Spaces:
Paused
Paused
sachin
commited on
Commit
·
e546f76
1
Parent(s):
cb5e4aa
add- inpainint
Browse files- intruct.py +91 -25
intruct.py
CHANGED
@@ -2,9 +2,9 @@ from fastapi import FastAPI, File, UploadFile, Form
|
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
import io
|
4 |
import math
|
5 |
-
from PIL import Image, ImageOps
|
6 |
import torch
|
7 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline
|
8 |
from fastapi import FastAPI, Response
|
9 |
from fastapi.responses import FileResponse
|
10 |
import torch
|
@@ -13,27 +13,30 @@ from huggingface_hub import hf_hub_download, login
|
|
13 |
from safetensors.torch import load_file
|
14 |
from io import BytesIO
|
15 |
import os
|
16 |
-
import base64
|
17 |
-
from typing import List
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Initialize FastAPI app
|
22 |
app = FastAPI()
|
23 |
|
24 |
-
# Load the pre-trained model
|
25 |
model_id = "timbrooks/instruct-pix2pix"
|
26 |
-
|
27 |
model_id, torch_dtype=torch.float16, safety_checker=None
|
28 |
).to("cuda")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Default configuration values
|
31 |
DEFAULT_STEPS = 50
|
32 |
DEFAULT_TEXT_CFG = 7.5
|
33 |
DEFAULT_IMAGE_CFG = 1.5
|
34 |
DEFAULT_SEED = 1371
|
35 |
|
36 |
-
|
37 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
38 |
|
39 |
def load_model():
|
@@ -73,18 +76,16 @@ def load_model():
|
|
73 |
|
74 |
# Load model at startup with error handling
|
75 |
try:
|
76 |
-
|
77 |
except Exception as e:
|
78 |
print(f"Model initialization failed: {str(e)}")
|
79 |
raise
|
80 |
|
81 |
-
|
82 |
-
|
83 |
@app.get("/generate")
|
84 |
async def generate_image(prompt: str):
|
85 |
try:
|
86 |
# Generate image
|
87 |
-
image =
|
88 |
prompt,
|
89 |
num_inference_steps=4,
|
90 |
guidance_scale=0
|
@@ -100,7 +101,6 @@ async def generate_image(prompt: str):
|
|
100 |
except Exception as e:
|
101 |
return {"error": str(e)}
|
102 |
|
103 |
-
# New endpoint to handle a list of prompts
|
104 |
@app.get("/generate_multiple")
|
105 |
async def generate_multiple_images(prompts: List[str]):
|
106 |
try:
|
@@ -109,7 +109,7 @@ async def generate_multiple_images(prompts: List[str]):
|
|
109 |
|
110 |
# Generate an image for each prompt
|
111 |
for prompt in prompts:
|
112 |
-
image =
|
113 |
prompt,
|
114 |
num_inference_steps=4,
|
115 |
guidance_scale=0
|
@@ -136,8 +136,6 @@ async def generate_multiple_images(prompts: List[str]):
|
|
136 |
async def health_check():
|
137 |
return {"status": "healthy"}
|
138 |
|
139 |
-
|
140 |
-
|
141 |
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
|
142 |
"""
|
143 |
Process the input image with the given instruction using InstructPix2Pix.
|
@@ -157,7 +155,7 @@ def process_image(input_image: Image.Image, instruction: str, steps: int, text_c
|
|
157 |
generator = torch.manual_seed(seed)
|
158 |
|
159 |
# Generate the edited image
|
160 |
-
edited_image =
|
161 |
instruction,
|
162 |
image=input_image,
|
163 |
guidance_scale=text_cfg_scale,
|
@@ -179,12 +177,6 @@ async def edit_image(
|
|
179 |
):
|
180 |
"""
|
181 |
Endpoint to edit an image based on a text instruction.
|
182 |
-
- file: The input image to edit.
|
183 |
-
- instruction: The text instruction for editing the image.
|
184 |
-
- steps: Number of inference steps.
|
185 |
-
- text_cfg_scale: Text CFG weight.
