File size: 5,978 Bytes
61aaf2a
ff0a367
61aaf2a
ff0a367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080356
ff0a367
 
 
 
 
 
 
 
b080356
ff0a367
b080356
 
 
ff0a367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080356
 
ff0a367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61aaf2a
ff0a367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080356
ff0a367
 
61aaf2a
 
ff0a367
 
 
 
 
61aaf2a
 
 
ff0a367
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import os
from llama_cpp import Llama
import datetime
from huggingface_hub import hf_hub_download  

#MODEL SETTINGS also for DISPLAY
convHistory = ''
modelfile = hf_hub_download(
        repo_id=os.environ.get("REPO_ID", "slasiyal/deepseek-coder-1.3b-instruct.gguf"),
        filename=os.environ.get("MODEL_FILE", "deepseek-coder-1.3b-instruct.gguf"),
    )
repetitionpenalty = 1.15
contextlength=4096
logfile = 'logs.txt'
print("loading model...")
stt = datetime.datetime.now()
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path=modelfile,  # Download the model file first
  n_ctx=contextlength,  # The max sequence length to use - note that longer sequence lengths require much more resources
  #n_threads=2,            # The number of CPU threads to use, tailor to your system and the resulting performance
)
dt = datetime.datetime.now() - stt
print(f"Model loaded in {dt}")

def writehistory(text):
    with open(logfile, 'a') as f:
        f.write(text)
        f.write('\n')
    f.close()

"""
gr.themes.Base()
gr.themes.Default()
gr.themes.Glass()
gr.themes.Monochrome()
gr.themes.Soft()
"""
def combine(a, b, c, d,e,f):
    global convHistory
    import datetime
    SYSTEM_PROMPT = f"""{a}


    """ 
    temperature = c
    max_new_tokens = d
    repeat_penalty = f
    top_p = e
    prompt = f"<|user|>\n{b}<|endoftext|>"
    start = datetime.datetime.now()
    generation = ""
    delta = ""
    prompt_tokens = f"Prompt Tokens: {len(llm.tokenize(bytes(prompt,encoding='utf-8')))}"
    generated_text = ""
    answer_tokens = ''
    total_tokens = ''   
    for character in llm(prompt, 
                max_tokens=512, 
                stop=["</s>"],
                temperature =  0.9,
                repeat_penalty = 1,
                top_p =  0.9,   # Example stop token - not necessarily correct for this specific model! Please check before using.
                echo=False, 
                stream=True):
        generation += character["choices"][0]["text"]

        answer_tokens = f"Out Tkns: {len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        total_tokens = f"Total Tkns: {len(llm.tokenize(bytes(prompt,encoding='utf-8'))) + len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        delta = datetime.datetime.now() - start
        yield generation, delta, prompt_tokens, answer_tokens, total_tokens
    timestamp = datetime.datetime.now()
    logger = f"""time: {timestamp}\n Temp: {temperature} - MaxNewTokens: {max_new_tokens} - RepPenalty: 1.5 \nPROMPT: \n{prompt}\nStableZephyr3B: {generation}\nGenerated in {delta}\nPromptTokens: {prompt_tokens}   Output Tokens: {answer_tokens}  Total Tokens: {total_tokens}\n\n---\n\n"""
    writehistory(logger)
    convHistory = convHistory + prompt + "\n" + generation + "\n"
    print(convHistory)
    return generation, delta, prompt_tokens, answer_tokens, total_tokens    
    #return generation, delta


# MAIN GRADIO INTERFACE
with gr.Blocks(theme='Medguy/base2') as demo:   #theme=gr.themes.Glass()  #theme='remilia/Ghostly'
    #TITLE SECTION
    with gr.Row(variant='compact'):
            with gr.Column(scale=12):
                gr.HTML("<center>"
                + "<h3>Prompt Engineering Playground!</h3>"
                + "<h1>🐦 deepseek-coder-1.3b </h2></center>")  
            gr.Image(value='https://modishcard.com/app/assets/icons/ModishCard_Logo6-02.svg', height=95, show_label = False, 
                     show_download_button = False, container = False)    
    # INTERACTIVE INFOGRAPHIC SECTION
    with gr.Row():
        with gr.Column(min_width=80):
            gentime = gr.Textbox(value="", placeholder="Generation Time:", min_width=50, show_label=False)                          
        with gr.Column(min_width=80):
            prompttokens = gr.Textbox(value="", placeholder="Prompt Tkn:", min_width=50, show_label=False)
        with gr.Column(min_width=80):
            outputokens = gr.Textbox(value="", placeholder="Output Tkn:", min_width=50, show_label=False)            
        with gr.Column(min_width=80):
            totaltokens = gr.Textbox(value="", placeholder="Total Tokens:", min_width=50, show_label=False)  

    # PLAYGROUND INTERFACE SECTION
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
            f"""
            ### Tunning Parameters""")
            temp = gr.Slider(label="Temperature",minimum=0.0, maximum=1.0, step=0.01, value=0.42)
            top_p = gr.Slider(label="Top_P",minimum=0.0, maximum=1.0, step=0.01, value=0.8)
            repPen = gr.Slider(label="Repetition Penalty",minimum=0.0, maximum=4.0, step=0.01, value=1.2)
            max_len = gr.Slider(label="Maximum output lenght", minimum=10,maximum=(contextlength-500),step=2, value=900)
            gr.Markdown(
            """
            Fill the System Prompt and User Prompt
            And then click the Button below
            """)
            btn = gr.Button(value="🐦 Generate", variant='primary')
            gr.Markdown(
            f"""
            - **Prompt Template**: OpenChat 🐦
            - **Repetition Penalty**: {repetitionpenalty}
            - **Context Lenght**: {contextlength} tokens
            - **LLM Engine**: CTransformers
            - **Model**: 🐦 deepseek-coder-1.3b
            - **Log File**: {logfile}
            """) 


        with gr.Column(scale=4):
            txt = gr.Textbox(label="System Prompt", value = "", placeholder = "This models does not have any System prompt...",lines=1, interactive = False)
            txt_2 = gr.Textbox(label="User Prompt", lines=6)
            txt_3 = gr.Textbox(value="", label="Output", lines = 13, show_copy_button=True)
            btn.click(combine, inputs=[txt, txt_2,temp,max_len,top_p,repPen], outputs=[txt_3,gentime,prompttokens,outputokens,totaltokens])


if __name__ == "__main__":
    demo.launch(inbrowser=True)