{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "61A2gXKthY-v",
"outputId": "a2d34d52-dca4-44f5-ecbc-a9a75474ba3f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "DiRU7RxMhXlB"
},
"outputs": [],
"source": [
"# Data Handling and Exploration\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits.mplot3d import Axes3D # Import for 3D plotting\n",
"import seaborn as sns\n",
"from pylab import rcParams\n",
"sns.set_style('darkgrid')\n",
"rcParams['figure.figsize'] = 8,8\n",
"import plotly.express as px\n",
"import os\n",
"\n",
"\n",
"# Data Preprocessing\n",
"from sklearn import preprocessing\n",
"#from feature_engine import imputation\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.model_selection import RepeatedStratifiedKFold, GridSearchCV, RandomizedSearchCV\n",
"from sklearn.inspection import permutation_importance\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder\n",
"from imblearn.over_sampling import RandomOverSampler\n",
"from imblearn.over_sampling import SMOTE\n",
"import scipy.stats as stats\n",
"from scipy.stats import skew\n",
"\n",
"\n",
"# Exploratory Data Analysis\n",
"#from pandas_profiling import ProfileReport\n",
"\n",
"\n",
"# Machine Learning\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from xgboost import XGBClassifier\n",
"from sklearn.ensemble import GradientBoostingClassifier\n",
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import HistGradientBoostingClassifier\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.linear_model import SGDClassifier\n",
"\n",
"\n",
"\n",
"# Model Evaluation and Metrics\n",
"from sklearn.metrics import f1_score, accuracy_score, classification_report, roc_auc_score, roc_curve\n",
"#from yellowbrick.classifier import ClassificationReport, ROCAUC\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.feature_selection import RFE\n",
"\n",
"\n",
"# Deployment and Monitoring\n",
"#import docker\n",
"\n",
"# Saving Model\n",
"from joblib import dump\n",
"import pickle\n",
"\n",
"\n",
"#Other libraries\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "VkfE8V27hXlN"
},
"outputs": [],
"source": [
"train_df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/cap/Train.csv')\n",
"test_df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/cap/Test.csv')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 330
},
"id": "5woagJsChXlO",
"outputId": "f9841f3b-a8e6-4db5-bfea-4487635e3895"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" user_id REGION TENURE \\\n",
"0 7ee9e11e342e27c70455960acc80d3f91c1286d1 DAKAR K > 24 month \n",
"1 50443f42bdc92b10388fc56e520e4421a5fa655c NaN K > 24 month \n",
"2 da90b5c1a9b204c186079f89969aa01cb03c91b2 NaN K > 24 month \n",
"3 364ec1b424cdc64c25441a444a16930289a0051e SAINT-LOUIS K > 24 month \n",
"4 d5a5247005bc6d41d3d99f4ef312ebb5f640f2cb DAKAR K > 24 month \n",
"\n",
" MONTANT FREQUENCE_RECH REVENUE ARPU_SEGMENT FREQUENCE DATA_VOLUME \\\n",
"0 20000.0 47.0 21602.0 7201.0 52.0 8835.0 \n",
"1 NaN NaN NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN NaN NaN \n",
"3 7900.0 19.0 7896.0 2632.0 25.0 9385.0 \n",
"4 12350.0 21.0 12351.0 4117.0 29.0 9360.0 \n",
"\n",
" ON_NET ORANGE TIGO ZONE1 ZONE2 MRG REGULARITY \\\n",
"0 3391.0 396.0 185.0 NaN NaN NO 62 \n",
"1 NaN NaN NaN NaN NaN NO 3 \n",
"2 NaN NaN NaN NaN NaN NO 1 \n",
"3 27.0 46.0 20.0 NaN 2.0 NO 61 \n",
"4 66.0 102.0 34.0 NaN NaN NO 56 \n",
"\n",
" TOP_PACK FREQ_TOP_PACK CHURN \n",
"0 On net 200F=Unlimited _call24H 30.0 0 \n",
"1 NaN NaN 0 \n",
"2 NaN NaN 0 \n",
"3 Data:490F=1GB,7d 7.0 0 \n",
"4 All-net 500F=2000F;5d 11.0 0 "
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" user_id | \n",
" REGION | \n",
" TENURE | \n",
" MONTANT | \n",
" FREQUENCE_RECH | \n",
" REVENUE | \n",
" ARPU_SEGMENT | \n",
" FREQUENCE | \n",
" DATA_VOLUME | \n",
" ON_NET | \n",
" ORANGE | \n",
" TIGO | \n",
" ZONE1 | \n",
" ZONE2 | \n",
" MRG | \n",
" REGULARITY | \n",
" TOP_PACK | \n",
" FREQ_TOP_PACK | \n",
" CHURN | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 7ee9e11e342e27c70455960acc80d3f91c1286d1 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 20000.0 | \n",
" 47.0 | \n",
" 21602.0 | \n",
" 7201.0 | \n",
" 52.0 | \n",
" 8835.0 | \n",
" 3391.0 | \n",
" 396.0 | \n",
" 185.0 | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 62 | \n",
" On net 200F=Unlimited _call24H | \n",
" 30.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 50443f42bdc92b10388fc56e520e4421a5fa655c | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" da90b5c1a9b204c186079f89969aa01cb03c91b2 | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 364ec1b424cdc64c25441a444a16930289a0051e | \n",
" SAINT-LOUIS | \n",
" K > 24 month | \n",
" 7900.0 | \n",
" 19.0 | \n",
" 7896.0 | \n",
" 2632.0 | \n",
" 25.0 | \n",
" 9385.0 | \n",
" 27.0 | \n",
" 46.0 | \n",
" 20.0 | \n",
" NaN | \n",
" 2.0 | \n",
" NO | \n",
" 61 | \n",
" Data:490F=1GB,7d | \n",
" 7.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" d5a5247005bc6d41d3d99f4ef312ebb5f640f2cb | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 12350.0 | \n",
" 21.0 | \n",
" 12351.0 | \n",
" 4117.0 | \n",
" 29.0 | \n",
" 9360.0 | \n",
" 66.0 | \n",
" 102.0 | \n",
" 34.0 | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 56 | \n",
" All-net 500F=2000F;5d | \n",
" 11.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 4
}
],
"source": [
"train_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XO64rNYFhXlR",
"outputId": "8f880187-48d7-4c96-b639-c888421fba1e"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"RangeIndex: 1077024 entries, 0 to 1077023\n",
"Data columns (total 19 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 user_id 1077024 non-null object \n",
" 1 REGION 652687 non-null object \n",
" 2 TENURE 1077024 non-null object \n",
" 3 MONTANT 699139 non-null float64\n",
" 4 FREQUENCE_RECH 699139 non-null float64\n",
" 5 REVENUE 714669 non-null float64\n",
" 6 ARPU_SEGMENT 714669 non-null float64\n",
" 7 FREQUENCE 714669 non-null float64\n",
" 8 DATA_VOLUME 547261 non-null float64\n",
" 9 ON_NET 683850 non-null float64\n",
" 10 ORANGE 629880 non-null float64\n",
" 11 TIGO 432250 non-null float64\n",
" 12 ZONE1 84898 non-null float64\n",
" 13 ZONE2 68794 non-null float64\n",
" 14 MRG 1077024 non-null object \n",
" 15 REGULARITY 1077024 non-null int64 \n",
" 16 TOP_PACK 626129 non-null object \n",
" 17 FREQ_TOP_PACK 626129 non-null float64\n",
" 18 CHURN 1077024 non-null int64 \n",
"dtypes: float64(12), int64(2), object(5)\n",
"memory usage: 156.1+ MB\n"
]
}
],
"source": [
"train_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SZPWo7I7hXlS",
"outputId": "3b9faa32-a29d-4f67-96f1-5578370c896d"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"user_id 0\n",
"REGION 424337\n",
"TENURE 0\n",
"MONTANT 377885\n",
"FREQUENCE_RECH 377885\n",
"REVENUE 362355\n",
"ARPU_SEGMENT 362355\n",
"FREQUENCE 362355\n",
"DATA_VOLUME 529763\n",
"ON_NET 393174\n",
"ORANGE 447144\n",
"TIGO 644774\n",
"ZONE1 992126\n",
"ZONE2 1008230\n",
"MRG 0\n",
"REGULARITY 0\n",
"TOP_PACK 450895\n",
"FREQ_TOP_PACK 450895\n",
"CHURN 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 6
}
],
"source": [
"train_df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "to0tvPdvhXlU",
"outputId": "5d15bb4c-8a5d-45d2-8442-34945c98ee43"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"user_id : 1077024\n",
"REGION : 14\n",
"TENURE : 8\n",
"MONTANT : 4357\n",
"FREQUENCE_RECH : 119\n",
"REVENUE : 31810\n",
"ARPU_SEGMENT : 14062\n",
"FREQUENCE : 91\n",
"DATA_VOLUME : 32459\n",
"ON_NET : 8202\n",
"ORANGE : 2674\n",
"TIGO : 1105\n",
"ZONE1 : 482\n",
"ZONE2 : 394\n",
"MRG : 1\n",
"REGULARITY : 62\n",
"TOP_PACK : 126\n",
"FREQ_TOP_PACK : 206\n",
"CHURN : 2\n"
]
}
],
"source": [
"for column in train_df.columns:\n",
" print(column, ':', train_df[column].nunique())"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "dwikg391hXlV",
"outputId": "4f150e3f-53fd-4864-acfe-ff31a9268b46"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(1077024, 19)"
]
},
"metadata": {},
"execution_count": 8
}
],
"source": [
"train_df.shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 652
},
"id": "pd6koNVVhXlW",
"outputId": "c62545a8-bf1d-4569-c9d6-60535885abb5"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" REGION TENURE MONTANT FREQUENCE_RECH REVENUE \\\n",
"0 DAKAR K > 24 month 20000.0 47.0 21602.0 \n",
"1 NaN K > 24 month NaN NaN NaN \n",
"2 NaN K > 24 month NaN NaN NaN \n",
"3 SAINT-LOUIS K > 24 month 7900.0 19.0 7896.0 \n",
"4 DAKAR K > 24 month 12350.0 21.0 12351.0 \n",
"... ... ... ... ... ... \n",
"1077019 NaN K > 24 month NaN NaN NaN \n",
"1077020 TAMBACOUNDA K > 24 month 2500.0 5.0 2500.0 \n",
"1077021 NaN K > 24 month NaN NaN NaN \n",
"1077022 NaN K > 24 month 600.0 1.0 600.0 \n",
"1077023 FATICK K > 24 month 1500.0 4.0 1499.0 \n",
"\n",
" ARPU_SEGMENT FREQUENCE DATA_VOLUME ON_NET ORANGE TIGO ZONE1 \\\n",
"0 7201.0 52.0 8835.0 3391.0 396.0 185.0 NaN \n",
"1 NaN NaN NaN NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN NaN NaN NaN \n",
"3 2632.0 25.0 9385.0 27.0 46.0 20.0 NaN \n",
"4 4117.0 29.0 9360.0 66.0 102.0 34.0 NaN \n",
"... ... ... ... ... ... ... ... \n",
"1077019 NaN NaN NaN NaN NaN NaN NaN \n",
"1077020 833.0 5.0 0.0 15.0 77.0 NaN NaN \n",
"1077021 NaN NaN NaN NaN NaN NaN NaN \n",
"1077022 200.0 1.0 591.0 11.0 37.0 5.0 1.0 \n",
"1077023 500.0 5.0 1265.0 30.0 4.0 NaN NaN \n",
"\n",
" ZONE2 MRG REGULARITY TOP_PACK FREQ_TOP_PACK \\\n",
"0 NaN NO 62 On net 200F=Unlimited _call24H 30.0 \n",
"1 NaN NO 3 NaN NaN \n",
"2 NaN NO 1 NaN NaN \n",
"3 2.0 NO 61 Data:490F=1GB,7d 7.0 \n",
"4 NaN NO 56 All-net 500F=2000F;5d 11.0 \n",
"... ... .. ... ... ... \n",
"1077019 NaN NO 16 NaN NaN \n",
"1077020 NaN NO 34 All-net 500F=2000F;5d 2.0 \n",
"1077021 NaN NO 3 NaN NaN \n",
"1077022 NaN NO 16 All-net 600F= 3000F ;5d 1.0 \n",
"1077023 0.0 NO 50 On net 200F=Unlimited _call24H 2.0 \n",
"\n",
" CHURN \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 \n",
"... ... \n",
"1077019 0 \n",
"1077020 0 \n",
"1077021 1 \n",
"1077022 0 \n",
"1077023 0 \n",
"\n",
"[1077024 rows x 18 columns]"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" REGION | \n",
" TENURE | \n",
" MONTANT | \n",
" FREQUENCE_RECH | \n",
" REVENUE | \n",
" ARPU_SEGMENT | \n",
" FREQUENCE | \n",
" DATA_VOLUME | \n",
" ON_NET | \n",
" ORANGE | \n",
" TIGO | \n",
" ZONE1 | \n",
" ZONE2 | \n",
" MRG | \n",
" REGULARITY | \n",
" TOP_PACK | \n",
" FREQ_TOP_PACK | \n",