|
186 |
-
- image_cfg_scale: Image CFG weight.
|
187 |
-
- seed: Random seed for reproducibility.
|
188 |
"""
|
189 |
# Read and convert the uploaded image
|
190 |
image_data = await file.read()
|
@@ -201,12 +193,86 @@ async def edit_image(
|
|
201 |
# Return the image as a streaming response
|
202 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
@app.get("/")
|
205 |
async def root():
|
206 |
"""
|
207 |
Root endpoint for basic health check.
|
208 |
"""
|
209 |
-
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ to edit images."}
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
import uvicorn
|
|
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
import io
|
4 |
import math
|
5 |
+
from PIL import Image, ImageOps, ImageDraw
|
6 |
import torch
|
7 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionInpaintPipeline
|
8 |
from fastapi import FastAPI, Response
|
9 |
from fastapi.responses import FileResponse
|
10 |
import torch
|
|
|
13 |
from safetensors.torch import load_file
|
14 |
from io import BytesIO
|
15 |
import os
|
16 |
+
import base64
|
17 |
+
from typing import List
|
|
|
|
|
18 |
|
19 |
# Initialize FastAPI app
|
20 |
app = FastAPI()
|
21 |
|
22 |
+
# Load the pre-trained InstructPix2Pix model for editing
|
23 |
model_id = "timbrooks/instruct-pix2pix"
|
24 |
+
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
25 |
model_id, torch_dtype=torch.float16, safety_checker=None
|
26 |
).to("cuda")
|
27 |
|
28 |
+
# Load the pre-trained Inpainting model
|
29 |
+
inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
|
30 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
31 |
+
inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
|
32 |
+
).to("cuda")
|
33 |
+
|
34 |
# Default configuration values
|
35 |
DEFAULT_STEPS = 50
|
36 |
DEFAULT_TEXT_CFG = 7.5
|
37 |
DEFAULT_IMAGE_CFG = 1.5
|
38 |
DEFAULT_SEED = 1371
|
39 |
|
|
|
40 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
41 |
|
42 |
def load_model():
|
|
|
76 |
|
77 |
# Load model at startup with error handling
|
78 |
try:
|
79 |
+
pipe_generate = load_model()
|
80 |
except Exception as e:
|
81 |
print(f"Model initialization failed: {str(e)}")
|
82 |
raise
|
83 |
|
|
|
|
|
84 |
@app.get("/generate")
|
85 |
async def generate_image(prompt: str):
|
86 |
try:
|
87 |
# Generate image
|
88 |
+
image = pipe_generate(
|
89 |
prompt,
|
90 |
num_inference_steps=4,
|
91 |
guidance_scale=0
|
|
|
101 |
except Exception as e:
|
102 |
return {"error": str(e)}
|
103 |
|
|
|
104 |
@app.get("/generate_multiple")
|
105 |
async def generate_multiple_images(prompts: List[str]):
|
106 |
try:
|
|
|
109 |
|
110 |
# Generate an image for each prompt
|
111 |
for prompt in prompts:
|
112 |
+
image = pipe_generate(
|
113 |
prompt,
|
114 |
num_inference_steps=4,
|
115 |
guidance_scale=0
|
|
|
136 |
async def health_check():
|
137 |
return {"status": "healthy"}
|
138 |
|
|
|
|
|
139 |
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
|
140 |
"""
|
141 |
Process the input image with the given instruction using InstructPix2Pix.
|
|
|
155 |
generator = torch.manual_seed(seed)
|
156 |
|
157 |
# Generate the edited image
|
158 |
+
edited_image = pipe_edit(
|
159 |
instruction,
|
160 |
image=input_image,
|
161 |
guidance_scale=text_cfg_scale,
|
|
|
177 |
):
|
178 |
"""
|
179 |
Endpoint to edit an image based on a text instruction.
