|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Arithmetic coder.""" |
|
|
|
import io |
|
import math |
|
import random |
|
import typing as tp |
|
import torch |
|
|
|
from ..binary import BitPacker, BitUnpacker |
|
|
|
|
|
def build_stable_quantized_cdf( |
|
pdf: torch.Tensor, |
|
total_range_bits: int, |
|
roundoff: float = 1e-8, |
|
min_range: int = 2, |
|
check: bool = True, |
|
) -> torch.Tensor: |
|
"""Turn the given PDF into a quantized CDF that splits |
|
[0, 2 ** self.total_range_bits - 1] into chunks of size roughly proportional |
|
to the PDF. |
|
|
|
Args: |
|
pdf (torch.Tensor): probability distribution, shape should be `[N]`. |
|
total_range_bits (int): see `ArithmeticCoder`, the typical range we expect |
|
during the coding process is `[0, 2 ** total_range_bits - 1]`. |
|
roundoff (float): will round the pdf up to that level to remove difference coming |
|
from e.g. evaluating the Language Model on different architectures. |
|
min_range (int): minimum range width. Should always be at least 2 for numerical |
|
stability. Use this to avoid pathological behavior is a value |
|
that is expected to be rare actually happens in real life. |
|
check (bool): if True, checks that nothing bad happened, can be deactivated for speed. |
|
""" |
|
pdf = pdf.detach() |
|
if roundoff: |
|
pdf = (pdf / roundoff).floor() * roundoff |
|
|
|
total_range = 2**total_range_bits |
|
cardinality = len(pdf) |
|
alpha = min_range * cardinality / total_range |
|
assert alpha <= 1, "you must reduce min_range" |
|
ranges = (((1 - alpha) * total_range) * pdf).floor().long() |
|
ranges += min_range |
|
quantized_cdf = torch.cumsum(ranges, dim=-1) |
|
if min_range < 2: |
|
raise ValueError("min_range must be at least 2.") |
|
if check: |
|
assert quantized_cdf[-1] <= 2**total_range_bits, quantized_cdf[-1] |
|
if ( |
|
(quantized_cdf[1:] - quantized_cdf[:-1]) < min_range |
|
).any() or quantized_cdf[0] < min_range: |
|
raise ValueError("You must increase your total_range_bits.") |
|
return quantized_cdf |
|
|
|
|
|
class ArithmeticCoder: |
|
"""ArithmeticCoder, |
|
Let us take a distribution `p` over `N` symbols, and assume we have a stream |
|
of random variables `s_t` sampled from `p`. Let us assume that we have a budget |
|
of `B` bits that we can afford to write on device. There are `2**B` possible numbers, |
|
corresponding to the range `[0, 2 ** B - 1]`. We can map each of those number to a single |
|
sequence `(s_t)` by doing the following: |
|
|
|
1) Initialize the current range to` [0 ** 2 B - 1]`. |
|
2) For each time step t, split the current range into contiguous chunks, |
|
one for each possible outcome, with size roughly proportional to `p`. |
|
For instance, if `p = [0.75, 0.25]`, and the range is `[0, 3]`, the chunks |
|
would be `{[0, 2], [3, 3]}`. |
|
3) Select the chunk corresponding to `s_t`, and replace the current range with this. |
|
4) When done encoding all the values, just select any value remaining in the range. |
|
|
|
You will notice that this procedure can fail: for instance if at any point in time |
|
the range is smaller than `N`, then we can no longer assign a non-empty chunk to each |
|
possible outcome. Intuitively, the more likely a value is, the less the range width |
|
will reduce, and the longer we can go on encoding values. This makes sense: for any efficient |
|
coding scheme, likely outcomes would take less bits, and more of them can be coded |
|
with a fixed budget. |
|
|
|
In practice, we do not know `B` ahead of time, but we have a way to inject new bits |
|
when the current range decreases below a given limit (given by `total_range_bits`), without |
|
having to redo all the computations. If we encode mostly likely values, we will seldom |
|