" CHURN | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 20000.0 | \n",
" 47.0 | \n",
" 21602.0 | \n",
" 7201.0 | \n",
" 52.0 | \n",
" 8835.0 | \n",
" 3391.0 | \n",
" 396.0 | \n",
" 185.0 | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 62 | \n",
" On net 200F=Unlimited _call24H | \n",
" 30.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" SAINT-LOUIS | \n",
" K > 24 month | \n",
" 7900.0 | \n",
" 19.0 | \n",
" 7896.0 | \n",
" 2632.0 | \n",
" 25.0 | \n",
" 9385.0 | \n",
" 27.0 | \n",
" 46.0 | \n",
" 20.0 | \n",
" NaN | \n",
" 2.0 | \n",
" NO | \n",
" 61 | \n",
" Data:490F=1GB,7d | \n",
" 7.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 12350.0 | \n",
" 21.0 | \n",
" 12351.0 | \n",
" 4117.0 | \n",
" 29.0 | \n",
" 9360.0 | \n",
" 66.0 | \n",
" 102.0 | \n",
" 34.0 | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 56 | \n",
" All-net 500F=2000F;5d | \n",
" 11.0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1077019 | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 16 | \n",
" NaN | \n",
" NaN | \n",
" 0 | \n",
"
\n",
" \n",
" 1077020 | \n",
" TAMBACOUNDA | \n",
" K > 24 month | \n",
" 2500.0 | \n",
" 5.0 | \n",
" 2500.0 | \n",
" 833.0 | \n",
" 5.0 | \n",
" 0.0 | \n",
" 15.0 | \n",
" 77.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 34 | \n",
" All-net 500F=2000F;5d | \n",
" 2.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077021 | \n",
" NaN | \n",
" K > 24 month | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NO | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
"
\n",
" \n",
" 1077022 | \n",
" NaN | \n",
" K > 24 month | \n",
" 600.0 | \n",
" 1.0 | \n",
" 600.0 | \n",
" 200.0 | \n",
" 1.0 | \n",
" 591.0 | \n",
" 11.0 | \n",
" 37.0 | \n",
" 5.0 | \n",
" 1.0 | \n",
" NaN | \n",
" NO | \n",
" 16 | \n",
" All-net 600F= 3000F ;5d | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077023 | \n",
" FATICK | \n",
" K > 24 month | \n",
" 1500.0 | \n",
" 4.0 | \n",
" 1499.0 | \n",
" 500.0 | \n",
" 5.0 | \n",
" 1265.0 | \n",
" 30.0 | \n",
" 4.0 | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" NO | \n",
" 50 | \n",
" On net 200F=Unlimited _call24H | \n",
" 2.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
1077024 rows × 18 columns
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 9
}
],
"source": [
"train_df = train_df.drop('user_id', axis = 1)\n",
"train_df"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QqV7n25ehXlY",
"outputId": "572fa3af-7d1b-4c69-acce-a91d1aadbf74"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"RangeIndex: 1077024 entries, 0 to 1077023\n",
"Data columns (total 18 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 REGION 1077024 non-null object \n",
" 1 TENURE 1077024 non-null object \n",
" 2 MONTANT 1077024 non-null float64\n",
" 3 FREQUENCE_RECH 1077024 non-null float64\n",
" 4 REVENUE 1077024 non-null float64\n",
" 5 ARPU_SEGMENT 1077024 non-null float64\n",
" 6 FREQUENCE 1077024 non-null float64\n",
" 7 DATA_VOLUME 1077024 non-null float64\n",
" 8 ON_NET 1077024 non-null float64\n",
" 9 ORANGE 1077024 non-null float64\n",
" 10 TIGO 1077024 non-null float64\n",
" 11 ZONE1 1077024 non-null float64\n",
" 12 ZONE2 1077024 non-null float64\n",
" 13 MRG 1077024 non-null object \n",
" 14 REGULARITY 1077024 non-null int64 \n",
" 15 TOP_PACK 1077024 non-null object \n",
" 16 FREQ_TOP_PACK 1077024 non-null float64\n",
" 17 CHURN 1077024 non-null int64 \n",
"dtypes: float64(12), int64(2), object(4)\n",
"memory usage: 147.9+ MB\n"
]
}
],
"source": [
"# all nan values are to be filled with median on the\n",
"train_df['MONTANT'] = train_df['MONTANT'].fillna(train_df['MONTANT'].median())\n",
"train_df['FREQUENCE_RECH'] = train_df['FREQUENCE_RECH'].fillna(train_df['FREQUENCE_RECH'].median())\n",
"train_df['REVENUE'] = train_df['REVENUE'].fillna(train_df['REVENUE'].median())\n",
"train_df['ARPU_SEGMENT'] = train_df['ARPU_SEGMENT'].fillna(train_df['ARPU_SEGMENT'].median())\n",
"train_df['FREQUENCE'] = train_df['FREQUENCE'].fillna(train_df['FREQUENCE'].median())\n",
"train_df['DATA_VOLUME'] = train_df['DATA_VOLUME'].fillna(train_df['DATA_VOLUME'].median())\n",
"train_df['ON_NET'] = train_df['ON_NET'].fillna(train_df['ON_NET'].median())\n",
"train_df['ORANGE'] = train_df['ORANGE'].fillna(train_df['ORANGE'].median())\n",
"train_df['TIGO'] = train_df['TIGO'].fillna(train_df['TIGO'].median())\n",
"train_df['ZONE1'] = train_df['ZONE1'].fillna(train_df['ZONE1'].median())\n",
"train_df['ZONE2'] = train_df['ZONE2'].fillna(train_df['ZONE2'].median())\n",
"train_df['TOP_PACK']=train_df['TOP_PACK'].replace(np.nan ,train_df['TOP_PACK'].mode()[0])\n",
"train_df['REGION']=train_df['REGION'].replace(np.nan ,train_df['REGION'].mode()[0])\n",
"train_df['TENURE']=train_df['TENURE'].replace(\"nan\" ,train_df['TENURE'].mode()[0])\n",
"train_df['FREQ_TOP_PACK'] = train_df['FREQ_TOP_PACK'].fillna(train_df['FREQ_TOP_PACK'].median())\n",
"train_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qyyZy_J9hXlZ",
"outputId": "680f7fbc-1249-4899-f908-4e5376407ef9"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"RangeIndex: 1077024 entries, 0 to 1077023\n",
"Data columns (total 17 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 REGION 1077024 non-null object \n",
" 1 TENURE 1077024 non-null object \n",
" 2 MONTANT 1077024 non-null float64\n",
" 3 FREQUENCE_RECH 1077024 non-null float64\n",
" 4 REVENUE 1077024 non-null float64\n",
" 5 ARPU_SEGMENT 1077024 non-null float64\n",
" 6 FREQUENCE 1077024 non-null float64\n",
" 7 DATA_VOLUME 1077024 non-null float64\n",
" 8 ON_NET 1077024 non-null float64\n",
" 9 ORANGE 1077024 non-null float64\n",
" 10 TIGO 1077024 non-null float64\n",
" 11 ZONE1 1077024 non-null float64\n",
" 12 ZONE2 1077024 non-null float64\n",
" 13 MRG 1077024 non-null object \n",
" 14 REGULARITY 1077024 non-null int64 \n",
" 15 FREQ_TOP_PACK 1077024 non-null float64\n",
" 16 CHURN 1077024 non-null int64 \n",
"dtypes: float64(12), int64(2), object(3)\n",
"memory usage: 139.7+ MB\n"
]
}
],
"source": [
"train_df.drop('TOP_PACK',axis= 1, inplace=True)\n",
"train_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "iXgRY3e9hXlb",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 375
},
"outputId": "6b3b7a3a-46aa-4615-fdff-90dd18307abf"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABxcAAAKyCAYAAAAXX1BXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADabElEQVR4nOzdd1yVdePG8euwFERQlqg4cKEpTswRaoqa29TMvXKmNrWy8djWpx7tyb0yUzMfLUeamqvlrFy5Z06cgIgoCGf8/iDPL3IBAjdwPu/X67yCe52LczS5z3V/v7fJZrPZBAAAAAAAAAAAAAAP4GR0AAAAAAAAAAAAAAC5A+UiAAAAAAAAAAAAgDShXAQAAAAAAAAAAACQJpSLAAAAAAAAAAAAANKEchEAAAAAAAAAAABAmlAuAgAAAAAAAAAAAEgTykUAAAAAAAAAAAAAaUK5CAAAAAAAAAAAACBNKBcBAAAAAAAAAAAApAnlIgCHEhISovfee8/oGDlOSEiIJk2alKnH7NWrl9q0aZOpxwQAAAAAOAbOKe+uV69e6tWrV6Yec9KkSQoJCVFMTEymHhcAkHdRLsIhnDlzRqNHj1ZERIRCQ0NVs2ZNde3aVXPnzlViYmKWPOfKlSv1xRdfZMmxjbZ06VKFhIQoNDRUly5dumP9w5wALFiwQEuXLk33fka8x44qPj5ekydPVrt27VSjRg1VrVpVbdq00X/+85+7/nnIDeLi4jRixAjVrl1bERER+vrrr+/YZt++fapWrZrOnj1rQEIAAAAg9+KcPPuNGjVKISEhatu2rWw22x3rM3rhbUJCgiZNmqRff/01w9ny4jllTmWxWLRkyRL16tVLjz76qKpUqaImTZro9ddf1759+4yOBwDIxVyMDgBktZ9++kkvvPCC3Nzc1L59e1WoUEHJycnauXOn/vOf/+j48eN6//33M/15v/vuOx07dkx9+/bN9GPnFElJSZo5c6b+9a9/ZdoxFy5cqMKFC6tjx45p3seo99gRnT17Vn379tWFCxfUokULdenSRa6urjpy5Ii++eYbbdiwQWvXrjU6Zrp99NFH+u233/Tcc8/pzJkz+te//qWyZcuqZs2akiSbzaYPP/xQffr0UYkSJQxOCwAAAOQenJMb6+jRo1q3bp2eeOKJTDleQkKCJk+erOHDh6tOnTrp3j+vnlPmRImJiRo+fLg2bdqk2rVra/DgwfL29lZkZKTWrFmjZcuW6aefflJgYKDRUQEAuRDlIvK0s2fP6qWXXlKxYsU0d+5cBQQE2Nf16NFDp0+f1k8//WRcwBzs5s2b8vDwuO82lSpV0uLFizVo0CAVKVIkm5KllhPfY6vVquTkZOXLly9bnzermc1mDR8+XNHR0Zo3b57CwsJSrX/ppZc0a9asbM+VkJAgd3f3hzrGTz/9pFdeeUVPPvmkJOnIkSP68ccf7eXiihUrFBkZqcGDBz9sXAAAAMBh5MTztdwiLefkD5I/f34FBgZqypQpat68uUwmUyaly5i8fE6ZE3388cfatGmTXn/99TtK9uHDhxsysjcz/lwDAHIGpkVFnvbZZ5/p5s2b+vDDD1OdxNxWqlQp9enTR5J07tw5hYSE3HVKzn/ejy4+Pl4ffvihmjRpoipVqqhevXrq16+fDhw4ICllWtCffvpJkZGRCgkJUUhIiJo0aWLfPzo6Wm+88Ybq16+v0NBQtWvXTsuWLUv1nLfzzJ49WwsWLFBERISqVaumZ555RhcuXJDNZtOUKVPUsGFDVa1aVc8++6xiY2PvyP7zzz+re/fuql69umrUqKFBgwbp2LFjqbYZNWqUatSooTNnzmjgwIGqUaOGRo4c+cDXd/DgwbJarWn65d9sNmvKlClq2rSpfRqOTz75RElJSfZtmjRpomPHjum3336zv24Puo9Aet7jv9uwYYPatGmjKlWqqHXr1vrll19SrR81alSq9+y22/ch+Lvb08msWLFCrVu3VmhoqDZt2mSfPnbnzp0aO3as6tatq+rVq2vYsGFpuo/B4cOHNWrUKPvUQY899phef/11Xb169a6ZTp8+rVGjRiksLEy1atXS66+/roSEhFTbJiUlacyYMapbt65q1KihIUOG6OLFiw/MIknr1q3T4cOHNWTIkDtOAiXJ09NTL7300h3Ljx8/rl69eqlatWpq0KDBHX9ebr9O586dS7X8119/VUhISKrpdm5Pubt//3716NFD1apV0yeffJLq78uiRYvsf846deqkvXv3PvBnS0xMlJeXl/17b29v+2t38+ZNjR8/XiNGjFCBAgUeeCwAAAAAKTgnf/hz8lOnTum5557TY489ptDQUDVs2FAvvfSSrl+//sDX38nJSc8++6yOHDmi9evXP3D7B70u586dU7169SRJkydPtr+2f39v7icvn1PGxsbqo48+Utu2bVWjRg3VrFlTAwYM0OHDh++aafXq1Zo2bZoaNmyo0NBQ9enTR6dPn77juLezVK1aVU899ZR27NjxwCySdPHiRS1atEiPPfbYXUfvOjs7q3///neMWrx+/fp9P1dIz9/T259VHD9+3H4bku7du0tK+fxn8ODB2rFjh5566imFhoYqIiJCy5cvT9PPBwAwHiMXkaf9+OOPKlGihH30UWZ5++23tXbtWvXs2VNly5ZVbGysdu7cqRMnTqhy5coaMmSIrl+/rosXL+r111+XJHspkZiYqF69eunMmTPq0aOHgoKC9P3332vUqFGKi4u7owhbuXKlkpOT1atXL8XGxuqzzz7Tiy++qLp16+rXX3/VwIEDdfr0aX355Zf66KOPNHbsWPu+y5cv16hRoxQeHq6RI0cqISFBCxcuVPfu3bVs2TIFBQXZtzWbzerfv79q1aql1157Tfnz53/g6xAUFKT27dtr8eLFGjhw4H1HL7711ltatmyZnnjiCfXr10979+7VjBkzdOLECU2ZMkWS9MYbb+j999+Xh4eHhgwZIkny8/O7b4aMvMc7d+7UunXr1L17dxUoUEDz58/X888/rx9//FGFCxdO83H+bvv27VqzZo169OihwoULq3jx4oqLi5MkffDBB/Ly8tLw4cMVGRmpuXPn6r333tOnn35632Nu3bpVZ8+eVceOHeXv769jx45p8eLFOn78uBYvXnzHVacvvviigoKC9PLLL+vgwYP6+uuv5ePjo1deecW+zZtvvqkVK1aoTZs2qlmzprZv365Bgwal6WfcuHGjJKl9+/Zpfl2uXbumAQMGqFmzZmrZsqXWrl2rcePGqUKFCmrUqFGaj/N3sbGxGjhwoFq3bq127drJ19fXvu67777TjRs31KVLF5lMJn322Wd67rnntGHDBrm6ut7zmKGhoZozZ47KlCmjs2fPatOmTfapmWbMmKEiRYqk6+cGAAAAwDn5w56TJyUlqX///kpKSlLPnj3l5+enS5cu6aefflJcXJwKFiz4wNeqbdu2mjZtmqZMmaJmzZrdc/RiWl4XHx8fvfPOO3rnnXfUrFkzNWvWTJLuuAD3XvLyOeXZs2e1YcMGtWjRQkFBQYqKitKiRYvUs2dPrVq16o7PS2bNmiWTyaRnnnlG8fHx+uyzzzRy5Eh9/fXX9m2+/vprjR49WjVq1FCfPn109uxZPfvss/L29lbRokXv+zP+8ssvMpvNateuXbpem7R8rpBeL7zwgkqVKqWXXnop1f0/T58+rRdeeEFPPfWUOnTooCVLlmjUqFGqXLmyypcvn+HnAwBkD8pF5Fnx8fG6dOmSIiIiMv3YP//8s55++mmNGjXKvmzgwIH2rx977DHNmzdPcXFxd/zSvGjRIp04cUL/+c9/7L/kde3aVb169dKnn36qTp06ydPT0779pUuXtG7dOvtJg9Vq1YwZM5SYmKglS5bIxSXlr/HVq1e1cuVKvfvuu3Jzc9ONGzf04YcfqnPnzqnuX9GhQwe1aNFCM2bMSLU8KSlJLVq00IgRI9L1Wjz77LP69ttvNWvWLL311lt33ebw4cNatmyZOnfurA8++EBSyhQ4Pj4++vzzz7V9+3bVrVtXTZs21aeffqrChQun6WQjo+/xiRMntHr1apUsWVKSVKdOHbVv316rVq1Sz54903Ws206ePKmVK1eqXLly9mWHDh2SJBUqVEiff/65/STOarVq/vz5un79+n1PBrt3765nnnkm1bLq1avr5Zdf1s6dO++40rNSpUoaM2aM/fvY2Fh988039pOAw4cPa8WKFerevbvefvttSSnvw4gRI3TkyJEH/ox//vmnChYs+MCTmL+7fPmyPvroI/t0o0899ZSaNGmiJUuWZPhE8MqVK3r33XfVtWtX+7LbV6ieP39e69atk7e3tyQpODhYQ4cO1ebNm9W4ceN7HvP111/XoEGD7PcheeKJJ9SmTRudPXtWX3zxhebOnWv4FEIAAABAbsI5+cOfkx86dEjnzp3ThAkT1KJFC/vy4cOHp/m1cnZ21rPPPqvXXntNGzZssBeC/5TW1+WJJ57QO++8o5CQkHRfgJmXzylDQkK0du1aOTn9/yRx7du3V8uWLfXNN99o2LBhqba/deuWli9fLjc3N0mSl5eXPvzwQx09etR+X9L//ve/qlSpkubNm2ffrly5cvrXv/71wNfwxIkT9lzp8aDPFTKiYsWKGj9+/B3LT548qQULFtg/22jZsqUaNWqkpUuX6rXXXsvw8wEAsgfToiLPio+Pl6QsmcbQy8tLf/zxhy5dupTufX/55Rf5+/urTZs29mWurq7q1auXbt68qd9//z3V9i1atEhVQFWtWlWS1K5dO/tJzO3lycnJ9kxbt25VXFycWrdurZiYGPvDyclJ1apVSzUtyG3dunVL989TokQJtWvXTosXL9bly5fvus3PP/8sSerXr1+q5beLs9vr0yuj73H9+vXtxaKU8ouup6enzp49m6EcklS7du1UxeLfPf3006mKqbCwMFksFkVGRt73mH8fPXrr1i3FxMSoWrVqkmSf7ufv/n5idPt5YmNj7a/T7df5n1PN3m3a2LuJj49P92vt4eGR6oTTzc1NoaGhD/Vau7m5qWPHjndd16pVK/tJoCT7ScqDni8kJETr1q3TN998o3Xr1mnixIlycnLSRx99pObNm6t69epat26d2rVrpyZNmmjy5MmprrgEAAAAkBrn5A9/Tn675Ny8efMdt7xIj7Zt26p06dKaMmXKPc9j0vu6ZERePqd0c3OzF4sWi0VXr16Vh4eHgoODdfDgwTu279ixo70wvNvz7N+/X9HR0eratWuq7Tp06JCmEasZ/fv3oM8VMuKfx7ytXLlyqS6a9vHxUXBw8EO9twCA7MPIReRZt38Jv3HjRqYfe+TIkRo1apQef/xxVa5cWY0aNdKTTz6pEiVKPHDfyMhIlSpVKtXVbJJUtmxZSSlXyf3dP69Gu/1L5L2WX7t2TSVKlNCpU6ck3bs4+vuVmJLk4uJyx1z7aTV06FCtWLFCM2fOvOvoxcjISDk5OaUq9CTJ399fXl5eDyzZLBbLHfco9Pb2zvB7fLcr/Ly9ve3TmGbE36ez+adixYql+v72vf0e9HyxsbGaPHmyVq9erejo6FTr7nZ/jXs9z7Vr1+Tp6XnP96FMmTL3zXFbRgrYwMDAO0b8eXt7p2mk5L0UKVIk1cnV3/3zvb19UpiW9zZfvnwKDQ21f79t2zZt2bJF33//vf7880+9/PLLevfdd1W8eHGNGDFCRYsWVadOnTL8cwAAAAB5GefkpyQ93Dl5iRIl1K9fP82ZM0crV65UWFiYmjRponbt2qWpYLotLaMX0/u6ZERePqe0Wq2aN2+evvrqK507d04Wi8W+rlChQnds/6DPCW6/3qVKlUq1naura5r+nGf079+DPlfIiHt9XnKvz2auXbuWoecBAGQvykXkWZ6engoICLjjRun3cq8pD//+C+FtrVq1UlhYmNavX68tW7Zo9uzZmjVrliZNmpThaTnuxdnZ+a7L//kL/223r0K8/d+PP/5Y/v7+Dzzu36+yS6+/j1683/37Mjqt5IULF+6YSmfevHmqU6dOut7j2+71mv79Cs70/HmQdN97VD7ovbqXF198Ubt371b//v1VqVIleXh4yGq1asCAAXfdN6PPk1ZlypTRwYMHdeHChTRPY3Ov1/rv7vVaW63Wuy6/32udlvc2LSwWi8aMGWO/l+iUKVNUo0YNe5nYpUsXrVy5knIRAAAAuAfOyTPnnHzUqFHq0KGDNm7cqC1btuiDDz7QjBkztHjx4nRdINy2bVtNnTpVU6ZMUdOmTdO8X2bKy+eU06dP14QJE9SpUye98MIL8vb2lpOTk8aMGWPY+bskHTlyRJUqVUrzfg/Kld7PSqSUC3nvJi3vLQAg52JaVORpjRs31pkzZ7R79+4Hbnuvq9HudXVeQECAevTooalTp2rjxo0qVKiQpk+fbl9/r1+4ihcvrtOnT9/xS+6ff/4p6c6rxDLq9pVsvr6+ql+//h2POnXqZMrz3Pbss8/KYrFo1qxZd6wrXry4rFarTp8+nWp5VFSU4uLiVLx4cfuyu71u/v7+mjNnTqpHxYoVJaXvPU4PLy+vu16ZmBlXa6bFtWvXtG3bNg0cOFDPP/+8mjVrpsceeyxNVyjey+334cyZM6mW3/6z9yC37y+xYsWKDGe4m9tXQv5zNOaDRrRmpYULF+rGjRvq37+/pJT7fAQEBNjXBwQEZGgKJgAAAMCRcE6eOefkISEhGjp0qBYsWKAFCxbo0qVLWrhwYbry3B69eOjQIW3cuPGO9Wl9XR7mXvR5+Zxy7dq1qlOnjsaMGaPWrVsrPDxc9evXz/AMSbdf739+jpKcnGy/P+T9NGzYUM7Ozlq5cmWGnv9e0vv3FACQd1EuIk8bMGCAPDw89NZbbykqKuqO9WfOnNHcuXMlpVxVWbhwYe3YsSPVNl999VWq7y0Wyx2/sPr6+iogIEBJSUn2Ze7u7nedurJhw4a6cuWKVq9ebV9mNps1f/58eXh4qHbt2un/Qe+iQYMG8vT01IwZM5ScnHzH+n9OM/qwSpYsqXbt2mnRokW6cuVKqnW3rxy9/VrfNmfOnFTrpZTX7Z+/pObLl++OE7Hbv9Cm5z1O789z/fp1HT582L7s8uXLWr9+fbqPlRH3uoIvIz/LbQ0bNpQkzZ8/P0PHfOKJJ1ShQgVNnz79rh8OxMfH67///W+6c92epvXv9/CwWCxavHhxuo+VGWJjYzVp0iS98sor9iss/fz8UpWwJ06ckJ+fnyH5AAAAgNyCc/KHOyePj4+X2WxOtaxChQpycnJK9bOmVbt27VSqVClNnjz5jnVpfV3c3d0lpe3WE/+Ul88pnZ2d7xh1uGbNmgxflFqlShX5+Pjof//7X6r3etmyZWl67YsWLarOnTtr8+bNd3wGIKWM6vz888918eLFdOVK699TAEDex7SoyNNKliypcePG6aWXXlKrVq3Uvn17VahQQUlJSdq9e7e+//77VDfx7ty5s2bOnKk333xTVapU0Y4dO3Ty5MlUx7xx44YaNWqkJ554QhUrVpSHh4e2bt2qffv2adSoUfbtKleurNWrV2vs2LEKDQ2Vh4eHmjRpoi5dumjRokUaNWqUDhw4oOLFi2vt2rXatWuX3njjjQzPYf9Pnp6eeuedd/Tqq6+qY8eOatWqlXx8fHT+/Hn9/PPPqlmzpkaPHp0pz3XbkCFD9O233+rkyZMqX768fXnFihXVoUMHLVq0SHFxcapdu7b27dunZcuWqWnTpqpbt65928qVK2vhwoWaOnWqSpUqJR8fH9WrV++ez5ne9zitWrVqpXHjxmn48OHq1auXEhMTtXDhQgUHB+vAgQPpPl56eXp6qnbt2vrss8+UnJysIkWKaMuWLWm6QvFeKlWqpDZt2uirr77S9evXVaNGDW3fvv2OKyHvxdXVVZMnT1a/fv3Us2dPtWjRQjVr1pSrq6uOHTum7777Tl5eXnrppZfSlat8+fKqXr26PvnkE127dk3e3t5avXr1HSfR2WXChAmqUKGCWrZsaV/WvHlzTZkyRW+//baKFy9u/zsMAAAA4N44J3+4c/Lt27frvffeU4sWLVS6dGlZLBZ9++23cnZ21hNPPJHuTM7OzhoyZIhef/31O9al9XXJnz+/ypUrpzVr1qh06dIqVKiQypcvrwoVKjzw+fPyOeXjjz+uKVOm6PXXX1eNGjV09OhRrVy5MsOzD7m6uurFF1/U6NGj1adPH7Vq1Urnzp3T0qVL03zMUaNG6ezZs/rggw+0bt06NW7cWF5eXrpw4YK+//57/fnnn2rdunW6s6Xl7ykAIO+jXESeFxERoRUrVmj27NnauHGjFi5cKDc3N4WEhGjUqFF6+umn7dsOGzZMMTExWrt2rdasWaOGDRvqs88+S1Vu5c+fX926ddOWLVu0bt062Ww2lSxZUm+//ba6d+9u36579+46dOiQli5dqi+++ELFixdXkyZNlD9/fs2fP1/jxo3TsmXLFB8fr+DgYI0dOzZDJdj9tG3bVgEBAZo5c6Zmz56tpKQkFSlSRGFhYZn+XFLKjcbbtWunZcuW3bHugw8+UFBQkJYtW6YNGzbIz89PgwcP1vDhw1NtN2zYMJ0/f16fffaZbty4oUcfffS+5aKUvvc4rQoXLqzJkyfr3//+t/7zn/8oKChIL7/8sk6fPp0t5aIkjR8/Xu+//76++uor2Ww2PfbYY5o1a5YaNGiQ4WOOGTNGhQsX1sqVK7Vx40bVqVNHM2fOTPN9SUqVKqXly5friy++0Pr167Vx40ZZrVaVKlVKnTt3Vq9evTKUa9y4cRo9erRmzpwpLy8vPfXUU6pTp4769euXoeNl1JEjR/T111/r66+/TrU8JCREY8eO1aRJk3Tjxg11795dXbp0ydZsAAAAQG7EOXnGz8lDQkIUHh6uH3/8UZcuXZK7u7tCQkI0a9YsVa9ePUOZ2rVrp2nTpt1xu4z0vC4ffPCB3n//fY0dO1bJyckaPnx4mspFKe+eUw4ZMkQJCQlauXKlVq9erUceeUQzZszQ+PHjM3zMLl26yGKxaPbs2fr4449VoUIFTZs2TRMmTEjT/u7u7po1a5aWLl2q5cuXa+rUqUpMTFRAQIDq1KmjcePGqUiRIunOlZa/pwCAvM9ky6w7BQMAAAAAAAAAAADI07jnIgAAAAAAAAAAAIA0YVpUAAAAAAAAABmSlJSka9eu3XebggULKn/+/NmUCAAAZDXKRQAAAAAAAAAZsnv3bvXu3fu+22TFPS0BAIBxuOciAAAAAAAAgAy5du2aDhw4cN9typUrp4CAgGxKBAAAshrlIgAAAAAAAAAAAIA0cTI6AAAAAAAAAAAAAIDcgXIRAAAAAAAAAAAAQJpQLgIAAAAAAAAAAABIExejAwAAAABAVomOvi7uMg8AAAAAwP2ZTJKvb8E0bUu5CAAAACDPstlEuQgAAAAAQCZiWlQAAAAAAAAAAAAAaUK5CAAAAAAAAAAAACBNKBcBAAAAAAAAAAAApAnlIgAAAAAAAAAAAIA0oVwEAAAAAAAAAAAAkCaUiwAAAAAAAAAAAADShHIRAAAAAAAAAAAAQJpQLgIAAAAAAAAAAABIE8pFAAAAAAAAAAAAAGlCuQgAAAAAAAAAAAAgTSgXAQAAAAAAAAAAAKQJ5SIAAAAAAAAAAACANKFcBAAAAAAAAAAAAJAmLkYHAAAAAAAAuZfFYtHnn8/UunVrFB0dLT8/P7Vq1VZ9+vSXyWSSJIWHh91136FDn1f37r0lSU891VYXL15ItX7w4OHq1auv/fvjx4/pk08+0uHDB1WoUGF16vS0evToY1//888/aN68OYqMPCuz2aygoJLq2rWHWrRonWqb5cuX6MiRw4qLu6Y5cxaofPmQzHo5AAAAgDyPchEAAAAAAGTYggVztXz5N3rzzXcVHFxGhw8f1Jgx76lAAU917txVkvTtt9+n2mf79q3697/fV6NGTVItHzBgiNq2fdL+vYdHAfvXN27E6+WXhyss7FGNHPm6/vzzuMaOfU+engXVvn1HSVLBgl7q3fsZlSpVWq6urtqyZZPGjn1PhQv7qE6depKkhIQEVa1aXU2aNNNHH32QFS8JAAAAkKdRLgIAAAAAgAzbv3+vwsMbqX79cElS0aLFtGHDWh06dMC+ja+vX6p9Nm/+WTVrhql48aBUyz08PO7Y9rZ1675XcnKyXn99tFxdXVWmTFkdO3ZUixYtsJeLNWumHiH59NPd9P3332nv3j32cvH2KMYLF84/xE8NAAAAOC7uuQgAAAAAADKsSpWq2rnzd505c1qSdOzYUe3d+4fq1q1/1+1jYqK1detmtW7d/o51X345V61aRahfv+766qt5MpvN9nX79+9V9eo15Orqal9Wp049nTlzWnFxcXccy2azaceO33TmzGlVr17jYX9MAAAAAH9h5CIAAAAAAMiwnj376saNG+rR4yk5OTnJarVq0KChat685V23X7PmO3l4FFCjRo1TLX/qqS6qUKGivLy8tX//H5o+fYqio6P03HMvS0opJYsWLZZqn8KFfezrvLy8JEnx8fHq0KGlkpKS5OzsrJdffk21a9fN7B8bAAAAcFiUiwAAAAAAIMN++GG91q//Xm+//YGCg8vq2LEjmjjxE/n5+atlyzZ3bL9q1Qo1b95C+fLlS7W8a9ee9q/LlSsvFxdX/ec/YzR48HC5ubmlOY+Hh4fmzPlKCQk3tWPH75o8+b8qVqz4HVOmAgAAAMgYykUAAAAAAJBhU6dOVI8efdS06ROSpLJly+nixQuaP3/OHeXiH3/s1pkzp/Xuu2MfeNxHHqkii8WiixfPq2TJ0vLx8dXVqzGptrn9vY+Pr32Zk5OTgoJKSJLKlw/R6dMn9eWXX1AuAgAAAJmEey4CAAAAAIAMS0xMlJNT6o8XnJ2dZbXa7tj2u+++VUhIJZUvX+GBxz1+/KicnJxUqFDK1KdVqlTVnj27U92H8ffff1XJkqXsU6LejdVqVVJSUlp/HAAAAAAPwMhFAAAAAACQYY891kDz5n2uIkUCFRxcRkePHtGiRQvUqlW7VNvduBGvH3/coOHDX7zjGPv379XBg/tVo0aYPDw8dODAPk2c+ImaN29pLw6bNWuhOXNmaezY99SjRx+dPHlCX3+90H5PRkmaP3+OKlaspGLFgpScnKxt27Zo7drVGjnydfs2cXHXdOnSRUVFXZEknTlzWlLK6EdfX7/MfnkAAACAPMdks9nuvJQQAAAAAPKAqKjr4owHyFo3b97QrFnT9csvP+rq1avy8/NT06ZPqF+/gXJ1dbVv9+23SzVx4nh9++1aeXp6pjrGkSOHNX78v3XmzCklJSWrWLFieuKJVurSpUeq+y0eP35Mn3zykQ4fPihv70Lq1Olp9ezZ175+5syp+uGH9bp8+bLy5cunUqVKq3PnroqIaG7fZvXqlRoz5t07fo5+/Qaqf//BmfjKAAAAALmHyST5+RVM27aUiwAAAADyKspFAAAAAAAeLD3lIvdcBAAAAAAAAAAAAJAm3HMRAAAAAHKoc+fOKiYm2ugYAIAcxMfHV0FBJYyOAQAAHBjlIgAAAADkQOfOnVW9+rV0KzHR6CgAgBwkX/782rZ1JwUjAAAwDOUiAAAAAORAMTHRupWYKI8WLeTk42N0HABADmCNidHN779XTEw05SIAADAM5SIAAAAA5GBOPj5yCQgwOgYAIAcwGx0AAABAkpPRAQAAAAAAAAAAAADkDpSLAAAAAAAAAAAAANKEchEAAAAAAAAAAABAmlAuAgAAAAAAAAAAAEgTykUAAAAAAAAAAAAAaUK5CAAAAAAAAAAAACBNKBcBAAAAAAAAAAAApAnlIgAAAAAAAAAAAIA0oVwEAAAAAAAAAAAAkCaUiwAAAAAAAAAAAADShHIRAAAAAAAAAAAAQJpQLgIAAAAAAAAAAABIE8pFAAAAAAAAAAAAAGlCuQgAAAAAAAAAAAAgTVyMDgAANptNN2/eVGxsrK5fv67ExEQlJiYqISFBiYmJSkpKUnJyssxms/2/JpNJLi4u9324urrKy8vL/ihYsKBcXPjfHgAAAAAAAAAAGcWn7AAyndls1sWLFxUZGanz58/b/3v16lX7IyomRjFXr+pabKyux8XJnJycLdnyu7vL86+i0dvbW4W8veXv66vAwEAVLVo01X8DAwPl7+8vZ2fnbMkGAAAAAAAAAEBOR7kIIN0SEhJ04sQJHT16VMeOHdPp06cVef68Tp89q8jISMVcuSKr1Wrf3uTsLBdvb8ndXZZ8+WTNl0/Kn18KCJBKlUr5+vYjXz7J1VVycZGcnf//v87OkpPT/z8kyWq9/8NikZKSpFu37I/Evx5Rt25JiYnSpUtyOn1azjdvynb9uszx8al+VicnJxX281PRwECVK1tWZcuUUdmyZe2PkiVLytXVNTtffgAAAAAAAAAADEO5COCuzGazjh8/bi8Qjx07psNHj+rI0aO6GBlp3845f345FS4ss6enbAULShUrSrVrS15eUsGCkpeXbO7uSnbKglu8ZtKIQutfD0mS2SzduCHFx0vXr8saH6/o+HhFX7+uA/v2yWXTJpmvXpXNYpEkOTk7q1jx4qpQvrzKlyun8uXLKzQ0VKGhoQoMDJTJZMqUjAAAAAAAAAAA5ASUiwAUFxenvXv3as+ePfrjjz+0Y9cuHTxwQEm3bkmSnNzc5Oznp+RChaTgYCksTPLxkXx9ZSlQQJa8VKC5uEje3imPf7BJSpZSRkTGxUkxMbJevapzMTE6d/68fjl0SNaoKFmTkiRJ3oULq2rVqqpRrZq9cKxcubI8PT2z9UcCAAAAAAAAACCzUC4CDiYmJkbbt2/Xjh07tOevIvHsqVOSUqYvdS5SROaAAOnxx6UiRSQ/P1kLFpQ1LxWID8vZWSpcOOXxN2YpZTrW2Fjp0iVdu3RJmy5f1vb//U/JkyZJNpskqWTp0qpXp47q1q2runXrqkaNGsqXL1+2/xgAAAAAAAAAAKQX5SKQh9lsNh09elRbt27Vli1b9PPmzTp+5IgkyaVAAVmLFJE1MFCqXl0KDJTNz09mF/638FCcnFJGdfr4SJUqSfprtGNysnTlinTpks5cuqTI7dv19dKlsiYny8XVVVWrVVN4/fr2wrF06dJMqQoAAAAAAAAAyHFoEYA8JCkpSb/++qu2bNmizX89rl29KplMcgkMlLlYMalDB6lECZkLF5Yor7KPq6tUrFjKQ5JFSrm/46VLMp87p12Rkdq3cKEmTpwoSSrs66uG4eGKiIhQRESEKlWqRNkIAAAAAAAAADAc5SKQi9lsNh08eFDr16/X2nXr9NPPPyvx5k05588vW/HislatKpUoIQUFyZw/v9Fx8U8uLlLx4ikP/TXC8cYNKTJSV8+d03d792rFd9/JZrHILyBAzZs2VUREhJo0aaLSpUsbmRwAAAAAAAAA4KAoF4Fc5tKlS9qwYYPWr1+vNWvX6vLFi3JydZVKlpS1fn2pTBlZAgNTpudE7lOggFShglShQsroxqQk6cwZRZ08qcW//KKvFi6UbDaVKF1aLZo1U0REhJo3b67C/7j/IwAAAAAAAAAAWYFyEcjhbDabduzYoeXLl2v5ihU6uH+/JMmlaFGZg4Olpk1lLVlScnMzOCmyhJubVK6cVK6czJKUkCCdOqWzJ09qzooVmjVrlpycnVWvXj21a9tWbdq0YQpVAAAAAAAAAECWoVwEcqDk5GT9/PPPWrZsmZYsW6ZLFy7IuUABWcqVkzp2lMqUkdnT0+iYMIK7u1SpklSpUkrZeO2arMeOaeuxY9r2r3/ptddeU8nSpdWpQwc9+eSTql+/vlxc+F89AAAAAAAAACBz8IkzkEPEx8fr+++/1/Lly/XtypWKj4uTi4+PzOXLS82by1KypOTsbHRM5DTe3lJYmGxhYbIlJ0snT+rMkSOaNHu2/vvf/8q7cGF1aN9enTt3VrNmzeTq6mp0YgAAAAAAAABALka5CBjo5s2b+u677/TlggX6/vvvlZyUlDLdaY0aUsWKMgcGSkxvibRydbXfr9FstUrnz+va4cP6cvVqffHFF/IuXFhdn35a3bp1U4MGDeTEfTkBAAAAAAAAAOlEuQhkM7PZrPXr12vBV19p6bJlSrhxQ84lSsjy+OMphaKPj9ERkRc4OUlBQVJQkMwREdKlS7q2b59mf/21ZsyYoYDAQPXs3l3dunVTrVq1uEcjAAAAAAAAACBNKBeBbGCz2bR7927NmzdP8xcsUExUlFwCAmR+9FGpShVZfH2Njoi8zGSSAgOlwMCUovHcOV3ev18TZ83SJ598otJlyqhn9+7q3bu3ypcvb3RaAAAAAAAAAEAORrkIZKErV67oiy++0Geff66jhw/LxctL5kcekTp1YspTGMPJSSpZUipZUuYnnpBOndKpffs0dvx4ffDBBwpv2FBDBg1Sp06dlD9/fqPTAgAAAAAAAAByGMpFIJPZbDb98ssvmj59ur5ZskRWSbaQEKlHD5nLlJGcnY2OCKRwdpbKlpXKlpUlOVk6dEjbdu/W5p49NXTYMPXp3VsDBw5UaGio0UkBAAAAAAAAADkE5SKQSWJiYjRv3jxNmTZNx48elYu/v8yNG0vVq0seHkbHA+7P1VWqWlWWqlWl6GjF7dqlaXPnatKkSapVu7aGDBqkrl27ytPT0+ikAAAAAAAAAAADORkdAMjNbDabtm7dql69e6tosWJ6eeRInXBzk/r0kXnoUKl+fYpF5D6+vlKzZjK/8ILUpYt2X7umgYMGKSAwUMOGDdPRo0eNTggAAAAAAAAAMAgjF4EMSEpK0qJFi/TxuHHav3evXHx9ZW7QIGWUIiO7kFc4O0uVKslaqZIUG6uE3bs1c/58TZ06VS1btdKIl19WkyZNZOLeoQAAAAAAAADgMCgXgXSIjY3VzJkz9cmnn+rShQtyKl9e6tkz5V6KTgwERh5WqJDUuLHM4eHS/v1a/9tvWtO0qSpVrqyRL7+s7t27K3/+/EanBAAAAAAAAABkMdoQIA1OnTqlF198UcWCgvT6m2/qUmCgNHSorD16SOXKUSzCcbi6SjVqyDxokNSnj46Yzeo/YICKBQXp7bff1sWLF41OCAAAAAAAAADIQjQiwH389ttvevrpp1WmbFlN/uwzJdSsKesLL0jt20sBAUbHA4xjMknBwbJ26yYNH66rZcvqw48+UomSJTVo0CCdPHnS6IQAAAAAAAAAgCxAuQjcxaZNm9Q4IkJ16tTRsh9/lK1FC1leeEGKiJAKFjQ6HpCz+PpKrVrJ8uKLMjdsqDkLF6pc+fLq16+fjh07ZnQ6AAAAAAAAAEAmolwE/uZ2qdiwYUNtOnRIevppmYcOlR59VHJzMzoekLO5u0sNGsj8/POyNm2qL5ctU0jFiurevbsOHjxodDoAAAAAAAAAQCagXASUUio+3rjx/5eKXbrIMnCg9Mgj3E8RSC83N6lePZmHD5etRQt9/f33qlKlijp37qy9e/canQ4AAAAAAAAA8BBoTeDQ/l4qbj5y5P9LxUqVKBWBh+XqKj36qMzDhsnWpo2W//ijqlWrpvZPPqkDBw4YnQ4AAAAAAAAAkAG0J3BIO3bsoFQEsouLi1SrVsoUw08+qdWbNyu0alX169dPZ8+eNTodADgMi8WiTz/9VE2aNFHVqlXVtGlTTZkyRTabzb6NzWbThAkTFB4erqpVq6pv3746depUquPExsZqxIgRqlmzpsLCwvTGG2/oxo0bqbY5fPiwunfvrtDQUDVq1EizZs26I8+aNWvUokULhYaGqm3btvr5559TrU9LFgAAAAAAkP1oUeBQTp48qa5du6p27dra/PfpTykVgazn7CxVry7zs8/K9sQTmv/NNypbrpxeffVVxcTEGJ0OAPK8WbNmaeHChRo9erRWr16tkSNH6rPPPtP8+fNTbTN//ny98847Wrx4sdzd3dW/f3/dunXLvs3IkSN1/PhxzZkzR9OnT9eOHTs0evRo+/r4+Hj1799fxYoV09KlS/Xqq69q8uTJWrRokX2bXbt2acSIEXrqqae0fPlyRUREaNiwYTp69Gi6sgAAAAAAgOxHmwKHEBMToxEjRqhCSIiWrFkjtW0ry6BBlIqAEVxcpDp1ZHnuOSXXq6fxEyeqdJky+vjjj5WQkGB0OgDIs3bv3q2IiAg9/vjjCgoKUosWLRQeHm6/H67NZtO8efP07LPPqmnTpqpYsaI+/vhjXb58WRs2bJAknThxQps2bdIHH3ygatWqKSwsTG+99ZZWrVqlS5cuSZJWrFih5ORkjRkzRuXLl1fr1q3Vq1cvzZkzx55l3rx5atCggQYMGKCyZcvqxRdf1COPPKIvv/wyzVkAAAAAAIAxaFWQp926dUvjx49XcJkymjB1qszh4TIPHy7VqpUyigqAcfLlkxo3lvW553S9QgWNeuMNBZctq9mzZ8tsNhudDgDynBo1amj79u06efKkpJSpS3fu3KmGDRtKks6dO6crV66ofv369n0KFiyoatWqaffu3ZJSCkovLy+Fhobat6lfv76cnJzsJeWePXsUFhYmNzc3+zbh4eE6efKkrl27Zt+mXr16qfKFh4drz549ac6SViZT7n0AAHA/Rv87xYMHDx48ePDIe4+0csm6X3EA41itVi1atEivjhqlyHPnZKtZU3r8ccnT0+hoAP7J01Nq3Vq2unV1+aefNGDAAH3y6aeaPnWqGjRoYHQ6AMgzBg0apPj4eLVs2VLOzs6yWCx66aWX1K5dO0nSlStXJEm+vr6p9vP19VVUVJQkKSoqSj4+PqnWu7i4yNvb275/VFSUgoKCUm3j5+dnX+ft7a2oqCj7srs9T1qypJWvb8F0bZ+TFC5cwOgIAIAcqnDhAvLzy73/xgEAgNyNchF5zp49ezR4yBD99uuvMlWsKNuzz0r+/kbHAvAgvr6ydeok1amjI2vXqmHDhurWrZvGjRunYsWKGZ0OAHK9NWvWaOXKlRo/frzKlSunQ4cOaezYsQoICFCHDh2MjpdloqOvy2YzOkXGXL16w+gIAIAc6urVG4qKum50DAAAkIeYTGm/QJdyEXlGbGysRo8erclTpsjZ31/q00e24GCjYwFIr6AgWfr1k/bs0eKVK7V8xQq9M3q0XnzxxVRT7AEA0ufjjz/WoEGD1Lp1a0lSSEiIzp8/rxkzZqhDhw7y/+tirOjoaAUEBNj3i46OVsWKFSWljECMiYlJdVyz2axr167Z9/fz87tjdOHt72+PVrzbNtHR0fb1acmSVjabcm25CADA/fDvGwAAMAr3XESuZ7PZNG/ePJUtX15TZ86UrWlTmQcNkigWgdzLyUmqWVOWYcOUUKWKRr3+uipVrqy1a9canQwAcq3ExESZ/nEDBWdnZ9n++mQyKChI/v7+2rZtm319fHy8/vjjD9WoUUNSyn0b4+LitH//fvs227dvl9VqVdWqVSVJ1atX144dO5ScnGzfZuvWrQoODpa3t7d9m+3bt6fKsnXrVlWvXj3NWQAAAAAAgDEoF5Gr7du3T4+Fh6tPnz66Ghgoy7BhUv36krOz0dEAZAZ3d6llS9kGD9Ypi0UtWrRQu/btdfLkSaOTAUCu07hxY02fPl0//fSTzp07p/Xr12vOnDlq2rSpJMlkMql3796aNm2aNm7cqCNHjujVV19VQECAfZuyZcuqQYMG+te//qW9e/dq586dev/999W6dWsVKVJEktS2bVu5urrqzTff1LFjx7R69WrNmzdP/fr1s2fp3bu3Nm3apM8//1wnTpzQpEmTtH//fvXs2TPNWQAAAAAAgDFMNhuTKCD3iYuL0zvvvKMJEyfK5OsrS4sWUpkyRscCkJVsNunAAbls2CCXW7f04Qcf6IUXXpAzFxMAQJrEx8drwoQJ2rBhg3260datW2vYsGH2aadtNpsmTpyoxYsXKy4uTrVq1dLbb7+t4L/NCBEbG6v3339fP/zwg5ycnNS8eXO99dZbKlCggH2bw4cP67333tO+fftUuHBh9ezZU4MGDUqVZ82aNfr0008VGRmp0qVL65VXXlGjRo3s69OSJS2ionLvPRf37t2jpk0byrN7d7n8bXpYAIDjMl++rPivvtKGDb+oatXqRscBAAB5iMkk+fml7Z6LlIvIdVatWqX+AwfqSnS0rA0bSnXrSi7cPhRwGLduST/8IP32m2rVqqU5n3+u0NBQo1MBAHIoykUAQF5CuQgAALJKespFpkVFrhETE6NevXqpTZs2uuLpKevQoVJ4OMUi4Gjy5ZNatpSeeUZ7zpxRjZo19fbbb+vWrVtGJwMAAAAAAACAPI9yEbnC8uXLFVKpkhYuWSK1by9r9+5SoUJGxwJgpBIlZBk0SJbHHtP7H36o0GrVtG3bNqNTAQAAAAAAAECeRrmIHO3KlSvq0qWLOnTooJjChWV59lmpRo2U8bkA4OIiNW4s26BB+vPGDT322GN64YUXFB8fb3QyAAAAAAAAAMiTKBeRI9lsNi1evFghlSppyapVUseOsnbtKnl5GR0NQE5UpIgszzwjW/Pmmjx9uipVrqxNmzYZnQoAAAAAAAAA8hzKReQ4MTExeqpzZ3Xp0kWxRYqkjFasWpXRigDuz8lJqldP1iFDdMFkUqNGjfTaa69xL0YAAAAAAAAAyESUi8hRfvzxRz1SpYq+XbNGeuop2Z5+WvL0NDoWgNzEx0eWPn1ki4jQf8aPV82wMO3bt8/oVAAAAAAAAACQJ1AuIkdITk7WG2+8oYiICF3Jn1+WwYOlKlWMjgUgt3JyksLDZRswQEejolQrLEwTJkyQzWYzOhkAAAAAAAAA5GqUizDc8ePHVbdePf37449la9JE1l69JG9vo2MByAuKFpW5f38l16ihF198US1attSlS5eMTgUAAAAAAAAAuRblIgxjs9k0d+5cVa1eXXtPn5atXz+pQYOUEUcAkFlcXaWWLaUePbRx61ZVqlxZa9asMToVAAAAAAAAAORKtDgwRGxsrLp166a+ffsqoXx5mQcOlIKCjI4FIC8rX16WwYN1zddXrVq10ltvvSWLxWJ0KgAAAAAAAADIVSgXke12796tajVq6JsVK6ROnaQnn5Ty5TM6FgBH4Okpa9euUkSExowdq4imTZkmFQAAAAAAAADSgXIR2Wr27NmqU7euIpOTZRk4UAoNNToSAEfj5CQ1aCBbr17asnOnQqtV06ZNm4xOBQAAAAAAAAC5AuUiskVCQoKeeeYZDRgwQMlVqsjSt6/k42N0LACOLDhY5kGDFO3urscbN9a4ceNks9mMTgUAAAAAAAAAORrlIrLcqVOnVKdePc1dsCBlCtR27SRXV6NjAYBUsKCsvXrJWreuXnnlFT3ZoYNiY2ONTgUAAAAAAAAAORblIrLU+vXrVb1mTR06e1bWZ56Rqlc3OhIApObsLDVrJnXtqlXr1qlajRrau3ev0akAAAAAAAAAIEeiXESWsNls+ve//60nWrTQdT8/mQcMkAIDjY4FAPdWsaIsAwcqMilJderV07fffmt0IgAAAAAAAADIcSgXkekSExPVvXt3vf7667KFh8varZvk4WF0LAB4MB8fWfr21a3SpdWhQweNHTuW+zACAAAAAAAAwN9QLiJTXb58WY0aN9biJUukzp2lJk0kJ/6YAchF3Nxke+op2Ro00BtvvKFevXopMTHR6FQAAAAAAAAAkCO4GB0AeceBAwfUolUrXbx6VdY+faSgIKMjAUDGODmlXBzh76+Fixfr6LFjWvHttwpkemcAAAAAAAAADo4hZcgUa9euVZ169XQhOVnm/v0pFgHkDaGhsvbpo92HD6tmWJh2795tdCIAAAAAAAAAMBTlIh7alClT1LJVKyUULSpL375SoUJGRwKAzBMUJPOAAbosqf5jj2nZsmVGJwIAAAAAAAAAw1AuIsPMZrOef/55DR8+XLZHH5W1a1cpXz6jYwFA5vPykqVPH90qU0adOnXS1KlTjU4EAAAAAAAAAIbgnovIkJs3b+rpLl20evVqqXVrqXZtoyMBQNZyc5OtUyepYEENGzZM58+f1/vvvy+TyWR0MgAAAAAAAADINpSLSLfY2Fi1at1av+7YIVu3blL58kZHAoDs4eQkPfGEVLCgPvzwQ50/f14zZ86Uiwv/nAIAAAAAAABwDHwainS5cOGCIpo109GTJ2Xt1UsqUcLoSACQvUwm6bHHJE9PfTFvni5dvqyvFy+Wh4eH0ckAAAAAAAAAIMtxz0Wk2fHjx1WnXj0dO3dOlr59KRYBOLZq1WTr2lXfr1+vxhERio6ONjoRAAAAAAAAAGQ5ykWkyZ49e1S3fn2dv3lT5n79pIAAoyMBgPHKl5e1d2/t3L9fdevX15kzZ4xOBAAAAAAAAABZinIRD/Tzzz8rvGFDxbq5pYxYLFTI6EgAkHMEBcnSt69ORkXp0bp1deTIEaMTAQAAAAAAAECWoVzEfa1YsULNmjdXgr+/LL17SwUKGB0JAHIePz9Z+vVTtNWq8IYNdfDgQaMTAQAAAAAAAECWoFzEPS1dulQdO3WSuVw5Wbt3l/LlMzoSAORcBQvK3KuXrjo5KbxhQ+3bt8/oRAAAAAAAAACQ6SgXcVdLlixR56eflrViRdk6dZJcXIyOBAA5n6enLL17Ky5fPjVs1Ei7d+82OhEAAAAAAAAAZCrKRdzh66+/1tNdusj2yCOydeggOTsbHQkAcg8PD1l69dL1AgXUqHFj/f7770YnAgAAAAAAAIBMQ7mIVBYvXqyu3bqlFItPPkmxCAAZ4e4uS8+euuntrcYREdq2bZvRiQAAAAAAAAAgU1Auwm7RokXq1r07xSIAZIb8+WXp0UMJvr6KaNZMmzZtMjoRAAAAAAAAADw0ykVIkhYuXJhSLFauzFSoAJBZ8uWTtXt33SpSRM1btND27duNTgQAAAAAAAAAD4VyEVq0aJF69OwphYamjFh04o8FAGQaNzdZu3ZVsr+/mrdoob179xqdCAAAAAAAAAAyjBbJwa1evTqlWKxSRbb27SkWASAruLnJ0q2bbnp6qnFEhI4cOWJ0IgAAAAAAAADIEJokB7Z582Z17NRJ1nLlKBYBIKvlzy9L9+6Kc3bW402a6PTp00YnAgAAAAAAAIB0o01yUHv27FHL1q2VXLSobJ06cY9FAMgOBQrI3KOHom7dUqPGjXXhwgWjEwEAAAAAAABAulAuOqBjx44polkzJRQsKGuXLpKrq9GRAMBxeHnJ3LOnImNi1DgiQtHR0UYnAgAAAAAAAIA0o1x0MOfOnVPjiAhdc3KSpXt3KX9+oyMBgOMpXFjmnj11/OxZNWveXHFxcUYnAgAAAAAAAIA0oVx0IFFRUWrStKkuxcfL0qOHVKCA0ZEAwHH5+8vSo4f2HjqkJzt2VFJSktGJAAAAAAAAAOCBKBcdxI0bN/REixb6MzJS5h49JG9voyMBAIoWlaVLF/30008aOGiQbDab0YkAAAAAAAAA4L4oFx2AxWJR127d9Mf+/SkjFv38jI4EALitdGnZ2rfXvLlz9d577xmdBgAAAAAAAADuy8XoAMh6I0eO1KpVq2Tr2lUqWtToOACAf6paVbp2Te+8845KlSqlvn37Gp0IAAAAAAAAAO6KkYt53JQpU/Tpp5/K1qKFVKGC0XEAAPcSHi7VrKkBAwdqw4YNRqcBAAAAAAAAgLuiXMzDVq9ereeef16qW1d69FGj4wAA7sdkklq3li04WO07dNDevXuNTgQAAAAAAAAAd6BczKP++OMPPfX00ymjFZs3NzoOACAtnJ1lfeop3fLyUvMWLRQZGWl0IgAAAAAAAABIhXIxD4qMjNQTLVsqqVAh2Tp2lJx4mwEg18iXT5auXRWdkKAWrVrp5s2bRicCAAAAAAAAALs81TqNGjVKQ4cONTqGoeLj49WydWtFJybK0qWL5OZmdCQAQHp5ecnctasOHj6sZ555RjabzehEAAAAAAAAACApneXiqFGjFBISopkzZ6ZavmHDBoWEhKT5OE2aNNEXX3yRnqeWzWbTokWL1LlzZ9WoUUNhYWHq2LGjvvjiCyUkJKTrWHmVzWZTn759dfDIEZm7dJG8vIyOBADIqMBAWdu316JFizRu3Dij0wAAAAAAAACApAyMXMyXL59mzZqla9euZUWee3rllVc0ZswYRUREaO7cuVq+fLmGDh2qjRs3asuWLVn63MnJyVl6/Mwybtw4LV2yRJb27aXAQKPjAAAeVuXKUni4Xhs1SmvXrjU6DQAAAAAAAACkv1ysX7++/Pz8NGPGjHtus3btWrVu3VpVqlRRkyZN9Pnnn9vX9erVS5GRkRo7dqxCQkLSNOJx9erVWrlypcaPH68hQ4aoatWqCgoKUtOmTTVv3jzVqVMn1fazZ89WeHi46tSpo3fffTdVORgSEqINGzak2j4sLExLly6VJJ07d04hISFavXq1evbsqdDQUK1cudI+5er9jm2kjRs36rVRo6TwcKlSJaPjAAAyS5MmMpUrp85duuj48eNGpwEAAAAAAADg4NJdLjo5Oenll1/Wl19+qYsXL96xfv/+/XrxxRfVqlUrrVy5UsOHD9eECRPs5d2kSZMUGBio559/Xps3b9bmzZsf+JwrV65UcHCwmjZtesc6k8mkggUL2r//9ddfdebMGc2dO1f//ve/tWzZMi1btiy9P6bGjRun3r17a/Xq1QoPD8/UY2e206dP66nOnWUqU0Zq0sToOACAzOTkJGuHDkpwc1Obdu10/fp1oxMBAAAAAAAAcGDpLhclqVmzZqpUqZImTpx4x7o5c+aoXr16GjZsmIKDg9WxY0f16NFDs2fPliQVKlRIzs7OKlCggPz9/eXv7//A5zt9+rSCg4PTlM3b21ujR49W2bJl1bhxYzVq1Ejbtm1L3w8oqU+fPmrevLlKlCihgICATD12ZkpISFD7J59UvMkka8eOklOG3lIAQE7m7i7z00/r+MmT6tW7t6xWq9GJAAAAAAAAADioDDdRI0eO1PLly3XixIlUy//880/VrFkz1bKaNWvq9OnTslgsGXoum82W5m3LlSsnZ2dn+/f+/v6Kjo5O93NWqVIly46dWWw2m54dOlT7DhyQuXNnycPDsCwAgCzm7y/Lk0/q2+XLNWbMGKPTAAAAAAAAAHBQGS4Xa9eurfDwcI0fPz4z89xV6dKl9eeff6ZpWxcXl1Tfm0ymVOXkP7+XJLPZfMdxPO5S1D3o2Nlt+vTpmvvFF7K2aSMVLWpYDgBANqlYUWrUSKNHj9bGjRuNTgMAAAAAAADAAT3UHJojRozQjz/+qN27d9uXlSlTRrt27Uq13a5du1S6dGn7qD9XV9d0TenWtm1bnTp1Shs2bLhjnc1mS9f9p3x8fHT58mX796dOnVJCQkKa988ptm/frueff1569FGpWjWj4wAAskujRjKVKaOnu3bVhQsXjE4DAAAAAAAAwME8VLkYEhKitm3bav78+fZlzzzzjLZt26YpU6bo5MmTWrZsmRYsWKBnnnnGvk3x4sX1+++/69KlS4qJiXng87Rs2VKtWrXSiBEjNH36dO3bt0+RkZH68ccf1bdvX/36669pzly3bl0tWLBABw8e1L59+/T222/L1dU1fT+4wWJjY/XU00/LVrSo1Ly50XEAANnJyUnWDh0Ul5SkLt26ZXjKcQAAAAAAAADIiIcqFyXp+eefTzUKsXLlyvr000+1evVqtW3bVhMnTtTzzz+vjh07ptonMjJSTZs2Vb169R74HCaTSePHj9eoUaO0YcMG9erVS+3atdOkSZMUERGh8PDwNOd97bXXVLRoUfXo0UMjR47UM888o/z586fvhzaQzWbT4MGDdTEqSpaOHaV/TNUKAHAAnp4yd+igzZs26d133zU6DQAAAAAAAAAHYrIZedNApNvs2bM1YMAA6amnpCpVjI4DADDSzz/L9NNP2rhxoxo3bmx0GgDIkaKiriu3nvHs3btHTZs2lGf37nIJCDA6DgAgBzBfvqz4r77Shg2/qGrV6kbHAQAAeYjJJPn5FUzTtg89chHZ59ChQxr+3HNSzZoUiwAAqUEDmYKD1bV7d0VFRRmdBgAAAAAAAIADyBFzag4YMEA7d+6867rBgwdryJAh2Zwo50lMTFTnLl2UXLCg1KKF0XEAADmBk5OsTz6p6Jkz1advX323cqVMJpPRqQAAAAAAAADkYTmiXPzwww+VmJh413Xe3t7ZnCZnevXVV3Xo8GFZ+/eX3NyMjgMAyCm8vGRp106rv/pKkyZN0vPPP290IgAAAAAAAAB5WI4oF4sUKWJ0hBxt5cqVmjRpktSypRQYaHQcAEBOU6GCVKeOXnn1VTVv3lwVK1Y0OhEAAAAAAACAPIp7LuZwFy9eVO8+fWSqWFF69FGj4wAAcqqmTWX18lKPXr1kNpuNTgMAAAAAAAAgj6JczMFsNpsGDByo62azbG3bStxHCwBwL66uMrdvr927dumjjz4yOg0AAAAAAACAPIpyMQebN2+eVn33nSytW0sFChgdBwCQ0wUFyfbYY3rnnXe0Z88eo9MAAAAAAAAAyIMoF3Oos2fPathzz8lUrZrEvbMAAGnVqJFs/v7q3rOnbt26ZXQaAAAAAAAAAHkM5WIOZLPZ9Ez//rrl7CxbixZGxwEA5CYuLrK0b6/Dhw/r3XffNToNAAAAAAAAgDyGcjEHmjNnjjasXy9z69aSu7vRcQAAuU1goGyPP65/f/SRtm3bZnQaAAAAAAAAAHkI5WIOExkZqRdeekmqXl0qX97oOACA3Kp+fTkVL64evXopISHB6DQAAAAAAAAA8gjKxRzEZrNp0ODBSpCkJ54wOg4AIDdzdpalfXudPn1aH374odFpAAAAAAAAAOQRlIs5yP/+9z+tXrVKllatmA4VAPDw/PxkDQ/XRx99pAMHDhidBgAAAAAAAEAeQLmYQ8TGxuq5F16QqXJlqWJFo+MAAPKK8HCpcGENHDRIVqvV6DQAAAAAAAAAcjnKxRzirbfeUmxcnGxMhwoAyEwuLjK3aqVtW7fq888/NzoNAAAAAAAAgFyOcjEH2LFjh6ZOnSrL449LXl5GxwEA5DXBwVL16hrxyiu6fPmy0WkAAAAAAAAA5GKUiwazWCwaOHiwnAIDpUcfNToOACCvatZMN5KT9fLLLxudBAAAAAAAAEAuRrlosBkzZmjPrl2ytGolOTsbHQcAkFcVKCBL06ZasGCBNmzYYHQaAAAAAAAAALkU5aKBLl68qNdef12qWVMqUcLoOACAvK56dTkFB2vAoEFKTEw0Og0AAAAAAACAXIhy0UAjRoxQgtUqNW1qdBQAgCMwmWRt1UpnzpzRf//7X6PTAAAAAAAAAMiFKBcN8tNPP+mrr76SJSJC8vAwOg4AwFH4+8tWu7be//BDXbhwweg0AAAAAAAAAHIZykUDWCwWPffCC3IuUUKqVs3oOAAAR9OokZIkvfnmm0YnAQAAAAAAAJDLUC4aYP78+dq/d68szZtLTrwFAIBs5u4uS6NG+uKLL7Rr1y6j0wAAAAAAAADIRWi2stmNGzf02uuvy1SlilSihNFxAACOqlYtOQcE6PkXX5TNZjM6DQAAAAAAAIBcgnIxm40fP15RUVGyRUQYHQUA4MicnWVu1kxbNm3S0qVLjU4DAAAAAAAAIJegXMxGFy5c0NiPPpL10UelwoWNjgMAcHTlyskpJEQvjRihxMREo9MAAAAAAAAAyAUoF7PRW2+9pWSTSWrQwOgoAABIkqxNm+rcuXOaMGGC0VEAAAAAAAAA5AKUi9lk7969mjNnjiwNG0ru7kbHAQAghb+/bGFheu+DDxQdHW10GgAAAAAAAAA5HOViNrDZbHp5xAg5+/lJtWoZHQcAgNQaNtQts1kff/yx0UkAAAAAAAAA5HCUi9ngxx9/1MYNG2Ru0kRycTE6DgAAqRUoIMujj2rCxIm6cOGC0WkAAAAAAAAA5GCUi1nMZrPpzbfeknNQkFSxotFxAAC4u3r1ZHZy0pgxY4xOAgAAAAAAACAHo1zMYuvXr9f2bdtkadRIMpmMjgMAwN25u8tSt66mz5ih06dPG50GAAAAAAAAQA5FuZiF7KMWS5SQypUzOg4AAPdXp46UP7/ee+89o5MAAAAAAAAAyKEoF7PQmjVrtOP332V5/HFGLQIAcr58+WSuX19fzJ2rY8eOGZ0GAAAAAAAAQA5EuZhFbDab3njrLTmXKiWVKWN0HAAA0iYsTE4FC2r06NFGJwEAAAAAAACQA1EuZpGVK1fqj927GbUIAMhdXF1lDg/XokWLtG/fPqPTAAAAAAAAAMhhKBezgNVqTRm1GBwsBQcbHQcAgPSpUUPOhQtr7NixRicBAAAAAAAAkMNQLmaBb7/9Vgf27ZOlUSOjowAAkH7OzjLXrav/LVqkP//80+g0AAAAAAAAAHIQysVMZrPZ9MGHH8opOFgqXdroOAAAZEz16nL28ND48eONTgIAAAAAAAAgB6FczGS//PKLdu3cKWv9+kZHAQAg49zcZH70UX02e7YuXbpkdBoAAAAAAAAAOQTlYib76OOP5RIYKJUrZ3QUAAAeTu3asphMmjBhgtFJAAAAAAAAAOQQlIuZ6MCBA1qzerXMdetKJpPRcQAAeDju7rLUrKmJkyfr2rVrRqcBAAAAAAAAkANQLmaicePGyaVQIalKFaOjAACQOerWVUJCgmbMmGF0EgAAAAAAAAA5AOViJomMjNSXCxbIXLu25OJidBwAADKHl5esVavqP+PHKzEx0eg0AAAAAAAAAAxGuZhJJkyYIJuLi1SrltFRAADIXPXrK+rKFc2fP9/oJAAAAAAAAAAMRrmYCeLi4jR1+nRZatSQ8uc3Og4AAJnLz0+mkBB9OnGibDab0WkAAAAAAAAAGIhyMRN89tlnunnzplS3rtFRAADIErbatXVw/35t3rzZ6CgAAAAAAAAADES5+JCsVqsmTp4s2yOPSF5eRscBACBrBAfLJSBAkyZNMjoJAAAAAAAAAANRLj6kDRs26PTJk1JYmNFRAADIOk5OMteqpaXLlikyMtLoNAAAAAAAAAAMQrn4kKZMnSqXwECpZEmjowAAkLWqVZNcXDRz5kyjkwAAAAAAAAAwCOXiQzh37pxWrlwpc61akslkdBwAALJW/vyyhIZqyrRpSkpKMjoNAAAAAAAAAANQLj6EWbNmycnNTapa1egoAABkj9q1FX3lipYsWWJ0EgAAAAAAAAAGoFzMoOTkZE2bMUOWKlWkfPmMjgMAQPYICJBTmTKaMHGi0UkAAAAAAAAAGIByMYO+/fZbXbl0SQoLMzoKAADZyhoWpl+3b9cff/xhdBQAAAAAAAAA2YxyMYMmT5ki51KlpMBAo6MAAJC9QkLkUrCgvvjiC6OTAAAAAAAAAMhmlIsZcOzYMf3800+y1KpldBQAALKfs7PMVaroi3nzlJSUZHQaAAAAAAAAANnIxegAudH8+fPl7O4uS6VKRkfJvaxW+e7bJ69Tp+ScmCizu7vigoMVU6WKZDJJkjzPnpX3sWPKHxMj56QknW7ZUrcKF77vYb2PH1fBkyeVLzZWkpTo46PoatWU6Odn36bItm3yPnky1X43ihZVZOPGkiSTxaIiv/6qAufOyeLursu1a+vm30aoFj54UC43b+oKU+ICcGTVqil22zatWbNG7du3NzoNAAAAAAAAgGxCuZhOVqtVc+bOlaViRcnV1eg4uZbPoUMqdPy4Ltatq1ve3sofE6PA7dtldXNTbEiIJMlkNivB31/XS5ZU4G+/pem47pcu6XqpUroSFiark5N8Dh1S8R9/1OnWrWX28LBvd6NoUV2sW9f+vc3Z2f619/HjyhcTo7PNm6vAhQsK3LJFf3bsKJlMcomPl/eJEzrTokUmvRIAkEsFBsq5eHF9PmcO5SIAAAAAAADgQCgX02nLli06d+aM1KSJ0VFytfxXrii+eHHdKF5ckhTv6akbp08rf3S0fZvrwcGSJJf4+DQf9+Jjj6X6/tKjj8rzzBm5X7yo62XK2JfbnJ1lcXe/6zHc4uJ0IyhISYUKKdnTU/67d8v51i1Z8udXkd9/V1T16rJSLAOALFWratWqVbpy5Yr8/f2NjgMAAAAAAAAgG3DPxXSaP3++XHx8pJIljY6SqyX6+8vj0iW5xsVJktyuXpX7lSu6UbRopj6PyWKRyWaTNV++VMvdL11SmSVLVHrlSgX89pucbt2yr7tVqJDcr1yRyWyWx4ULMru7y5IvnwqePCmbs7PiS5TI1IwAkGtVqSKrzaavvvrK6CQA0ujSpUsaOXKk6tSpo6pVq6pt27bat2+ffb3NZtOECRMUHh6uqlWrqm/fvjp16lSqY8TGxmrEiBGqWbOmwsLC9MYbb+jGjRuptjl8+LC6d++u0NBQNWrUSLNmzbojy5o1a9SiRQuFhoaqbdu2+vnnn1OtT0sWAAAAAACQ/SgX0yExMVELFy2SuUoVyYmX7mHEPPKIrpcqpdLffafyCxeq1Jo1uhoSYh+tmFn89+yR2d091T0TbxYtqov16ulcRISuVK8u98uXFfTjj5LVKkm6VrasbhUqpNKrVsn3wAGdf+wxOSUlyXffPl2uVUu+f/yh0itWqPgPP8jl5s1MzQsAuUqBAlJIiD77/HOjkwBIg2vXrqlbt25ydXXVrFmztGrVKr322mvy9va2bzNr1izNnz9f77zzjhYvXix3d3f1799ft/52IdbIkSN1/PhxzZkzR9OnT9eOHTs0evRo+/r4+Hj1799fxYoV09KlS/Xqq69q8uTJWrRokX2bXbt2acSIEXrqqae0fPlyRUREaNiwYTp69Gi6sgAAAAAAgOxHQ5YOK1euVHxcnFS1qtFRcr2Cp0+r4KlTuli/vk63bKmL9erJ59Ahef35Z6Y9R+EDB1Tw9Gmdb9Ag1T0Vr5cubZ/29EaJEjr/+OPKHxMj98uXUzZwctLl2rV1sn17nWnRQokBAfLfvVuxFSoo39Wr8jx3TqdbtVKin5/8d+7MtLwAkBvZqlXT/r17tWfPHqOjAHiAWbNmKTAwUGPHjlXVqlVVokQJhYeHq+RfM3LYbDbNmzdPzz77rJo2baqKFSvq448/1uXLl7VhwwZJ0okTJ7Rp0yZ98MEHqlatmsLCwvTWW29p1apVunTpkiRpxYoVSk5O1pgxY1S+fHm1bt1avXr10pw5c+xZ5s2bpwYNGmjAgAEqW7asXnzxRT3yyCP68ssv05wFAAAAAAAYg3IxHebOmyfnEiUkPz+jo+R6fnv2pIxeLF1aSYUK6XpwsK5WrCifgwcz5fiFDx2Sz8GDOte4sZIKF77vtsmenjLnyye369fvut790iXli41VbIUK8rh0STeKFZPNxUXXS5aUx18fogGAwypXTi5eXpo7d67RSQA8wA8//KAqVaro+eefV7169fTkk09q8eLF9vXnzp3TlStXVL9+ffuyggULqlq1atq9e7ckaffu3fLy8lJoaKh9m/r168vJyUl79+6VJO3Zs0dhYWFyc3OzbxMeHq6TJ0/q2rVr9m3q1auXKl94eLj9QoW0ZAEAAAAAAMZwMTpAbnHlyhV9//33sjRvbnSUPMHJbJZMplTLbCaTZLM99LELHzwonwMHFNm4sW75+j5we5ebN+V865bM7u53rDNZLAr4/XddrF8/ZSpcm02mv6ZPNdlsmZIXAHI1Z2eZK1bUwkWLNH78eDkxbTiQY509e1YLFy5Uv379NGTIEO3bt08ffPCBXF1d1aFDB125ckWS5PuP3598fX0VFRUlSYqKipKPj0+q9S4uLvL29rbvHxUVpaCgoFTb+P11cV5UVJS8vb0VFRVlX3a350lLlrT6x6+cAADkGfwbBwAAMlN6fregXEyjxYsXy2qzSZUrGx0lT4gvXlw++/fL7OGhW97eyn/1qgofPqy4MmXs2zjduiXXmzft9zV0jYuTJJnz55flryIwcOtWmT08FFW9uqSUYtF3715drF9fyQUKyDkhQZJkdXGRzdVVpuRk+e7fr/gSJWTOn1+u8fHy371byQUL6mbRonfk9Nm/XzeKFdOtvz5ES/D3l//u3bpWpowKHT2qBH//LHuNACDXqFxZl377TVu3blV4eLjRaQDcg81mU5UqVfTyyy9Lkh555BEdO3ZM//vf/9ShQweD02UdX9+CRkfIsMKFCxgdAQCQQxUuXEB+frn33zgAAJC7US6m0eJvvpGpTBnZCnCCnxkuh4XJb+9eBfz+u33U4LVy5RRdpYp9G8/ISAVu327/vtiWLZKk6CpVFP3XfS9dbt5MGfH4l0LHjsnJalWxzZtTPZ99H5NJ+a5eldeff8o5OVlmd3fdCAxUdNWqqe7LKElusbEqePq0TrdqZV8WX7KkPC5fVokNG5RcsKAuPPZY5r0oAJBblSghl0KFtHjxYspFIAfz9/dX2bJlUy0rU6aM1q5da18vSdHR0QoICLBvEx0drYoVK0pKGYEYExOT6hhms1nXrl2z7+/n53fH6MLb398erXi3baKjo+3r05IlraKjr+faySauXr1hdAQAQA519eoNRUXd/fYuAAAAGWEypf0CXcrFNIiKitKmX36RrXVro6PkGTZXV12pVUtXatW65zZxZcqkGsl4N+eaNk31/cn27e//vC4uimzSJE0ZkwoV0ql27VIvNJl0uXZtXa5dO03HAACH4ORknxr1v//9r5z/cbEGgJyhZs2aOnnyZKplp06dUvHixSVJQUFB8vf317Zt21SpUiVJUnx8vP744w9169ZNklSjRg3FxcVp//79qvLXRWHbt2+X1WpV1b8u/qpevbo+/fRTJScny9XVVZK0detWBQcHy9vb277N9u3b1bdvX3uWrVu3qvpfs1GkJUtaMZM9ACCv4t83AABgFG6MlAYrVqxI+Y0tJMToKAAA5EyPPKKoy5e1detWo5MAuIc+ffrojz/+0PTp03X69GmtXLlSixcvVvfu3SVJJpNJvXv31rRp07Rx40YdOXJEr776qgICAtT0rwu6ypYtqwYNGuhf//qX9u7dq507d+r9999X69atVaRIEUlS27Zt5erqqjfffFPHjh3T6tWrNW/ePPXr18+epXfv3tq0aZM+//xznThxQpMmTdL+/fvVs2fPNGcBAAAAAADGYORiGnz9zTdyKl1aFk9Po6MAAJAzBQXJxdtbS5YsUYMGDYxOA+AuqlatqsmTJ+uTTz7RlClTFBQUpDfeeEPt/jZTw8CBA5WQkKDRo0crLi5OtWrV0meffaZ8+fLZtxk3bpzef/999enTR05OTmrevLneeust+/qCBQtq9uzZeu+999SxY0cVLlxYQ4cOVZcuXezb1KxZU+PGjdOnn36qTz75RKVLl9aUKVNUoUKFdGUBAAAAAADZz2SzMYnC/Vy7dk1+/v4yR0RIdesaHQcAgJxr1SoVPX9ekWfPyvS3++ECgJGionLvPRf37t2jpk0byrN7d7n87d6TAADHZb58WfFffaUNG35R1arVjY4DAADyEJNJ8vNL2z0XmRb1AVavXi1zcrL0171eAADAPTzyiC5ERmrHjh1GJwEAAAAAAACQRSgXH2DJkiVyDgqSvL2NjgIAQM5WsqRcPD21ZMkSo5MAAAAAAAAAyCKUi/eRkJCgVatXyxISYnQUAAByPmdnmcuW1YrvvjM6CQAAAAAAAIAsQrl4H+vWrVNiQgJTogIAkFbly+vQgQM6e/as0UkAAAAAAAAAZAHKxftYtWqVXPz9JT8/o6MAAJA7lC0rmUz6/vvvjU4CAAAAAAAAIAtQLt6DzWbTylWrZC5TxugoAADkHu7uci5ZUqtWrTI6CQAAAAAAAIAsQLl4DwcPHtTF8+el8uWNjgIAQK5iKVtW6zZsUFJSktFRAAAAAAAAAGQyysV7WLNmjZzc3KRSpYyOAgBA7lKunBJu3NCWLVuMTgIAAAAAAAAgk1Eu3sOqNWtSikVXV6OjAACQuwQGysXLS6tXrzY6CQAAAAAAAIBMRrl4FwkJCdqyebOs3G8RAID0c3KSuUwZreS+iwAAAAAAAECeQ7l4F5s2bVJyUpJUtqzRUQAAyJ3KldORQ4d05swZo5MAAAAAAAAAyESUi3exfv16uXh7S/7+RkcBACB3KltWMpn0ww8/GJ0EAAAAAAAAQCaiXLyL1WvXyly6tGQyGR0FAIDcyd1dLkWL6pdffjE6CQAAAAAAAIBMRLn4D9HR0Tq4b58UHGx0FAAAcjVzUJA2/Pij0TEAAAAAAAAAZCLKxX/YunVryhelShkbBACA3K50aZ09dUrnzp0zOgkAAAAAAACATEK5+A+bN29Oud9ioUJGRwEAIHcrWVKSmBoVAAAAAAAAyEMoF//hp19+kTkoiPstAgDwsDw95VKkCOUiAAAAAAAAkIdQLv5NQkKCdu3caR9pAQAAHo45KEgbf/rJ6BgAAAAAAAAAMgnl4t/s2LFD5uRkykUAADJLqVI6fuSILl++bHQSAAAAAAAAAJmAcvFvNm/eLOf8+aWAAKOjAACQN5QqJUnatGmTwUEAAAAAAAAAZAbKxb/5ZdMm2YKCJGdno6MAAJA3eHvL1ddXmzdvNjoJAAAAAAAAgExAufgXq9WqLVu2yFqihNFRAADIU5IDA/Xrb78ZHQMAAAAAAABAJqBc/MuhQ4d0PS5OolwEACBzFSum3bt3y2KxGJ0EAAAAAAAAwEOiXPzLrl27Ur4oVszYIAAA5DXFiikxIUGHDx82OgkAAAAAAACAh0S5+Jddu3bJ1c9Pyp/f6CgAAOQtRYtKknbu3GlwEAAAAAAAAAAPi3LxLzt27VJyQIDRMQAAyHvy55drQIB27NhhdBIAAAAAAAAAD4lyUZLVatXu3bulwECjowAAkCclFymi7b/9ZnQMAAAAAAAAAA+JclHSyZMndeP6dfu0bQAAIJMVK6a9f/whs9lsdBIAAAAAAAAAD4FyUUoZtShRLgIAkFWKFtWtxEQdOnTI6CQAAAAAAAAAHgLlolLKRRdvb8nT0+goAADkTUWLSiYT910EAAAAAAAAcjnKRUk7du6UpUgRo2MAAJB35csnV19f7d+/3+gkAAAAAAAAAB4C5aKknbt2yRYYaHQMAADyNLOPjw4cPGh0DAAAAAAAAAAPweHLxejoaEVfuSIFBBgdBQCAPM3m7699Bw4YHQMAAAAAAADAQ3D4cvHIkSMpX/j5GRsEAIC8zs9P58+e1Y0bN4xOAgAAAAAAACCDKBdvl4s+PsYGAQAgr/P3l/S3f3sBAAAAAAAA5DqUi0eOyNXHR3JzMzoKAAB521+zBBw6dMjgIAAAAAAAAAAyyuHLxcNHjshSuLDRMQAAyPvy55ertzflIgAAAAAAAJCLOXy5eODgQVl9fY2OAQCAQ7D4+uog5SIAAAAAAACQazl0uWixWHTq5EmJchEAgGxh9fPTvv37jY4BAAAAAAAAIIMculw8deqUzMnJlIsAAGQXPz+d/PNPWSwWo5MAAAAAAAAAyACHLhePHDmS8oWfn7FBAABwFIUKyWI268KFC0YnAQAAAAAAAJABDl0uHjt2TE6urpKXl9FRAABwDN7ekqTTp08bHAQAAAAAAABARjh0uXjmzBk5FyokOTn0ywAAQPYpVEgS5SIAAAAAAACQWzl0q3bu3DlZChY0OgYAAI4jXz65eHhQLgIAAAAAAAC5lEOXiydPn5aVchEAgGxlKlSIchEAAAAAAADIpRy6XDx77hz3WwQAIJslFyyoU6dOGR0DAAAAAAAAQAY4bLlosVh0+eJFykUAALKbt7f+pFwEAAAAAAAAciWHLRcvXrwoq8VCuQgAQHYrVEhnz56VzWYzOgkAAAAAAACAdHLYcvHs2bMpX3h7GxsEAABH4+2txJs3FRMTY3QSAAAAAAAAAOnksOXiuXPnUr5g5CIAANmrYEFJKbMIAAAAAAAAAMhdHLpcdHJzk9zdjY4CAIBj8fCQJF25csXgIAAAAAAAAADSy2HLxYsXL8q5YEHJZDI6CgAAjqVAAUlSVFSUwUEAAAAAAAAApJfDlosxMTGyMWoRAIDsly+fTE5OjFwEAAAAAAAAciGHLhct+fMbHQMAAMfj5CRnT09GLgIAAAAAAAC5kMOWi1eio2WjXAQAwBAmDw9GLgIAAAAAAAC5kOOWi1euSEyLCgCAIazu7oxcBAAAAAAAAHIhhy0XY65epVwEAMAgFnd3XWbkIgAAAAAAAJDrOGy5eI1yEQAA43h46OKlS0anAAAAAAAAAJBODlkuJiYmKjEhgXIRAACjeHgoKjra6BQAAAAAAAAA0skhy8WrV6+mfEG5CACAMdzcdPPGDaNTAAAAAAAAAEgnhywXY2JiUr6gXAQAwBiurimzCAAAAAAAAADIVRyyXLx582bKF25uxgYBAMBRuboqOSlJFovF6CQAAAAAAAAA0sEhy8XExMSUL1xcjA0CAICjcnWVJCUwehEAAAAAAADIVSgXAQBA9vurXLzBfRcBAAAAAACAXIVyEQAAZL+/pia3T1UOAAAAAAAAIFegXAQAANnvr5GLlIsAAAAAAABA7kK5CAAAsh/lIgAAAAAAAJArOXa56OxsbBAAABwV91wEAAAAAAAAciWHLRedXF0lk8noKAAAOKa/Zg+wX/ADAAAAAAAAIFdw2HLR9NeICQAAYIC/LvCx2WwGBwFyvt69eysuLu6O5fHx8erdu7cBiQAAAAAAgCNzyHIxKSlJJqZEBQDAcFar1egIQI7322+/KTk5+Y7lt27d0s6dOw1IBAAAAAAAHJmL0QGM4OTkJDFSAgAA4zByEXigw4cP278+fvy4rly5Yv/earVq06ZNKlKkiBHRAAAAAACAA6NcBJA7RUZKW7YYnQJARpnNkhi5CNzPk08+KZPJJJPJpD59+tyxPn/+/HrrrbcMSAYAAAAAAByZw5aLNj7MBHK3XbukgwfVJCIi5YIBALmOX82aatSokdExgBxr48aNstlsatq0qb7++mv5+PjY17m6usrX11fOTPUPAAAAAACymUOWi87OzoxcBHK7atWknTv12quvqnnz5kanAQAg0xUvXlxS6ulRAQAAAAAAjOaQ5SLTogJ5QIkScilaVJOnTKFcBADkeadOndKvv/6q6OjoO6YTHj58uEGpAAAAAACAI3LYcpFpUYFczmSSuVYtfffddzpz5oxKlixpdCIAALLE4sWL9c4776hw4cLy8/OTyWSyrzOZTJSLAAAAAAAgWzlkuejs7CwbIxeB3C80VE4bNmjmzJn64IMPjE4DAECWmDZtml588UUNGjTI6CgAAAAAAAByMjqAEZgWFcgj8uWTpWpVTZsxQ0lJSUanAQAgS1y7dk0tW7Y0OgYAAAAAAIAkBy4XmRYVyCPCwhQTFaWlS5canQQAgCzRokULbd682egYAAAAAAAAkhx0WlQ3N7eUkYsWi+TsbHQcAA8jIEDOwcGaNHmyunbtanQaAAAyXalSpTRhwgT98