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
"""
|
181 |
# Read and convert the uploaded image
|
182 |
image_data = await file.read()
|
|
|
193 |
# Return the image as a streaming response
|
194 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
195 |
|
196 |
+
# New endpoint for inpainting
|
197 |
+
@app.post("/inpaint/")
|
198 |
+
async def inpaint_image(
|
199 |
+
file: UploadFile = File(...),
|
200 |
+
prompt: str = Form(...),
|
201 |
+
mask_coordinates: str = Form(...), # Format: "x1,y1,x2,y2" (top-left and bottom-right of the rectangle to inpaint)
|
202 |
+
steps: int = Form(default=DEFAULT_STEPS),
|
203 |
+
guidance_scale: float = Form(default=7.5),
|
204 |
+
seed: int = Form(default=DEFAULT_SEED)
|
205 |
+
):
|
206 |
+
"""
|
207 |
+
Endpoint to perform inpainting on an image.
|
208 |
+
- file: The input image to inpaint.
|
209 |
+
- prompt: The text prompt describing what to generate in the inpainted area.
|
210 |
+
- mask_coordinates: Coordinates of the rectangular area to inpaint (format: "x1,y1,x2,y2").
|
211 |
+
- steps: Number of inference steps.
|
212 |
+
- guidance_scale: Guidance scale for the inpainting process.
|
213 |
+
- seed: Random seed for reproducibility.
|
214 |
+
"""
|
215 |
+
try:
|
216 |
+
# Read and convert the uploaded image
|
217 |
+
image_data = await file.read()
|
218 |
+
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
219 |
+
|
220 |
+
# Resize image to fit model requirements (must be divisible by 8 for inpainting)
|
221 |
+
width, height = input_image.size
|
222 |
+
factor = 512 / max(width, height)
|
223 |
+
factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
|
224 |
+
width = int((width * factor) // 8) * 8
|
225 |
+
height = int((height * factor) // 8) * 8
|
226 |
+
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
227 |
+
|
228 |
+
# Create a mask for inpainting
|
229 |
+
mask = Image.new("L", (width, height), 0) # Black image (0 = no inpainting)
|
230 |
+
draw = ImageDraw.Draw(mask)
|
231 |
+
|
232 |
+
# Parse the mask coordinates
|
233 |
+
try:
|
234 |
+
x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
|
235 |
+
# Adjust coordinates based on resized image
|
236 |
+
x1 = int(x1 * factor)
|
237 |
+
y1 = int(y1 * factor)
|
238 |
+
x2 = int(x2 * factor)
|
239 |
+
y2 = int(y2 * factor)
|
240 |
+
except ValueError:
|
241 |
+
return {"error": "Invalid mask coordinates format. Use 'x1,y1,x2,y2'."}
|
242 |
+
|
243 |
+
# Draw a white rectangle on the mask (255 = area to inpaint)
|
244 |
+
draw.rectangle([x1, y1, x2, y2], fill=255)
|
245 |
+
|
246 |
+
# Set the random seed for reproducibility
|
247 |
+
generator = torch.manual_seed(seed)
|
248 |
+
|
249 |
+
# Perform inpainting
|
250 |
+
inpainted_image = pipe_inpaint(
|
251 |
+
prompt=prompt,
|
252 |
+
image=input_image,
|
253 |
+
mask_image=mask,
|
254 |
+
num_inference_steps=steps,
|
255 |
+
guidance_scale=guidance_scale,
|
256 |
+
generator=generator,
|
257 |
+
).images[0]
|
258 |
+
|
259 |
+
# Convert the inpainted image to bytes
|
260 |
+
img_byte_arr = io.BytesIO()
|
261 |
+
inpainted_image.save(img_byte_arr, format="PNG")
|
262 |
+
img_byte_arr.seek(0)
|
263 |
+
|
264 |
+
# Return the image as a streaming response
|
265 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
return {"error": str(e)}
|
269 |
+
|
270 |
@app.get("/")
|
271 |
async def root():
|
272 |
"""
|
273 |
Root endpoint for basic health check.
|
274 |
"""
|
275 |
+
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
|
276 |
|
277 |
if __name__ == "__main__":
|
278 |
import uvicorn
|