need to inject new bits, but a single rare value can deplete our stock of entropy! |
|
|
|
In this explanation, we assumed that the distribution `p` was constant. In fact, the present |
|
code works for any sequence `(p_t)` possibly different for each timestep. |
|
We also assume that `s_t ~ p_t`, but that doesn't need to be true, although the smaller |
|
the KL between the true distribution and `p_t`, the most efficient the coding will be. |
|
|
|
Args: |
|
fo (IO[bytes]): file-like object to which the bytes will be written to. |
|
total_range_bits (int): the range `M` described above is `2 ** total_range_bits. |
|
Any time the current range width fall under this limit, new bits will |
|
be injected to rescale the initial range. |
|
""" |
|
|
|
def __init__(self, fo: tp.IO[bytes], total_range_bits: int = 24): |
|
assert total_range_bits <= 30 |
|
self.total_range_bits = total_range_bits |
|
self.packer = BitPacker(bits=1, fo=fo) |
|
self.low: int = 0 |
|
self.high: int = 0 |
|
self.max_bit: int = -1 |
|
self._dbg: tp.List[tp.Any] = [] |
|
self._dbg2: tp.List[tp.Any] = [] |
|
|
|
@property |
|
def delta(self) -> int: |
|
"""Return the current range width.""" |
|
return self.high - self.low + 1 |
|
|
|
def _flush_common_prefix(self): |
|
|
|
|
|
|
|
assert self.high >= self.low, (self.low, self.high) |
|
assert self.high < 2 ** (self.max_bit + 1) |
|
while self.max_bit >= 0: |
|
b1 = self.low >> self.max_bit |
|
b2 = self.high >> self.max_bit |
|
if b1 == b2: |
|
self.low -= b1 << self.max_bit |
|
self.high -= b1 << self.max_bit |
|
assert self.high >= self.low, (self.high, self.low, self.max_bit) |
|
assert self.low >= 0 |
|
self.max_bit -= 1 |
|
self.packer.push(b1) |
|
else: |
|
break |
|
|
|
def push(self, symbol: int, quantized_cdf: torch.Tensor): |
|
"""Push the given symbol on the stream, flushing out bits |
|
if possible. |
|
|
|
Args: |
|
symbol (int): symbol to encode with the AC. |
|
quantized_cdf (torch.Tensor): use `build_stable_quantized_cdf` |
|
to build this from your pdf estimate. |
|
""" |
|
while self.delta < 2**self.total_range_bits: |
|
self.low *= 2 |
|
self.high = self.high * 2 + 1 |
|
self.max_bit += 1 |
|
|
|
range_low = 0 if symbol == 0 else quantized_cdf[symbol - 1].item() |
|
range_high = quantized_cdf[symbol].item() - 1 |
|
effective_low = int( |
|
math.ceil(range_low * (self.delta / (2**self.total_range_bits))) |
|
) |
|
effective_high = int( |
|
math.floor(range_high * (self.delta / (2**self.total_range_bits))) |
|
) |
|
assert self.low <= self.high |
|
self.high = self.low + effective_high |
|
self.low = self.low + effective_low |
|
assert self.low <= self.high, ( |
|
effective_low, |
|
effective_high, |
|
range_low, |
|
range_high, |
|
) |
|
self._dbg.append((self.low, self.high)) |
|
self._dbg2.append((self.low, self.high)) |
|
outs = self._flush_common_prefix() |
|
assert self.low <= self.high |
|
assert self.max_bit >= -1 |
|
assert self.max_bit <= 61, self.max_bit |
|
return outs |
|
|
|
def flush(self): |
|
"""Flush the remaining information to the stream.""" |
|
while self.max_bit >= 0: |
|
b1 = (self.low >> self.max_bit) & 1 |
|
self.packer.push(b1) |
|
self.max_bit -= 1 |
|
self.packer.flush() |
|
|
|
|
|
class ArithmeticDecoder: |
|
"""ArithmeticDecoder, see `ArithmeticCoder` for a detailed explanation. |
|
|
|
Note that this must be called with **exactly** the same parameters and sequence |
|
of quantized cdf as the arithmetic encoder or the wrong values will be decoded. |
|
|
|
If the AC encoder current range is [L, H], with `L` and `H` having the some common |
|
prefix (i.e. the same most significant bits), then this prefix will be flushed to the stream. |
|
For instances, having read 3 bits `b1 b2 b3`, we know that `[L, H]` is contained inside |
|
`[b1 b2 b3 0 ... 0 b1 b3 b3 1 ... 1]`. Now this specific sub-range can only be obtained |