ccfqlChglxcUv8K37t3b4OSAQAAAAAAR+SQ5WKBAgVSvkhOplwE8gBLWJi2fv219u3bp9DQUKPjAACQqRYtWiQPDw/99ttv+u2331KtM5lMlIsAAAAAACBbOXa5mJQk5c9vbBgAD69iRbl4eWn69OmaMmWK0WkAAMhUP/zwg9ERAAAAAAAA7BzynoupRi4CyP2cnWWuUUNz5s7V9evXjU4DAAAAAAAAAECexchFAHlDzZpK3LRJX375pZ599lmj0wAAkGlef/31+64fO3ZsNiUBAAAAAABw0HKxYMGCKV9QLgJ5h7e3VLGiJk6erCFDhshkMqVr9+TkZG3fvj2LwgHIDh4eHqpVq5bRMYBMFxcXl+p7s9msY8eOKS4uTnXr1jUoFQAAAAAAcFQOWS56e3unfHHrlrFBAGQqW1iYDs+bp82bN6tBgwbp2nfSpEkaMWJEFiUDkF1WrlypNm3aGB0DyFR3u5+w1WrVO++8oxIlShiQCAAAAAAAODKHLBe9vLxSvqBcBPKW4GC5BARoypQp6S4Xy5QpI0n6X+Oqqu7jlRXpAGQhm2yqtGSLLl68aHQUIFs4OTmpb9++6t27twYOHGh0HAAAAAAA4EAcslz08PCQk5OTrJSLQN5iMslcs6aWLFmiixcvKjAwMM27tmnTRkHFimrj+Rh1KVM0C0MCyAoWq02S5OzsbHASIPucPXtWZrPZ6BgAAAAAAMDBOGS5aDKZ5OHpqfjERKOjAMhs1arJ+sMPmj17tt5888007+bi4qLBzw7V2Pfe08e1K6hQPtcsDAkgs5ltKeWii4tD/mqDPG7s2LGpvrfZbLpy5Yp++ukndejQwaBUAAAAAADAUTkZHcAovn5+0s2bRscAkNnc3WWtUkVTpk1L92iOAQMGKMlq1bzj57MoHICsYrExchF518GDB1M9jhw5IkkaNWqU3njjDYPTAQAAAAAAR+Owl/cXDQzU6fh4o2MAyAphYbowc6ZWrVql9u3bp3m3wMBAderUSVM3fK/nHikpk8mUhSEBZCamRUVeNn/+fKMjAAAAAAAA2DnsyMXiRYvKxMhFIG8qVkzOJUpo0pQp6d516LBhOhITpx8vxGRBMABZhZGLcAQxMTHasWOHduzYoZgY/p0CAAAAAADGcNiRiwEBAXK5eVPJRgcBkCUstWpp4/LlOnbsmMqXL5/m/Ro0aKDKFStq6uFzalLMNwsTAshMZspF5GE3b97U+++/r2+//VZWq1VSyp/19u3b61//+pfc3d0NTggAAAAAAByJw45cLFKkiGxMiwrkXZUry7lAAU2fPj1du5lMJj07fLiWn76syBuJWRQOQGZj5CLysn//+9/6/fffNW3aNPvIxalTp+r333/Xv//9b6PjAQAAAAAAB+PQ5aIlPl766+pvAHmMq6ss1arps9mzdTOdUyD36tVL+fPn06wj57IoHIDMlmRJ+ffc1dXV4CRA5lu7dq0+/PBDNWrUSJ6envL09FSjRo30/vvva+3atUbHAwAAAAAADsZhy8WAgADZrFYpIcHoKACySliY4uLitGjRonTt5uXlpV69+2jmsQtK5gIEIFeIuZUy0bmPj4/BSYDMl5iYKD8/vzuW+/r6KjGRUfYAAAAAACB7OWy5WKRIkZQvbtwwNgiArOPjI6fy5TVx8uR07/rss8/qQvxNfXv6chYEA5DZov8qF319uVcq8p7q1atr4sSJunXrln1ZYmKiJk+erOrVqxsXDAAAAAAAOCQXowMYxV4uxsdLAQHGhgGQZay1amnPwoX6/fffVbt27TTvV7VqVYXXr6epR47pqeDALEwIIDNQLiIve+ONNzRgwAA1bNhQFStWlCQdPnxYbm5u+vzzzw1OBwAAAAAAHI3DjlwsWrRoyhfXrxsbBEDWKl9eLj4+mjp1arp3HTr8Of0YGaVDsfFZEAxAZopOTJaTk5O8vb2NjgJkupCQEK1bt04jRoxQpUqVVKlSJY0cOVLr169X+fLljY4HAAAAAAAcjMOOXCxQoIAK+fgoNjbW6CgAspKTk8w1auirhQs1bty4dI1q6tixowL8fDXt0FlNrFcpC0MCeFjRt5LkU8hbTk4Oe90U8rAZM2bI19dXTz/9dKrl33zzjWJiYjRo0CCDkgEAAAAAAEfk0J/AlSlTRrp61egYALJajRoyWyz64osv0rVbvnz5NGDQYM09cVHxyeasyQYgU0QnJsvXx8foGECWWLRoUcrvrf9Qvnx5/e9//zMgEQAAAAAAcGQOXS6WL1tWTteuGR0DQFbz9JT1kUc0acoUWa3WdO06aNAgxSeb9dWJC1kUDkBmiL6VLF8/P6NjAFniypUr8vf3v2O5j4+Prly5YkAiAAAAAADgyBy6XAwODpYz5SLgGMLCdPrkSW3YsCFdu5UqVUptWrfSlCORstlsWRQOwMOKvpUsX/8Ao2MAWaJo0aLatWvXHct37typgAD+3AMAAAAAgOzl8OVi8tWrksVidBQAWa1ECbkULarJU6ake9ehw4Zrb9Q1bbscm/m5AGSK6GRruu6pCuQmnTt31pgxY7RkyRJFRkYqMjJS33zzjcaOHXvHfRgBAAAAAACymovRAYwUHBws2WzStWsS92kC8jaTSeZatfTdd9/pzJkzKlmyZJp3bdasmcoGl9a0w+dUv0jhLAwJIKNiksyUi8izBgwYoNjYWL377rtKTk6W9Nd9gQcM0ODBgw1OBwAAAAAAHI3Dj1yUJF29amwQANkjNFRO+fJp5syZ6drNyclJzw4brsUnL+lKQlIWhQPwMKITb1EuIs8ymUx65ZVXtG3bNi1atEjffvutfvvtNw0fPtzoaAAAAAAAwAE5dLlYsmRJOTk5SbGxRkcBkB3y5ZMlNFTTZsxQUlL6SsK+ffvKycVFnx89l0XhAGSU1WbT1QTKReR9BQoUUNWqVVWhQgW5ubkZHQcAAAAAADgohy4X3dzcVKRYMUYuAo6kdm3FREVp6dKl6drN19dXXbt10/RjF2Sx2rIoHICMiE1KltVmo1wEAAAAAAAAsoFDl4uS9EjFilJUlNExAGQXf385lymjSZMnp3vXoUOH6tS1eH1/jv9nADlJdGLKPegoFwEAAAAAAICs5/DlYtXQULlGRxsdA0A2stSqpa1btmjfvn3p2q927doKq1lDU48wNSqQk0TfolwEAAAAAAAAsovDl4uVK1dWclSUlM77rwHIxSpWlIu3t6ZNm5buXYcOf05rzl7Rn3E3syAYgIxg5CIAAAAAAACQfRy+XKxSpYpkszE1KuBInJ1lrl5dX8ybp7i4uHTt2qVLFxXy8tKMw2ezKByA9Iq+lXKBEOUiAAAAAAAAkPUcvlx85JFHUr64fNnYIACyV82aSkxI0Jdffpmu3Tw8PNSvf3/NPnFRiWZLFoUDkB7nb95SIS8v5cuXz+goAAAAAAAAQJ7n8OViwYIFVaxECenKFaOjAMhO3t5SxYqaOHmybDZbunYdMmSIom8m6uuTl7IoHID0OHrtpiqUL290DAAAAAAAAMAhOHy5KEnVQ0NlYuQi4HBsYWE6cuiQNm3alK79ypcvr2YREZp6NDKLkgFIj6PxiapQqZLRMQAAAAAAAACHQLmolPsuukRHGx0DQHYLDpZLQICmTJmS7l2HDh+u7RdjtCsqffdsBJD5jsbdVIUKFYyOAQAAAAAAADgEykWllIvJMTHSrVtGRwGQnUwmmWvW1JKlS3Xx4sV07dqmTRsFFSuqaYfPZlE4AGlx9VayrtxIoFwEAAAAAAAAsgnloqTQ0NCULy5x/zTA4VSrJpuTkz777LN07ebi4qLBzw7Vgj8vKvZWchaFA/Agx+JuSBLlIgAAAAAAAJBNKBclVa5cWW758kmR3D8NcDju7rJWqaIp06bJbDana9cBAwYo2WrT3GPnsygcgAc5eu2mpJR7oQIAAAAAAADIepSLklxdXVW9Rg3KRcBRhYXp4vnz+u6779K1W2BgoDp16qSpRyNls9myKByA+zly7YaKFSkiT09Po6MAAAAAAAAADoFy8S/169aVazrvuQYgjyhWTM4lS2rSlCnp3nXosGE6evW6frgQkwXBADzI0Ws3VSEkxOgYQK40c+ZMhYSE6MMPP7Qvu3Xrlt59913VqVNHNWrU0HPPPaeoqKhU+50/f16DBg1StWrVVK9ePX300Ud3jP7/9ddf1aFDB1WpUkXNmjXT0qVL73j+BQsWqEmTJgoNDVXnzp21d+/eVOvTkgUAAAAAAGQ/ysW/PProo0qOipJu3DA6CgADWGrV0g8bNujY/7V35/Ex3fsfx9+zJEIiJLEUsW+xb1GlQYtWay9VbXWh2tqi+6bLbbX9la63RUTVvhdFqyhFi1YsrX0nREKQDdmXyczvD/fmVmnNaCYnkdfz8ciDzJzPOe+oGvKe7/ccO+bSXPv27dUoKEiTDp12UzIAf+doapbqBQUZHQMocvbu3auFCxeq/p/K+Q8++EA//fSTPv/8c82ZM0dxcXEKDQ3Nez43N1dDhw5VTk6OFi5cqHHjxmnZsmUaP3583jExMTEaOnSo2rRpo2+//VaPP/643nzzTW3evDnvmFWrVmns2LEaOXKkli1bpqCgIA0ZMkSJiYlOZwEAAAAAAMagXPyPW2+99fJPYrl3GlAsNWwoi7e3Jk+e7NKYyWTSiFGj9G10nM6kZbopHIBrcTgcOnox9apyBMDfS0tL08svv6z3339fZcqUyXs8JSVF33zzjV577TW1bdtWjRs31gcffKBdu3Zp9+7dkqRffvlFx48f18cff6wGDRqoY8eOevbZZzVv3jxlZ2dLkhYuXKjAwEC99tprql27th555BF17dpVM2fOzLvWjBkz9MADD6hfv36qU6eOxowZIy8vL33zzTdOZwEAAAAAAMagXPyPWrVqqYyfH/ddBIorDw/lNm+uqdOmKT093aXRRx55RCW9vPTVEVYvAgUpNj1L6Tk5qlevntFRgCLl3XffVceOHdWuXbsrHt+/f79ycnKueLx27dqqXLlyXqG3e/du1atXT+XKlcs7JiQkRKmpqTp+/HjeMW3btr3i3CEhIXnnyM7O1oEDB664jtlsVrt27bRr1y6nswAAAAAAAGNYjQ5QWJhMJt3Wpo3WRkbKYXQYAMZo1UrJW7bo66+/1uDBg50e8/X11aOPP64pc2bpjea15GHmfRtAQTh66fJW5pSLgPNWrlypgwcPasmSJVc9l5CQIA8PD/n6+l7xeEBAgOLj4/OO+WOxKCnv8+sdk5qaqszMTF26dEm5ubkKCAi46jonTpxwOouzTCaXDgcAoMjgNQ4AAOQnV/5uQbn4B7e1aaP1mzfL5nDwNzSgOPL3l7luXY2fONGlclGShg8frvDwcH17Kk7317zFTQEB/NHR5HRZLBbVrFnT6ChAkXD27Fn93//9n6ZPn64SJUoYHafABASUNjrCDfPz8zY6AgCgkPLz81a5ckX3NQ4AABRtlIt/cOutt8qWliYlJUl/eic1gOLBHhys3fPna8eOHWrdurXTc02aNFH729tp0pGjlItAATlyMU21qleTh4eH0VGAIuHAgQNKTExU37598x7Lzc3Vjh07NG/ePE2bNk05OTlKTk6+YsVgYmKiypcvL+nyCsS9e/decd6EhARJuuKY/z72x2N8fHzk5eUls9ksi8WixMTEK45JTEzMW/FYrly562ZxVmJiihxFdGuSCxfSjI4AACikLlxIU0JCitExAADATcRkcv4NupSLf9C2bVuZTCY5Tp2iXASKqzp1ZPX316RJkzRjxgyXRkeEjtJDDz2kQxdT1aCsj5sCAvivoynpqtfY+TcBAMXdbbfdphUrVlzx2OjRo1WrVi099dRTqlSpkjw8PBQREaGuXbtKkk6cOKHY2Fg1b95cktS8eXNNnjxZiYmJeduabtmyRT4+PqpTp07eMZs2bbriOlu2bMk7h6enpxo1aqSIiAh16dJFkmS32xUREaFHHnlEktS4cePrZnGWw6EiWy4CAPB3eH0DAABG4cZgf+Dn56cmzZpJUVFGRwFgFLNZtpYtNX/BgqtWVFxP3759VaFcgMIPxbgpHIA/OpqapXr16xsdAygyfHx8VK9evSs+SpUqpbJly6pevXoqXbq0+vXrp3Hjxmnr1q3av3+/Xn/9dbVo0SKv0AsJCVGdOnX0yiuv6PDhw9q8ebM+//xzDRw4UJ6enpKkBx98UDExMfroo48UGRmpefPmafXq1Ro0aFBelsGDB2vRokVatmyZIiMj9c477ygjIyNvVaUzWQAAAAAAgDEoF//krs6dZY2O5u1fQHHWooVsubmaOXOmS2Oenp56augwzYo8p9Qcm3uyAZAkZefadeJiiurWrWt0FOCm8vrrr+uOO+7QM888o0ceeUTlypXThAkT8p63WCyaPHmyzGazBgwYoJdffll9+vTRM888k3dM1apV9eWXX2rLli3q3bu3ZsyYoffff1/t27fPO6Zbt2569dVXNX78ePXu3VuHDh3S1KlT87ZFdSYLAAAAAAAwhsnhoEX7o5UrV6pHjx7SqFFsjQoUZ0uXqnpKik4cPy6z2fn3YURHR6tmzZoKbxukp4OqujEgULxtj7+oNt9t09atW9WmTRuj4wAoxBISiu49F/fu3a0uXTrI5+GHZa1Qweg4AIBCwBYXp9T587Vu3SY1bdrc6DgAAOAmYjJJ5co5d89FVi7+Sfv27WW2WKSTJ42OAsBIwcE6dfKkfvzxR5fGqlWrpp49uivsyBnx3g3Afbacv6gSnp5q0aKF0VEAAAAAAACAYoVy8U98fX3VvEUL7rsIFHdVq8pSqZImhoW5PDpiZKj2JlxSRNzF/M8FQJK0Je6SWge3yrvHGwAAAAAAAICCQbl4Ddx3EYBMJuW2aqWVK1fq1KlTLo126dJFdWrW1KRDp90UDkBEYora3h5idAwAAAAAAACg2KFcvIY777xTtuRkKSHB6CgAjNSkicwlSmjKlCkujZnNZg0PDdXiqPOKy8hyUzig+IpJzdDp5DS1a9fO6CgAAAAAAABAsUO5eA233367LFYr910EirsSJZTbpIkmT5mirCzXSsJBgwbJbLVq+tEzbgoHFF8RcZckSW3btjU4CQAAAAAAAFD8UC5eg4+Pj9q0aSPTiRNGRwFgtNatlZSQoKVLl7o05u/vrwcfekiTj8Yq184Wy0B+2hJ3QbWqV1PFihWNjgIAAAAAAAAUO5SLf6FXz56Xy8WcHKOjADBS+fKy1KqlCRMnujw6YsQInUpO0+rT8W4IBhRfEQmpahvS3ugYAAAAAAAAQLFEufgXevToIXt2thQVZXQUAAbLbdVKEVu2aO/evS7NtW7dWsEtW2jSYbZGBfJLhi1XO+Mvcr9FAAAAAAAAwCCUi3+hYcOGqlKtmnT0qNFRABgtKEjWMmUUHh7u8uiI0FH64XS8IpPT3RAMKH5+T0iWzW6nXAQAAAAAAAAMQrn4F0wmk+7r1UvWyEjJwf3SgGLNYpGteXPNnD1bycnJLo0OGDBAZX199eXhGDeFA4qXLXEX5V2qpBo3bmx0FAAAAAAAAKBYolz8Gz169JAtKUmKizM6CgCjtWqlrMxMzZkzx6WxUqVKafCQIZp2/KwybLluCgcUH1viLqnNrW1ktVqNjgIAAAAAAAAUS5SLf6Njx47yKlWKrVEBSL6+UlCQJoSFyeHiauZhw4YpKSNLi0+ec1M4oHhwOByKSEhW29tvNzoKAAAAAAAAUGxRLv4NLy8v3X3XXbIcP250FACFgCM4WEcOHdLmzZtdmqtbt67u7tJF4Udj3ZQMKB5OpGQoLi2D+y0CAAAAAAAABqJcvI6ePXooNzpaSk83OgoAo9WsKWv58goLC3N5dERoqLaeS9LOBNfu2QjgfyLiLkqSbrvtNmODAAAAAAAAAMUY5eJ1dO/eXSZJOnLE6CgAjGYyydaqlb5ZulTnzrm2xWn37t1VtXJlhR+OcVM44Oa35fxFBdWtI39/f6OjAAAAAAAAAMUW5eJ1VKpUSe1uv13mgweNjgKgMGjWTA6zWVOnTnVpzGq1auiIEZp34pwuZuW4KRxwc4tITFG79h2MjgEAAAAAAAAUa5SLTnj4oYfkOHGCrVEBSCVLyt64scLCw2Wz2VwaHTJkiGwOadYx7r0IuOp8Rpb2JFxShw6UiwAAAAAAAICRKBed0K9fP8nhkA4dMjoKgMKgdWudi43V999/79LYLbfcon79+mnS0TNyOBxuCgfcnFbGxEuSunXrZnASAAAAAAAAoHijXHRCxYoV1fGOO2Q+cMDoKAAKg0qVZKlWTRPCwlweHTFypI5eSNGGs0luCAbcvFbEJKjdbbepfPnyRkcBAAAAAAAAijXKRSc9/OCDcpw8KaWmGh0FQCGQ26qVNqxbp6NHj7o0FxISosYNG2jSodNuSgbcfDJsuVp7Jkk9e/c2OgoAAAAAAABQ7FEuOqlv374yWyzSwYNGRwFQGDRsKIu3tyZPnuzSmMlk0ojQUfo2Ok6n0zLdFA64uWyITVJ6To569epldBQAAAAAAACg2KNcdFJAQIA6d+4sC+UiAEny8FBu8+aaOn260tPTXRp95JFHVNLLS18dYfUi4IzvouNUp2ZNBQUFGR0FAAAAAAAAKPYoF13w0IMPKvfUKSk52egoAAqDVq2UkpyshQsXujRWunRpPTZokKYci1WO3e6mcMDNwe5w6PvYJPXs00cmk8noOAAAAAAAAECxR7nogj59+shqtUr79xsdBUBh4O8vc926+mLCBDkcDpdGhw8frnOpGVp+Ks5N4YCbw86EZMWmpLMlKgAAAAAAAFBIUC66oGzZsurTu7ese/dKLhYJAG5O9uBg7d29Wzt27HBprnHjxuoQEqJJh8+4KRlwc/guOk5+ZXx1++23Gx0FAAAAAAAAgCgXXfbEE0/Idu6cFBtrdBQAhUGdOrL6+2vSpEkujw4fOVI/xybo4IVUNwQDbg4rziTp3m7d5eHhYXQUAAAAAAAAAKJcdNndd9+tCrfcIu3ebXQUAIWB2Sxby5aav2CBEhMTXRrt27evKpQLUPjhGDeFA4q26NQM7Y6/qF69exsdBQAAAAAAAMB/UC66yGKx6IlBg2Q5cEDKyTE6DoDCoEUL5drtmjFjhktjnp6eemroMM2KPKfUHJubwgFF14roeFmtFt1zzz1GRwEAAAAAAADwH5SLN2Dw4MHKTU+XDh82OgqAwsDbW/aGDTUhLEx2u92l0aefflppOTbNizzrpnBA0bXidII6tu+gMmXKGB0FAAAAAAAAwH9YjQ5QFNWrV08hHTooYtcu5TZpYnQcAIVB69aKnjZNa9eudWmVVbVq1dSzR3dN2rJJT9cPlMlkcmPIwm3HpQxNO31J+1OzFZ+dq7AGFdSlnHfe82m5dn16MknrEtN10WZXYAmrHq3iq4cq+f7lOR/de1bbL2Ve9XhHv5Ka0vgWSdJrR+K1LO7K+16G+JXUtP88n2136I1j8VqfmK7ynha9Xbuc2vmVzDt26umLOpuZq7fqBPyjrx9XSs62aUNsoj55qY/RUQAAAAAAAAD8AeXiDRr61FP65dFHpcREKYBvKAPFXmCgrJUra2JYmMtbOI4YGaqu363QlriLur2in5sCFn7puQ7V9/ZUv4qlFXoo7qrnx51I0taLGfq4fnlV8bLq1wsZGnM8URU8Leoc4H2NM0oTGlRQjsOR9/nFHLt67zyje8pfeXx7v5IaW69c3ueefyh5vz6brAMp2fq6WWVtupChF4/EaUubajKZTIrJzNHicyn6pnmVf/rl40/WnklQTq5dPXv2NDoKAAAAAAAAgD9gW9Qb1K9fP5UuU0batcvoKAAKA5NJtlattGrlSp06dcql0S5duqhOzZqadCjGTeGKho7+pfR8DX/dVe7aReGu5Ez1qeijNmVLKtDLQwMq+SrIx1N7U7L+8pxlPSwq72nN+/j1Yoa8LCbd86dreJpNVxxXxsOS91xkRo46BZRSXW9PDaxUWkk5dl3Iubz97TvHE/VSDX/5WHk5zW8rYuLVuEED1axZ0+goAAAAAAAAAP6A74beoJIlS2rQY4/JumePZLMZHQdAYdCkicxeXpoyZYpLY2azWcNDQ7UkKk5xGX9dlBV3LXy9tCExXeezbHI4HNp6MUMnM3IU8octSq/nm3Mp6l7eR6UsV778bb+YqbZbT6nrb6f19rEEXcjJzXsuyNtTvydnKjPXrl8uZKi8p0V+HmZ9F5eqEmbTX5ahuHE2u10rzySp1333GR0FAAAAAAAAwJ9QLv4DI0aMkC0lRTpwwOgoAAoDT0/lNm2qyVOmKCvLtZJw0KBBMlutmn70jJvCFX1v1Q5QnVKe6rA9Ro1/jdKT+8/p7doBal3GuXJxb0qWjqbnqP8tpa94vL1fSX1Yv5xmNqmkl2