io.BytesIO()
|
408 |
+
result.save(result_bytes, format="PNG")
|
409 |
+
result_bytes.seek(0)
|
410 |
+
return StreamingResponse(
|
411 |
+
result_bytes,
|
412 |
+
media_type="image/png",
|
413 |
+
headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
|
414 |
+
)
|
415 |
+
except Exception as e:
|
416 |
+
raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {e}")
|
417 |
+
|
418 |
+
@app.post("/fit-image-to-mask/")
|
419 |
+
async def fit_image_to_mask_endpoint(
|
420 |
+
image: UploadFile = File(...),
|
421 |
+
reference_image: UploadFile = File(...),
|
422 |
+
mask_x1: int = 200,
|
423 |
+
mask_y1: int = 200,
|
424 |
+
mask_x2: int = 500,
|
425 |
+
mask_y2: int = 500
|
426 |
+
):
|
427 |
+
try:
|
428 |
+
image_bytes = await image.read()
|
429 |
+
reference_bytes = await reference_image.read()
|
430 |
+
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
431 |
+
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
|
432 |
+
camouflaged_tank = await apply_camouflage_to_tank(reference_image)
|
433 |
+
guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
|
434 |
+
guided_image.save("guided_image_before_blending.png")
|
435 |
+
softened_mask = soften_mask(mask_image, softness=2)
|
436 |
+
result = pipe_runway(
|
437 |
+
prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
|
438 |
+
image=guided_image,
|
439 |
+
mask_image=softened_mask,
|
440 |
+
strength=0.2,
|
441 |
+
guidance_scale=7.5,
|
442 |
+
num_inference_steps=50,
|
443 |
+
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
|
444 |
+
).images[0]
|
445 |
+
result_bytes = io.BytesIO()
|
446 |
+
result.save(result_bytes, format="PNG")
|
447 |
+
result_bytes.seek(0)
|
448 |
+
return StreamingResponse(
|
449 |
+
result_bytes,
|
450 |
+
media_type="image/png",
|
451 |
+
headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
|
452 |
+
)
|
453 |
+
except ValueError as ve:
|
454 |
+
raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
|
455 |
+
except Exception as e:
|
456 |
+
raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")
|
457 |
+
|
458 |
+
|
459 |
+
if __name__ == "__main__":
|
460 |
+
import uvicorn
|
461 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
CHANGED
@@ -8,4 +8,6 @@ transformers
|
|
8 |
pillow
|
9 |
numpy
|
10 |
blenderproc
|
11 |
-
python-multipart
|
|
|
|
|
|
8 |
pillow
|
9 |
numpy
|
10 |
blenderproc
|
11 |
+
python-multipart
|
12 |
+
opencv-python
|
13 |
+
opencv-python-headless
|