|
for a specific sequence of symbols and a binary-search allows us to decode those symbols. |
|
At some point, the prefix `b1 b2 b3` will no longer be sufficient to decode new symbols, |
|
and we will need to read new bits from the stream and repeat the process. |
|
|
|
""" |
|
|
|
def __init__(self, fo: tp.IO[bytes], total_range_bits: int = 24): |
|
self.total_range_bits = total_range_bits |
|
self.low: int = 0 |
|
self.high: int = 0 |
|
self.current: int = 0 |
|
self.max_bit: int = -1 |
|
self.unpacker = BitUnpacker(bits=1, fo=fo) |
|
|
|
self._dbg: tp.List[tp.Any] = [] |
|
self._dbg2: tp.List[tp.Any] = [] |
|
self._last: tp.Any = None |
|
|
|
@property |
|
def delta(self) -> int: |
|
return self.high - self.low + 1 |
|
|
|
def _flush_common_prefix(self): |
|
|
|
|
|
while self.max_bit >= 0: |
|
b1 = self.low >> self.max_bit |
|
b2 = self.high >> self.max_bit |
|
if b1 == b2: |
|
self.low -= b1 << self.max_bit |
|
self.high -= b1 << self.max_bit |
|
self.current -= b1 << self.max_bit |
|
assert self.high >= self.low |
|
assert self.low >= 0 |
|
self.max_bit -= 1 |
|
else: |
|
break |
|
|
|
def pull(self, quantized_cdf: torch.Tensor) -> tp.Optional[int]: |
|
"""Pull a symbol, reading as many bits from the stream as required. |
|
This returns `None` when the stream has been exhausted. |
|
|
|
Args: |
|
quantized_cdf (torch.Tensor): use `build_stable_quantized_cdf` |
|
to build this from your pdf estimate. This must be **exatly** |
|
the same cdf as the one used at encoding time. |
|
""" |
|
while self.delta < 2**self.total_range_bits: |
|
bit = self.unpacker.pull() |
|
if bit is None: |
|
return None |
|
self.low *= 2 |
|
self.high = self.high * 2 + 1 |
|
self.current = self.current * 2 + bit |
|
self.max_bit += 1 |
|
|
|
def bin_search(low_idx: int, high_idx: int): |
|
|
|
if high_idx < low_idx: |
|
raise RuntimeError("Binary search failed") |
|
mid = (low_idx + high_idx) // 2 |
|
range_low = quantized_cdf[mid - 1].item() if mid > 0 else 0 |
|
range_high = quantized_cdf[mid].item() - 1 |
|
effective_low = int( |
|
math.ceil(range_low * (self.delta / (2**self.total_range_bits))) |
|
) |
|
effective_high = int( |
|
math.floor(range_high * (self.delta / (2**self.total_range_bits))) |
|
) |
|
low = effective_low + self.low |
|
high = effective_high + self.low |
|
if self.current >= low: |
|
if self.current <= high: |
|
return (mid, low, high, self.current) |
|
else: |
|
return bin_search(mid + 1, high_idx) |
|
else: |
|
return bin_search(low_idx, mid - 1) |
|
|
|
self._last = (self.low, self.high, self.current, self.max_bit) |
|
sym, self.low, self.high, self.current = bin_search(0, len(quantized_cdf) - 1) |
|
self._dbg.append((self.low, self.high, self.current)) |
|
self._flush_common_prefix() |
|
self._dbg2.append((self.low, self.high, self.current)) |
|
|
|
return sym |
|
|
|
|
|
def test(): |
|
torch.manual_seed(1234) |
|
random.seed(1234) |
|
for _ in range(4): |
|
pdfs = [] |
|
cardinality = random.randrange(4000) |
|
steps = random.randrange(100, 500) |
|
fo = io.BytesIO() |
|
encoder = ArithmeticCoder(fo) |
|
symbols = [] |
|
for step in range(steps): |
|
pdf = torch.softmax(torch.randn(cardinality), dim=0) |
|
pdfs.append(pdf) |
|
q_cdf = build_stable_quantized_cdf(pdf, encoder.total_range_bits) |
|
symbol = torch.multinomial(pdf, 1).item() |
|
symbols.append(symbol) |
|
encoder.push(symbol, q_cdf) |
|
encoder.flush() |
|
|
|
fo.seek(0) |
|
decoder = ArithmeticDecoder(fo) |
|
for idx, (pdf, symbol) in enumerate(zip(pdfs, symbols)): |
|
q_cdf = build_stable_quantized_cdf(pdf, encoder.total_range_bits) |
|
decoded_symbol = decoder.pull(q_cdf) |
|
assert decoded_symbol == symbol, idx |
|
assert decoder.pull(torch.zeros(1)) is None |
|
|
|
|
|
if __name__ == "__main__": |
|
test() |
|
|