Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- saved cap/02_cap.ipynb +0 -0
- saved cap/Final_model.joblib +3 -0
- saved cap/app.py +97 -0
- saved cap/preprocessor.joblib +3 -0
- saved cap/requirement.txt +8 -0
saved cap/02_cap.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
saved cap/Final_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d76e5eb2277cb07b6faa1e6c40f29d496e9f33fa26ed423863fc1f690c1171f
|
3 |
+
size 1119
|
saved cap/app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import modules
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import joblib
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
cwd = os.getcwd()
|
11 |
+
|
12 |
+
destination = os.path.join(cwd, "saved cap")
|
13 |
+
|
14 |
+
Final_model_file_path = os.path.join(destination, "Final_model.joblib")
|
15 |
+
preprocessor_file_path = os.path.join(destination, "preprocessor.joblib")
|
16 |
+
|
17 |
+
|
18 |
+
Final_model = joblib.load(Final_model_file_path)
|
19 |
+
preprocessor = joblib.load(preprocessor_file_path)
|
20 |
+
|
21 |
+
|
22 |
+
return Final_model, preprocessor
|
23 |
+
|
24 |
+
Final_model, preprocessor = load_model()
|
25 |
+
|
26 |
+
|
27 |
+
#define prediction function
|
28 |
+
def make_prediction(REGION, TENURE, MONTANT, FREQUENCE_RECH, REVENUE, ARPU_SEGMENT, FREQUENCE, DATA_VOLUME, ON_NET, ORANGE, TIGO, ZONE1, ZONE2,MRG, REGULARITY, FREQ_TOP_PACK):
|
29 |
+
#make a dataframe from input data
|
30 |
+
input_data = pd.DataFrame({'REGION':[REGION],
|
31 |
+
'TENURE':[TENURE],
|
32 |
+
'MONTANT':[MONTANT],
|
33 |
+
'FREQUENCE_RECH':[FREQUENCE_RECH],
|
34 |
+
'REVENUE':[REVENUE],
|
35 |
+
'ARPU_SEGMENT':[ARPU_SEGMENT],
|
36 |
+
'FREQUENCE':[FREQUENCE],
|
37 |
+
'DATA_VOLUME':[DATA_VOLUME],
|
38 |
+
'ON_NET':[ON_NET],
|
39 |
+
'ORANGE':[ORANGE],
|
40 |
+
'TIGO':[TIGO],
|
41 |
+
'ZONE1':[ZONE1],
|
42 |
+
'ZONE2':[ZONE2],
|
43 |
+
'MRG':[MRG],
|
44 |
+
'REGULARITY':[REGULARITY],
|
45 |
+
'FREQ_TOP_PACK':[FREQ_TOP_PACK]})
|
46 |
+
|
47 |
+
transformer = preprocessor.transform(input_data)
|
48 |
+
|
49 |
+
predt = Final_model.predict(transformer)
|
50 |
+
#return prediction
|
51 |
+
if predt[0]==1:
|
52 |
+
return "Customer will Churn"
|
53 |
+
return "Customer will not Churn"
|
54 |
+
|
55 |
+
|
56 |
+
#create the input components for gradio
|
57 |
+
REGION = gr.inputs.Dropdown(choices =['DAKAR', 'THIES', 'SAINT-LOUIS', 'LOUGA', 'KAOLACK', 'DIOURBEL', 'TAMBACOUNDA' 'KAFFRINE,KOLDA', 'FATICK', 'MATAM', 'ZIGUINCHOR', 'SEDHIOU', 'KEDOUGOU'])
|
58 |
+
TENURE = gr.inputs.Dropdown(choices =['K > 24 month', 'I 18-21 month', 'H 15-18 month', 'G 12-15 month', 'J 21-24 month', 'F 9-12 month', 'E 6-9 month', 'D 3-6 month'])
|
59 |
+
MONTANT = gr.inputs.Number()
|
60 |
+
FREQUENCE_RECH = gr.Number()
|
61 |
+
REVENUE = gr.Number()
|
62 |
+
ARPU_SEGMENT = gr.Number()
|
63 |
+
FREQUENCE = gr.Number()
|
64 |
+
DATA_VOLUME = gr.Number()
|
65 |
+
ON_NET = gr.Number()
|
66 |
+
ORANGE = gr.Number()
|
67 |
+
TIGO = gr.Number()
|
68 |
+
ZONE1 = gr.Number()
|
69 |
+
ZONE2 = gr.Number()
|
70 |
+
MRG = gr.inputs.Dropdown(choices =['NO'])
|
71 |
+
REGULARITY = gr.Number()
|
72 |
+
FREQ_TOP_PACK = gr.Number()
|
73 |
+
|
74 |
+
output = gr.Textbox(label='Prediction')
|
75 |
+
#create the interface component
|
76 |
+
|
77 |
+
app = gr.Interface(fn =make_prediction,inputs =[REGION,
|
78 |
+
TENURE,
|
79 |
+
MONTANT,
|
80 |
+
FREQUENCE_RECH,
|
81 |
+
REVENUE,
|
82 |
+
ARPU_SEGMENT,
|
83 |
+
FREQUENCE,
|
84 |
+
DATA_VOLUME,
|
85 |
+
ON_NET,
|
86 |
+
ORANGE,
|
87 |
+
TIGO,
|
88 |
+
ZONE1,
|
89 |
+
ZONE2,
|
90 |
+
MRG,
|
91 |
+
REGULARITY,
|
92 |
+
FREQ_TOP_PACK],
|
93 |
+
title ="Customer Churn Predictor",
|
94 |
+
description="Enter the feilds Below and click the submit button to Make Your Prediction",
|
95 |
+
outputs = output)
|
96 |
+
|
97 |
+
app.launch(share = True, debug = True)
|
saved cap/preprocessor.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cb13536b3299f65ac185dbcf617d8d8ea65c669d452669245675c75798c0a05
|
3 |
+
size 5424
|
saved cap/requirement.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
Pillow
|
6 |
+
protobuf
|
7 |
+
scikit-learn
|
8 |
+
gradio
|