v4acelTD21/5xy/7Odar+KpRXk7aluv59ReMxFfR5UQZdsdo0/dUFv1Q7Qv6OSdNeOGA3Zd07ns3izSX5YeyZRiemZ6tu3r9FRAAAAAAAAAPwJ5eI/EBQUpC533y3L9u3SH+7pBaAYCw5WUkKCli5d6tKYv7+/HnroIU0+GqtcO3+eXMuc2GTtTslSeMOK+qZFFb1WK0BjIhO15UKGU/NLzqWoXikPNS1d4orHu1fwUecAb9X39lSXct76slFF7UvN1vaLmZIkD7NJb9cppw23VtU3LaoouIyXPjyZpEcr++pgapbWJ6br25ZV1My3hN6PTMz3r7s4mnb0jJo2aqSWLVsaHQUAAAAAAADAn1Au/kMvPPeccs+ckWKK973SAPxH+fIy16qlCRMnujw6YuRInUpO0+rT8W4IVrRl5tr176gkja7lr04BpRTk7alHKvuqWzlvTTtz6brz6bl2rYxP1f1/WrV4LVVLesjPatapzJxrPr/1YoaOpWXrkcq+2n4pUx38S6mUxax7y3lr+6VMl782XCkuI0vfRcdryNNPy2QyGR0HAAAAAAAAwJ9QLv5DXbt2Va06dWTavt3oKAAKCXtwsCK2bNHevXtdmgsODlbrVi016TBbo/6ZzSHlOKQ/V00Wk0kOJ1aO/5CQpmy71KuCz3WPPZdl00WbXeU9LVc9l2W3693jiXq3bjlZTCblOiTbf1aa2hwO5bLo9B+be/yszBaLBg4caHQUAAAAAAAAANdAufgPmc1mPf/ss9LBg9Kl66+eAVAM1K8va5kyCg8Pd3l0ROgo/XA6XpHJ6W4IVril5dp1KDVLh1Iv36/ydJZNh1KzFJtpk4/VrFvLeOnjk0nadjFDMZk5Wno+RcvjUtUlwDvvHK8cidenJ5OuOveScynqElBKfh5XFoZpuXZ9eCJJu5MzdTozRxEXMjTi4HlVL2lVe79SV51nUvRFdfQvqYY+l7dWbelbQj8mpulwWrbmxiarpW+Jq2bgPIfDoWmRZ9WnTx8FBAQYHQcAAAAAAADANVAu5oPHH39cpby9pR07jI4CoDCwWGRr0UIzZ89WcnKyS6MDBgxQWV9ffXm4+G21vD8lS312xarPrlhJ0tgTSeqzK1bjT12QJH0WVF5NSpfQS0fi1f33M5oSc0nPV/fTQ5X+t9Xp2Syb4rNzrzjvifRs/Z6cdc0tUS2SjqZla/jB87rnt9N641iCGvmU0LymleVpvnKd5NG0bK2OT9Oo6n55j91Tzlsd/Utp4J5YHUnL1hu1KcT+iW3xl3QwMVlDnnzS6CgAAAAAAAAA/oLJ4cx+criuF154QeOnTFHuc89JHh5GxwFgtORkmT7/XBPGj9fIkSNdGn3ppZc0Y9JEnX6gvUpar96aE7hZPf3LAf2QatfJU9GyWPi9DyB/JCSkqKj+i2fv3t3q0qWDfB5+WNYKFYyOAwAoBGxxcUqdP1/r1m1S06bNjY4DAABuIiaTVK7c1Qs0roWVi/kkNDRU9vR0ad8+o6MAKAx8faWgII2fONGpewL+0bBhw5SUkaXFJ8+5KRxQ+KTl2LQwKk6DhzxJsQgAAAAAAAAUYpSL+aRWrVrq0bOnrFu3Sna70XEAFAKO4GAdPXxYmzZtcmmuTp066nrXXZp0JNZNyYDCZ/HJ80rJytbgwYONjgIAAAAAAADgb1Au5qPXR4+WLS5OOnzY6CgACoOaNWUtX15hYWEuj44IDdW280n6PeGSG4IBhc/0yLPqfOedqlGjhtFRAAAAAAAAAPwNysV8dNttt6njnXfK8ssvKrI3dgGQf0wm2Vq10tJly3T27FmXRrt3765qVaoo/NBpN4UDCo+jl9K0OTZRQ556yugoAAAAAAAAAK6DcjGf/evNN5UbGysdP250FACFQbNmcpjNmjp1qktjFotFQ0eM0PyT53QhK8dN4YDCYcbRMyrr66v77rvP6CgAAAAAAAAAroNyMZ/deeedan3rraxeBHBZyZKyN26ssPBw2Ww2l0aHDBkim0OadeyMm8IBxrPZ7Zp14rwGPvqovLy8jI4DAAAAAAAA4DooF/OZyWTSv956S7mnTkmnThkdB0Bh0Lq1zp89qxUrVrg0VrFiRfXr10+TjsbKzpsVcJNafTpBZ1PTNWTIEKOjAAAAAAAAAHAC5aIbdO/eXY2aNJH5l1+MjgKgMKhUSZZq1TQhLMzl0REjR+rYhRRtiE1yQzDAeNOPxapFs6Zq0aKF0VEAAAAAAAAAOIFy0Q1MJpP+9eabsh8/Lp1hO0MAUm6rVvpp/XodOXLEpbmQkBA1bthAkw7HuCkZYJzzGVn6PjpeTzz5lNFRAAAAAAAAADiJctFN+vXrp9p168q0ebPRUQAUBg0byurjo8mTJ7s0ZjKZNCJ0lL49FafTaZluCgcYY/rRM7JYrXr44YeNjgIAAAAAAADASZSLbmKxWPT2W2/JcfiwdPq00XEAGM3DQ7ZmzTR1+nSlpaW5NPrII4+oVMmSmsLqRdxEMmy5+vzQaT322GPy9/c3Og4AAAAAAAAAJ1EuutHDDz+s+g0ayLxhg9FRABQGwcFKTUnRwoULXRorXbq0Hhs0SF8dP6scu91N4YCCNePoGSVkZOmVV181OgoAAAAAAAAAF1AuupHFYtFH48bJfuKEFBlpdBwARvPzk7luXY2fOFEOh8Ol0eHDh+tcaoaWn4pzUzig4Njsdn18MEb9779fderUMToOAAAAAAAAABdQLrpZz549dWubNrJs2CC5WCYAuPnYg4O1d/du7dixw6W5xo0bq0NIiCYdPuOmZEDBWXjinKIupeq10aONjgIAAAAAAADARZSLbmYymfTxRx8p98wZ6eBBo+MAMFqdOrIGBChs0iSXR0eEhurn2AQdvJDqhmBAwbA7HBq3P1r33tNVzZs3NzoOAAAAAAAAABdRLhaADh06qOs998j6889Sbq7RcQAYyWyWrUULLViwQImJiS6N3nfffapYvpzCD8e4KRzgft9Hx+tA4iWNfv0No6MAAAAAAAAAuAGUiwVk7AcfyBYfL+3ebXQUAEZr0UK5DodmzJjh0pinp6eeGjpMsyLPKTXH5qZwgPs4HA6N3XdKt7dtq/bt2xsdBwAAAAAAAMANoFwsIC1atNCAAQNk3bxZyskxOg4AI3l7y96woSaEhclut7s0+vTTTystx6Z5kWfdFA5wn43nLmjr+SSNfoNViwAAAAAAAEBRRblYgN5//305UlOlrVuNjgLAaMHBio6K0tq1a10aq1q1qnr17KFJR2LlcDjcFA5wj3H7otS0cSN169bN6CgAAAAAAAAAbhDlYgGqU6eORoWGyvzLL1JystFxABgpMFDWypU1MSzM5dERI0O1N+GitsRdzP9cgJvsTEjWmph4vfb6GzKZTEbHAQAAAAAAAHCDKBcL2Ntvv60yPj4yrV9vdBQARjKZZGvVSqtWrlRUVJRLo507d1bdWrU06VCMe7IBbjBu30nVqlFd/fv3NzoKAAAAAAAAgH+AcrGAlS1bVh+OHSvHnj1SDMUAUKw1aSKzl5emTJni0pjZbNbw0FAtjjqvuIwsN4UD8s/RS2lacvK8XnlttKxWq9FxAAAAAAAAAPwDlIsGeOKJJ9S0eXNZ1qyR7Haj4wAwiqencps21eQpU5SV5VpJOGjQIFk9PDTt6Bk3hQPyz0d7o1SxfDk9/vjjRkcBAAAAAAAA8A9RLhrAYrFo0sSJyj19Wtq92+g4AIwUHKwLiYn65ptvXBrz8/PTQw89rMlHY5Vrd7gpHPDPnU7L1OzIs3rhpZfl5eVldBwAAAAAAAAA/xDlokFuv/12PfTQQ7L89JOUmWl0HABGKV9e5lq1NGHiRJdHR4wcqejkNK06He+GYED++GxflLy9vTVs2DCjowAAAAAAAADIB5SLBvroo4/kYbNJGzcaHQWAgezBwdoaEaE9e/a4NNeqVSvdGtxKkw6zNSoKp/MZWZpyLFahzzyj0qVLGx0HAAAAAAAAQD6gXDRQYGCg3nzjDZm2b5fi4oyOA8Ao9evLWqaMwsPDXR4dPjJUP8TEKTI53Q3BgH/mrd+Py7NkKT3//PNGRwEAAAAAAACQTygXDfbiiy+qRo0asqxcKdntRscBYASLRbYWLTRrzhxdunTJpdEBAwbIr0wZTT4c46ZwwI3Zm5SiaUfP6J1335W/v7/RcQAAAAAAAADkE8pFg3l5eWnGtGnKPXVK+v13o+MAMErLlsrKzNScOXNcGitZsqSeePJJTT9+Vhm2XDeFA1zjcDj0wvajqluntoYPH250HAAAAAAAAAD5iHKxEOjYsaOGDBkiy4YNUnKy0XEAGMHXV2rQQOMnTpTD4XBpdNiwYUrKyNKik+fcFA5wzfcx8Vp/JkGffPZveXh4GB0HAAAAAAAAQD6iXCwkPv74Y5X18ZFp9WqjowAwiCM4WMeOHNHGjRtdmqtTp4663nWXJh0546ZkgPOyc+166bfj6tKpk7p37250HAAAAAAAAAD5jHKxkPDz81N4WJgchw5JBw8aHQeAEWrUkLVCBYWFhbk8OiI0VNvPX9DvCa7dsxHIb+GHYnT8Upo++/xzmUwmo+MAAAAAAAAAyGeUi4XI/fffr+49esj6ww9SRobRcQAUNJNJtlattGz5cp09e9al0e7du6talSoKP3TaTeGA60vKytaYvSf15JAhatKkidFxAAAAAAAAALgB5WIhYjKZNDk8XJ52u7RundFxABihWTM5zGZNnTrVpTGLxaKhI0Zo/slzupCV46ZwwN8bszNSNrNV7773ntFRAAAAAAAAALgJ5WIhExgYqI/GjZN+/12KijI6DoCC5uUle5MmCgsPl81mc2l0yJAhsjmkWce49yIK3pGLaZp0+LTeeOstVaxY0eg4AAAAAAAAANyEcrEQGj58uNq2ayfrd99JmZlGxwFQ0IKDdf7sWa1YscKlsYoVK+r+++/XpKOxsjscbgoHXNtLO44qMLCKnn32WaOjAAAAAAAAAHAjysVCyGw2a97cufLIypLWrDE6DoCCVqmSLNWra0JYmMujI0aO1LELKdoQm+SGYMC1rTuTqO+j4/Thx5/Iy8vL6DgAAAAAAAAA3IhysZCqWbOmJo4fL+3aJR06ZHQcAAUst1Ur/bR+vY4cOeLS3O23364mDRtq0uEYNyUDrpRrd+iF347p9rZt1b9/f6PjAAAAAAAAAHAzysVCbPDgwerZq5csK1dKqalGxwFQkBo2lNXHR5MnT3ZpzGQyacSoUfr2VJxOp7GtMtxv2tHT2pdwSf/+4guZTCaj4wAAAAAAAABwM8rFQsxkMmnqV1+pjJeXzCtWSNxDDSg+rFbZmjfX1OnTlZaW5tLowIED5V2qlKawehFulpxt01u7T+qRgQPVunVro+MAAAAAAAAAKACUi4VchQoVNHP6dNmPHJF27jQ6DoCC1KqVUlNStHDhQpfGSpcurccGDdJXx88pO9fupnCA9MGeE0rJtWvsuHFGRwEAAAAAAABQQCgXi4CePXtqyJAhMq9dKyUlGR0HQEHx85O5bl19MWGCHC6uXB4+fLjOpaZr+ak4N4VDcbc/KUWfHYjWq6+NVmBgoNFxAAAAAAAAABQQysUi4t///rcCK1WSZflyKTfX6DgACog9OFj79uzR9u3bXZpr1KiROrZvr0lHzrgpGYqzXLtDT/x6SHXq1NZrr71mdBwAAAAAAAAABYhysYgoXbq0Fs6fL8XGSuvXGx0HQEGpU0fWgACFTZrk8uiI0FBtjE3QgQupbgiG4uzzA6f0W/xFTZsxUyVKlDA6DgAAAAAAAIACRLlYhLRt21YfjhsnbdkiHTlidBwABcFslq1FCy1cuFAJCQkujfbp00e3VCiv8EPRbgqH4uh4cpre2hWpZ599Vm3btjU6DgAAAAAAAIACRrlYxLzwwgvq2auXLN9+K128aHQcAAWhRQvlOhyaMWOGS2Oenp56augwzT5xXinZNjeFQ3Fidzj01K+HdUvlynr//feNjgMAAAAAAADAAJSLRYzJZNKsmTNVqVw5Wb75RrJRGAA3PW9v2Rs21ISwMNntdpdGn376aaXbbJoXedZN4VCcTD1yWj/HJuiradPl7e1tdBwAAAAAAAAABqBcLIL8/Py0dMkSmc6dk3780eg4AApCcLBiTp3SmjVrXBoLDAxUzx49NenoGTkcDjeFQ3FwOi1TL/12XE8OGaLOnTsbHQcAAAAAAACAQSgXi6jWrVvrs08/lbZtkw4eNDoOAHcLDJSlcmVNDAtzeXTEyJHal3BJv56/mP+5UCw4HA4N3XJIpf389PEnnxgdBwAAAAAAAICBKBeLsNDQUPXt10+WFSukpCSj4wBwJ5NJua1aafWqVYqKinJptHPnzqpbu5YmHY5xTzbc9KYdPaNV0XH68qupKlu2rNFxAAAAAAAAABiIcrEIM5lMmj5tmqpWqiTL4sVSdrbRkQC4U5MmMnt56csvv3RpzGw2a/jIUC2JOq/zGVluCoeb1YnkdD2//aieHDJEPXr0MDoOAAAAAAAAAINRLhZxZcqU0bfLlsnj4kWZvvtO4p5qwM3L01O5TZtq8pQpyspyrSQcNGiQrB4emn70jJvC4WaUa3do0C8HVe6WW/TZv/9tdBwAAAAAAAAAhQDl4k2gadOmmjN7thz790u//GJ0HADu1Lq1LiYlacmSJS6N+fn56aGHHtbko7HKtfMmBDjn3wei9Mu5JM2aM1elS5c2Og4AAAAAAACAQoBy8SZx//33680335Q2bJCOHjU6DgB3KVdO5tq1NTEszOXRESNHKjo5TatOx7shGG42+5NS9MbvkXrhhRfUoUMHo+MAAAAAAAAAKCQoF28iY8aMUffu3WVZtkyKpzwAblb2Vq20NSJCe/bscWmuVatWujW4lSYdZmtU/L3sXLse++Wg6tSto/fff9/oOAAAAAAAAAAKEcrFm4jZbNb8efNUp0YNWb/+WkpPNzoSAHeoX1/WMmUUHh7u8uiI0FH6ISZOkcn8+YC/9u6uSO1LStGcefPl5eVldBxJUv369bVu3TqjYwAAAAAAAADFHuXiTcbX11erV65Uabtd5sWLpdxcoyMByG8Wi2wtWmjWnDm6dOmSS6MPPPCA/MuW0eTDMW4Kh6Luh9Px+mDvSb0zZoxatmxZYNeNj4/Xe++9p86dO6tx48bq2LGjhg0bpoiIiALLAAAAAAAAAOD6KBdvQjVr1tTyZctkjomRVq6UHA6jIwHIby1bKisrS3PmzHFprGTJknriyac0/fhZZdh48wGudDIlXQ9vOqB77+mq0aNHF9h1T58+rb59+2rr1q165ZVXtGLFCk2dOlVt2rTRmDFj3Hbd7Oxst50bAAAAAAAAuFlRLt6kOnTooClTpkg7d0qbNxsdB0B+8/WVgoI0fuJEOVx8A8GwYcOUlJGlRSfPuSkciqIMW67u/3mf/Creornz5stsLri/IowZM0Ymk0mLFy9W165dVbNmTdWtW1eDBw/WokWL8o67cOGCRo4cqWbNmunuu+/W+vXr855bunSpgoODrzjvunXrVL9+/bzPJ0yYoN69e2vx4sXq1KmTmjZtKunylquLFy/+y3MDAAAAAAAA+B/KxZvY4MGDL6/42LBB2rXL6DgA8pkjOFjHjhzRxo0bXZqrXbu27rn7bk06csZNyVDUOBwOjYw4pIOXMvTNsuXy8/MrsGtfvHhRmzdv1sCBA1WqVKmrnvf19c37+cSJE3Xvvffqu+++U4cOHfTSSy/p4sWLLl0vOjpaa9as0cSJE7V8+fJ8PTcAAAAAAABQHFAu3uTeeustPfnkkzJ9/710/LjRcQDkpxo1ZK1YUWFhYS6PjggN1fbzF/RbvGv3bMTNaeqR05px9Iy+nDJFzZs3L9BrR0dHy+FwqFatWtc99r777lOPHj1UvXp1vfDCC0pPT9fevXtdul5OTo4++ugjNWzYUEFBQfl6bgAAAAAAAKA4oFy8yZlMJoWHh+uerl1lXrxYio01OhKA/GIyydaypZYtX65YF//f7tatm6pVqaLwwzFuCoeiYkf8JYVuPaLhw4bpscceK/Dru7Kt7x+3OC1VqpR8fHyUlJTk0vUqV64sf39/t5wbAAAAAAAAKA4oF4sBq9WqxYsWqUWTJrIsWCDxzVLg5tGsmRxms6ZOnerSmMVi0bCRIzX/xHldyMpxUzgUdgmZ2er38z61aNlC//78c0MyVK9eXSaTSSdOnLjusR4eHld8bjKZZLfbJUlms/mqojIn5+rf2yVLlnT53AAAAAAAAAD+h3KxmPD29taqlStVtXx5WRcskNLSjI4EID94ecnepInCwsOvWaT8nSFDhihX0sxj3HuxOMq1O/TQxn3K9CihJUuXqUSJEobkKFu2rEJCQjRv3jylp6df9XxycrJT5/Hz81NaWtoV5zh8+HC+5QQAAAAAAABwGeViMVKhQgWtW7tWvna7LAsXStnZRkcCkB+CgxV37pxWrFjh0liFChXUv39/hR+Nld2FrSlxc/jXzuPaEJukhYsWKzAw0NAsb7/9tux2u/r37681a9YoKipKkZGRmj17tgYMGODUOZo1a6aSJUvqs88+U3R0tFasWKGlS5e6OTkAAAAAAABQ/FAuFjO1a9fWD6tXyzMxUeavv5ZcXOkEoBCqVEmW6tU1YeJEl0dHjBypYxdStD420Q3BUFh9eypOH+w5obFjx6pTp05Gx1HVqlW1dOlStWnTRh9++KF69OihwYMHKyIiQu+8845T5yhbtqw+/vhjbdq0ST179tTKlSs1atQo9wYHAAAAAAAAiiGT4883KEKx8PPPP6vrPffIVr267A88IFmtRkcC8E/s3SstXapDhw4pKCjI6TGHw6HmTZqoVlqClnVu7r58KDSOXUpT8Irt6nxvN32zdKlMJpPRkQDArRISUlRU/8Wzd+9udenSQT4PPyxrhQpGxwEAFAK2uDilzp+vdes2qWnT5kbHAQAANxGTSSpXrrRTx7JysZi644479N2338p88qRMS5dKublGRwLwTzRsKIuPjyZPnuzSmMlk0vDQUH13Kk4xqRluCofCIi3Hpr4/7dMtVatq5qxZFIsAAAAAAAAAXEa5WIx17dpV3yxZIvPRozItXy7Z7UZHAnCjrFblNm+uaTNmKC0tzaXRgQMHyrtUKU05ctpN4VAYOBwOPf3rQZ3MyNbS5d/K19fX6EgAAAAAAAAAiiDKxWKuV69eWjB/vnTggPT99xSMQFHWqpVSU1K0YMECl8ZKly6txwYN0lfHzio7lz8DblYTD0ZrfuRZTZs+Q40aNTI6DgAAAAAAAIAiinIR6t+/v2bNnCnTrl3S6tUqsjelAYo7Pz+Z69XTFxMmyNXb6Q4fPlzn0zK07NR5N4WDkZZHnddz247o+eef14ABA4yOAwAAAAAAAKAIsxodAIXDo48+qszMTD399NOS1Srdffflu3cCKFLswcHaP2+etm3bpttuu83puUaNGqlj+/YKP3JIA2pVcmNCFLRNZ5P04MZ96tevnz7++GOj4wAAAAAAgAIyZ84Mbdz4k06dilKJEiXUpElTDR8+StWq1cg7JisrSxMnfq7169cqJydbt956m1588TX5+wfkHfP55x9r7949OnkyUtWr19TMmfOvutb69T9qzpwZiok5pbJl/dSv3wN6+OHHrjjmm28WaenSRTp79qwqVqyoxx57Qvfe2yPv+Y0bN2j27Bk6cyZGNptNgYHV9OCDA3XPPd3z/xcHwD9CuYg8Tz31lDIzM/XMM89c3h61a1fJzOJWoEipXVvWgACFTZrkUrkoSSNCQzVgwAAduJCqRn4+bgqIgrQ3KUW9NuzR7SHtNWfuXFksFqMjAQAAAACAArJr10717dtfQUENlZubqylTwvT886GaO3exSpYsKUmaMOEzbdnyi957b5y8vX30739/pDfeeFnh4dOvOFf37r108OB+RUYev+o6ERG/6t1339Tzz7+s1q1v06lTUfrww/dVokQJ9et3eQelZcuW6Msvw/Tqq28oKKihDh06oA8//D+VLu2rkJAOkqTSpX312GNPqHr1GvLw8NCvv27W2LHvys/PX23atHXzrxYAV9Ac4QqjRo1SeHi4tG0b92AEiiKzWbaWLfX1118rISHBpdE+ffrolgrlFX4o2k3hUJCiUjJ0z4+7Vat+kJZ9+61KlChhdCQAAAAAAFCAPvtsgrp166latWqrbt16ev31d3T+/DkdOXJIkpSamqrvv/9Wo0Y9r1atWisoqIFef/1t7du3V/v378s7z3PPvax+/R5Q5cpVrnmdNWtWqX37O9Snz/2qUiVQ7dqF6NFHB2nevNl5t+5Zs2aVevfuq86d71aVKoHq0qWrevW6T/Pmzco7T8uWwerY8U7VqFFTVaoE6oEHHlLt2nW0d+9u9/0iAbghlIu4yrBhwzRr1iyZdu+WadkyKTfX6EgAXNG8uXIdDs2YMcOlMU9PTz01dJhmnzivlGybm8KhIMRnZKvrj7tUqnwFrV6zVr6+vkZHAgAAAAAABktLS5WkvO8THDlySDabTcHBbfKOqV69hipWvEUHDux1+rw5OdkqUcLzisdKlPBSXNx5nTt3VpKUnZ0tT88/H1NChw4dkM129fehHA6Hfvttu6KjT6l58xZOZwFQMCgXcU2PPfaYvl64UOZDh2RaskS6xh/wAAopb2/ZGzbUhLAw2V1cffz0008r3WbTvMizbgoHd0vNsanbut26ZC2hNT+uU8WKFY2OBAAAAAAADGa32zV+/Kdq0qSZatWqI0lKTEyUh4eHSpcufcWx/v7+SkxMdPrct97aVhs3/qTfftsuu92u6OhTWrhw7n+ucXlnrTZt2ur775fr8OFDcjgcOnz4oL7//lvZbDZdvHgx71ypqam66672uuOO2/TKK8/puecub7UKoHDhnov4S/3795eXl5f69usn+9dfy/7AA5KHh9GxADijdWvFTJ2qNWvW6N5773V6LDAwUL169tKkX37S0KBAmUwmN4ZEfsvOtavfT3t1JC1bGzdvVu3atY2OBAAAAAAACoHPPvtQJ05EatKkqfl+7l697tOZM6f1yivPKzfXplKlvNW//4OaPn2KTKbL65sGDRqixMQEDR06SJLk5+eve+7prvnzZ8ts/t/3n0qVKqUZM+YrIyNdv/22QxMn/luVK1dRy5bB+Z4bwI1j5SL+Vs+ePbV61Sp5nj4t84IFUlaW0ZEAOKNKFVmqVNHEsDCXR0eMHKl9CZf06/mL+Z8LbmN3ODRo8379fO6ivl2xQi1asGUIAAAAAAC4XCxu2fKLxo+frAoV/rfDUUBAgHJycpSSknLF8UlJSQoICHD6/CaTSSNGPKMff9ykJUtW6Lvv1qhBg0aSlHefxhIlvPT6629r/fpftXjxd/rmm+9VqVJllSrlrbJl/fLOZTabFRhYVXXr1tdDDz2iO+7orLlzZ/6Drx6AO1Au4rq6dOmiH9eulVdcnCxz50ppaUZHAnA9JpNyW7XS6lWrFBUV5dJop06dVK92bU06HOOebMh3DodDL2w7rIUnzmne/Pm68847jY4EAAAAAAAM5nA49NlnH2rTpp/1xRfheUXff9Wv30BWq1W//74977Ho6CidP39OjRo1dfl6FotF5ctXkIeHh9atW6PGjZvKz8/vimOsVqsqVKgoi8Wi9evXql27EJnNf11T2O12ZWdnu5wFgHtRLsIpISEh2vjTT/JNT5d15kwpKcnoSACup3Fjmb289OWXX7o0ZjabNTw0VEuizut8BquVi4KP9p7UFweiFRYWpvvvv9/oOAAAAAAAoBD49NMPtXbtar399vsqVaqUEhMTlJiYoKysTEmSj4+PevTorQkT/q2dO3/T4cOH9MEH76px46Zq3LhJ3nlOn47RsWNHlJSUqKysTB07dkTHjh1RTk6OJOnixYtavnyJTp2K0rFjR/T555/op5/W65lnXsg7R3T0Ka1Zs0oxMdE6eHC/3n57tE6ciNTQoSPzjpkzZ4Z27NiqM2dOKyrqpBYsmKs1a1apa9duBfQrBsBZJofD4TA6BIqO48eP666uXRUTH6/cBx+UqlS5/hAA4/zwg8oePapzsbEqUaKE02MXLlxQlcqV9Gajanq9eS03BsQ/NePoGT2xeb/+9a9/acyYMUbHAYBCJyEhRUX1Xzx79+5Wly4d5PPww7JWqGB0HABAIWCLi1Pq/Plat26TmjZtbnQcAIVcSMi171P4+utvq1u3npKkrKwsTZz4udatW6OcnGzdemtbvfjiqwoIKJd3fGjo09q9e+dV51m8+DtVqlRZFy9e1KuvPq8TJ47L4XCoUaOmevrpEWrUqHHesVFRJzVmzBuKjj4lq9Wqli2DNXz4KFWrViPvmClTJmnDhh8VFxenEiVKqHr1Gurf/0F17nx3Pv2KAPg7JpNUrlxp546lXISr4uPj1a17d+3cu1f2+++X6tY1OhKAv5KQIE2cqLlz52rgwIEujT45ZIjWLvlaJ/vdLssfbqyNwmNFdJzuW79HTz75pMInT5bJxH8nAH/tyy+/1Nq1a3XixAl5eXmpRYsWeumll1Sr1v/eRJKVlaVx48Zp1apVys7OVkhIiN5++22VK/e/byzExsbqnXfe0bZt21SqVCn16dNHL774oqxWa94x27Zt07hx43Ts2DFVqlRJw4cPV9++fa/IM2/ePE2bNk3x8fEKCgrSW2+9paZNm7qUxRmUiwCAmwnlIgAAcBdXykW2RYXLypcvr40//6x777pLpgULpJ1Xv2sFQCFRrpzMtWtrwsSJLo+OGDlSMclpWhkT74Zg+Kd+PX9BD/y0T71791bYpEkUiwCua/v27Ro4cKAWLVqkGTNmyGazaciQIUpPT8875oMPPtBPP/2kzz//XHPmzFFcXJxCQ0Pzns/NzdXQoUOVk5OjhQsXaty4cVq2bJnGjx+fd0xMTIyGDh2qNm3a6Ntvv9Xjjz+uN998U5s3b847ZtWqVRo7dqxGjhypZcuWKSgoSEOGDFFiYqLTWQAAAAAAgDFYuYgbZrPZFBoaevl+bh07SnfccbnaBlC4HDwoLVqkXbt2qXnz5i6N3nZra5U9d0o/3N3SPdlwQzadTVKP9XvU8tY2+mHtWnl5eRkdCUARlJSUpLZt22ru3Llq3bq1UlJS1LZtW33yySe65557JEmRkZHq1q2bvv76azVv3lwbN27UsGHDtHnz5rwVhAsWLNAnn3yiiIgIeXp66uOPP9bGjRv1/fff513r+eefV3JysqZNmyZJ6t+/v5o0aaJ//etfkiS73a6OHTvq0Ucf1dNPP+1UFmexchEAcDNh5WLhcfp0jJKSEq9/IACg2PD3D1BgYFWjY9wwV1YuWq9/CHBtVqtV4eHhql69ul5//XUpOVnq3l2y8tsKKFTq15e1TBmFh4dffjOAC0aEjtLjjz+u48lpquPr7aaAcMWa0wm6b8Metb09RN+uWEGxCOCGpaSkSJLKlCkjSdq/f79ycnLUrl27vGNq166typUra/fu3WrevLl2796tevXqXbE1aUhIiN555x0dP35cDRs21O7du9W2bdsrrhUSEqIPPvhAkpSdna0DBw5o6NChec+bzWa1a9dOu3btcjqLs3jvGwDgZsVrnHFOn45RSLtWSs/MNDoKAKAQKeXlpV8jfi+yBaMrf7egBcI/YjKZNHr0aAUGBuqJIUNkv3BB9v79JW9KCKDQsFhka9FCs+fM0UcffZT3TWRnPPDAA3r+2Wc1+dBpfdKmvhtDwhnLo85rwMZ9uvvurlr8zTcUiwBumN1u1wcffKCWLVuqXr16kqSEhAR5eHjI19f3imMDAgIUHx+fd8yf73n438+vd0xqaqoyMzN16dIl5ebmKiAg4KrrnDhxwukszgoIcO5dl4WRnx9/pwYAXJufn7fTKwuQ/6KjM5WemamwbiGq6+/8v7EBADevY0mXNHLVL7LbM4vFazTlIvLFo48+qlq1aqlXnz5KnjpVtgcekCpVMjoWgP9q2VJZmzdr9uzZGjVqlNNjXl5eGvLUU5o6cbzea1VHJa0WN4bE35l3PFaPbz6gfv36ae68efLw8DA6EoAibMyYMTp27Jjmz59vdBS3S0wsutuiXriQZnQEAEAhdeFCmhISUoyOUWz99zW6rn8ZNa0YcJ2jAQDFSVF+jTaZnH+DrtnNWVCM3H777dq9c6caVq8u84wZ0oEDRkcC8F++vlJQkMZPnChXb7U7dOhQXczM1tcnzrkpHK5nyuEYPbppvx577DHNX7CAYhHAP/Luu+/q559/1qxZs3TLLbfkPV6uXDnl5OQoOTn5iuMTExNVvnz5vGMSEhKueP6/n1/vGB8fH3l5ecnPz08Wi0WJiVfeoygxMTFvxaMzWZzlcBTdDwAA/o7Rr1PF+QMAgL9j9OtUQbzGUS4iX1WtWlURv/6q/vfdJy1eLG3YINntRscCIMkRHKzjR4/q559/dmmudu3a6nr3XZp09Ix7guFvfbYvSkN/PajQkSM1ddo0WSysHgVwYxwOh9599139+OOPmjVrlqpWvfIeEI0bN5aHh4ciIiLyHjtx4oRiY2Pz7nHYvHlzHT169IpicMuWLfLx8VGdOnXyjtm6desV596yZUveOTw9PdWoUaMrrmO32xUREaEWLVo4nQUAAAAAABiDchH5rlSpUlqwYIHGjh0r0+bNMi1aJGVlGR0LQI0aslasqLCwMJdHR4wM1Y7zF7Qj/pIbguFaHA6H3t11XC9uP6LRo0fri/HjZTbzsg3gxo0ZM0bfffedPv30U3l7eys+Pl7x8fHKzMyUJJUuXVr9+vXTuHHjtHXrVu3fv1+vv/66WrRokVfohYSEqE6dOnrllVd0+PBhbd68WZ9//rkGDhwoT09PSdKDDz6omJgYffTRR4qMjNS8efO0evVqDRo0KC/L4MGDtWjRIi1btkyRkZF65513lJGRob59+zqdBQAAAAAAGIN7LsItTCaTXnvtNTVp0kQDHnpImdOnK/eBB6QA9qEHDGMyydaypZYtX67Y2FhVrlzZ6dFu3bqpWmAVhR+OUevyZdwYEtLlYvGVHUf1yb4offDBBxo9erTRkQDcBBYsWCDp8r2y/2js2LF5pd7rr78us9msZ555RtnZ2QoJCdHbb7+dd6zFYtHkyZP1zjvvaMCAASpZsqTuu+8+PfPMM3nHVK1aVV9++aXGjh2r2bNn65ZbbtH777+v9u3b5x3TrVs3JSUlafz48YqPj1eDBg00derUvG1RnckCAAAAAACMYXK4evMtwEWHDh1S9549FR0bq9wePaRGjYyOBBRfmZmy/Pvfemv0aJe/QTt27Fi9+69/KfbBDvIrwT3/3MXucGjklkOafDhG48eP16hRo4yOBABFWkJCSpG9N9LevbvVpUsH+Tz8sKwVKhgdBwBQCNji4pQ6f77Wrdukpk2bGx2n2Prva/TaR7qraUXeSA8AkPaeT9Tdc1cW6ddok0kqV660U8eyvxrcrkGDBtq9c6fu69798n0YV62SbDajYwHFk5eXchs31qTJk5WTk+PS6JAhQ5QraeYx7r3oLja7XYM27deUo2c0bdo0ikUAAAAAAAAAhQ7lIgqEr6+vFi1apLCwMFl37ZJlxgwpKcnoWEDx1Lq14s6d03fffefSWIUKFdS/f3+FH42VvaguASnEsnPtevDnfVpw8rzmz5+vJ554wuhIAAAAAAAAAHAVykUUGJPJpBEjRmjb1q2q4uEhy1dfSQcPGh0LKH5uuUWW6tU1MSzM5dERI0fq2IUUrY9NdEOw4ivDlqs+6/fo+zNJWrpsmQYMGGB0JAAAAAAAAAC4JspFFLiWLVtq7+7d6nXvvdKiRdLq1WyTChSw3Fat9PNPP+nw4cMuzbVr105NGzXSpMOn3ZSs+DmXnqXOa3ZqY0KyVq5apZ49exodCQAAAAAAAAD+EuUiDFGmTBl9s2SJJkyYIOvOnbLMnCklshIKKDANG8rq46PJkye7NGYymTRi1Ch9dypOMakZbgpXfPyecEmtv9+hU/LQzxs3qXPnzkZHAgAAAAAAAIC/RbkIw5hMJoWGhipiyxYFenjI/OWX0o4dEvdyA9zPapWteXNNmzFDaWlpLo0OHDhQ3qVKacoRVi/+Ewsjzypk5W+qXL+Bdvy+U61btzY6EgAAAAAAAABcF+UiDBccHKz9e/fqyUGDpJUrZV6wQEpJMToWcPMLDlZqSooWLFjg0piPj48eHzxYXx07q+xcu5vC3bzsDofe+O2YHvp5r/o/+KA2bt6sypUrGx0LAAAAAAAAAJxCuYhCwcfHR19++aVWrlwp/4sXZZk8WTpwwOhYwM2tbFmZ69XTFxMmyOHiiuHhw4frfFqGlp0676ZwN6eUbJvuW79HY/ee1Mcff6xZs2fLy8vL6FgAAAAAAAAA4DTKRRQq3bp106EDB9T7nnukxYtlWrpUyuC+boC72P+zcnjbtm0uzTVs2FB3dOigSUfOuCnZzedEcrrarvpNPyem6fvvv9dLL70kk8lkdCwAAAAAAAAAcAnlIgqdcuXKacnixZozZ468o6Jk/fJLKTLS6FjAzal2bVkDAhQ2aZLLoyNCQ7UpNlH7k9jG+Hp+ik1U6++3K7tsgLbt2KFu3boZHQkAAAAAAAAAbgjlIgolk8mkRx55RAf379ftzZtLc+ZIK1awihHIb2azbC1bauHChUpISHBptE+fPrqlQnmFH45xU7iiz+FwKOxgtO5as1Ot2oVo247fFBQUZHQsAAAAAAAAALhhlIso1KpWraoN69dr0qRJKnXkiCzh4dKhQ0bHAm4uzZvLLmn69OkujXl4eOjpYcM1O/KcUrJt7slWhGXn2jVsy0GFRhzSM88+q1U//CA/Pz+jYwEAAAAAAADAP0K5iELPbDZr+PDhOnzwoLq2by99/bVMixdLKWzFCOQLb2/ZGzbUxEmTlJub69LoU089pYzcXM2NjHVTuKIpPiNbXdbs1MzI85o+fbo+++wzWa1Wo2MBAAAAAAAAwD9GuYgio2rVqvp+xQotXLhQfufPyzJpkrRjh2S3Gx0NKPpat1bMqVNas2aNS2OBgYHq3au3Jh2JlcPhcFO4omVPYrJaf79dR20m/fTzzxo8eLDRkQAAAAAAAAAg31AuokgxmUwaMGCAjh05osEDB0orV8oyY4Z07pzR0YCirUoVWapU0cSwMJdHR4wcqf2Jl/TL+Yv5n6sIcTgcmn3sjNqt/E0Btepox+871a5dO6NjAQAAAAAAAEC+olxEkeTv76+vvvpKmzdvVm1vb5mmTJFWr5YyMoyOBhRNJpNyW7XSD6tX6+TJky6NdurUSfXr1NGkwzFuClf4JWVla8DP+/T4pv3q/9BD2vzrFlWtWtXoWAAAAAAAAACQ7ygXUaSFhIRo3549GvvBByq5f78sEyeyVSpwoxo3ltnLS19++aVLYyaTScNDQ/VNVJzOpWe5KVzhte5Mopos36Z1ielatGiRZs6apVKlShkdCwAAAAAAAADcgnIRRZ6np6deffVVRR47pkf697+8VepXX0kurr4Cij1PT+U2a6Yvv/pKmZmZLo0+/vjjsnpYNe3oaTeFK3wybbl6cdth3fXDb2rQuo327t+v/v37Gx0LAAAAAAAAANyKchE3jUqVKmnmjBnatm2bWgQGSrNmybR4sXThgtHRgKIjOFgXk5K0ZMkSl8bKli2rhx8eqC+PnVWu3eGmcIXHvqQU3bpyhyYeidVnn32mtevWKTAw0OhYAAAAAAAAAOB2lIu46dx6663atnWrZs+erXIJCTJPmiRt2CBlZxsdDSj8ypWTuXZtTZg40eXRESNHKiY5TStj4t0QrHCwOxz6fH+UWq/YJkeFytrx2296/vnnZTbzcgoAAAAAAACgeOC7obgpmc1mPfroozpx/Lhee/llWSMiLt+Pcft2yWYzOh5QqNmDg7V92zbt2rXLpbmWLVuqTetgTTpyc26NeiYtU13X7tTz245oxKhntOP3nWratKnRsQAAAAAAAACgQFEu4qbm4+Oj//u//9PRI0f0YM+eMq1eLWt4uLRnj2S3Gx0PKJzq1ZO1bFmFh4e7PDoidJTWxMTreHKaG4IZZ8nJc2ry7VYdtFm0du1affbZZ/Ly8jI6FgAAAAAAAAAUOMpFFAs1a9bU3LlztWfPHt17++3SsmWyTJkiHT4sOW7++8MBLrFYZGvRQnPmztWlS5dcGn3ggQfkX7asJh+6OVYvJmfbNHjTfvXfsEed7u2uvfsP6K677jI6FgAAAAAAAAAYhnIRxUqTJk303bffKiIiQrcHBUkLF8oyfbp08qTR0YDCpWVLZWVna/bs2S6NeXl5achTT2l65Fll2HLdFK5g/Hr+gpp/t01LzlzQjBkztHjJEgUEBBgdCwAAAAAAAAAMRbmIYum2227Tzxs2aO3atWpSvrw0a5bMc+dK0dFGRwMKh9KlpQYNNH7iRDlcXN07dOhQXczM1tcnzrkpnHul23L1xm/H1GHlDt0S1Eh79u3ToEGDZDKZjI4GAAAAAAAAAIajXESxZTKZdNddd2nnb79pyZIlqmO1StOnyzxzpnT8ONulothzBAfr+NGj+vnnn12aq127tu7percmHT3jnmBu4nA49O2pODVcFqFPDsbonTFjtOmXX1SrVi2jowEAAAAAAABAoUG5iGLPZDKpX79+OnTggJYtW6bmAQHS3LmyTJ0qHTwo2e1GRwSMUb26rBUrKiwszOXRESNDteP8Be2Id+2ejUY5npym7j/uVp91u9Sg7e3af+CA3nrrLVmtVqOjAQAAAAAAAEChQrkI/IfZbFafPn30244d+vHHH3V73brSokWyTp4s7d4t5Rbt+8cBLjOZZGvVSsuWL1dsbKxLo/fee6+qVw1U+OEYN4XLH+m2XL31+zE1WhqhAw4PLVu2TKtW/6C6desaHQ0AAAAAAAAACiXKReBPTCaTunTpoo0//aQtW7ao6623SsuXyxoWJm3bJmVlGR0RKDhNm0pWq7766iuXxiwWi4aNGKkFJ84rKSvbTeFunMPh0PKo82q4LEIfHYjRK6NH69CRo+rTpw/3VgQAAAAAAACAv0G5CPyNtm3b6vsVK7Rnzx71u+sumdeuleXzz6UffpCSkoyOB7ifl5fsjRtr0uTJysnJcWn0iSeekN1k0syjrq16dLf/boF63/rdeVugvvfeeypVqpTR0QAAAAAAAACg0KNcBJzQtGlTLVy4UCdPnNDLzz6rMocPSxMmyLxggRQZKTkcRkcE3Kd1a8WdO6fvvvvOpbEKFSqof//+Cj8aK3sh+H+ELVABAAAAAAAA4J+jXARcUK1aNY0dO1ZnY2M19auvFOThIc2Zc/m+jNu3s2Uqbk633CJL9eqaMHGiy6MjRo7U8YspWncm0Q3BnMMWqAAAAAAAAACQfygXgRtQsmRJDRkyRPv37tXGjRvV8/bbZfrhh8tbpq5eLZ07Z3RE4J9zOKSoKJmWLJH99GnFJyS4fIq2bduqWZPGmnTktBsCXt+xS2nq9uMu3bd+txq2C2ELVAAAAAAAAAD4h6xGBwCKMpPJpA4dOqhDhw46deqUwsPD9dW0aUratk2WKlWU26yZ1KSJVLKk0VEB56WmSvv2ybp7t2znz6tG7doK/egjPf744y6fymQyaUToKA0fNkzRqRmq5lMw/y9cys7Rx3uj9PH+U6pUuZKWL1+uXr16sVIRAAAAAAAAAP4hVi4C+aR69eoaN26czsXGavny5bq3ZUuZ16yR+bPPpG++uXxvRrvd6JjAteXkSAcOyLxggUyffSbrhg3qHRKi9evXK/LYMb3wwgsKCAi4oVM//PDD8vH21pTD7l+9mJxt03u7IlVj8a/65NBpvTJ6tA4ePqLevXtTLAIAAAAAAABAPmDlIpDPPDw81Lt3b/Xu3Vvnzp3TnDlzNGXqVB2fM0dWf3/ZmjSRmjWT/P2NjorizuGQYmKkPXtkOXhQuRkZatG6tZ6YMEEDBgy44TLxz3x8fPT44MH6avpU/atFbXla8v99LSnZNo0/eEqfHoxReq5DTw8dqtdee02VK1fO92sBAAAAAAAAQHFGuQi40S233KKXX35ZL730krZu3app06Zp/sKFyti4UZbAQOU2bCg1bCiVLWt0VBQnSUnS3r2y7t8vW0KCKlWposHPP69HH31UQUFBbrnk8OHDNWHCBC2NOq8Ha1fKt/OmZNs08VC0PjkQrVSbXU89/bRGjx6tKlWq5Ns1AAAAAAAAAAD/Q7kIFACTyaS2bduqbdu2+uKLL/T9999r4cKFWrlqlXLWrpWlWjXlNmggNWok+foaHRc3o/h46eBBWY8ckS02ViW9vTWgf3899thj6tixo8xm9+6S3aBBA93ZsaMmHd2fL+Viao5NYQej9fHBGKXk5OrJp57S6NGjFRgYmA9pAQAAAAAAAAB/hXIRKGDe3t4aMGCABgwYoJSUFH333Xda+PXX+uGHH2Rbs0aWGjUuF40NGlA04sY5HNK5c/8rFOPiVNLbWz179FC/vn3VvXt3eXt7F2ik4SNH6oEHHtC+pBQ18S99Q+dIy7Fp0qEYfXQgWpeybRoyZIhef+MNVa1aNZ/TAgAAAAAAAACuhXIRMFDp0qU1cOBADRw4UJcuXdK3336rhV9/rR9//FG21atlrVJFtjp1pLp1pcqVJTevLkMRZ7dLZ85Ihw5dLhQTE+Vbpozu69NHffv21d133y0vLy/D4vXp00e3VCivyYdjFNauoUuz6bZchf+nVEzKzNYTTzyh1994Q9WrV3dTWgAAAAAAAADAtVAuAoVEmTJl9Nhjj+mxxx5TUlKSVq1ape9XrtSq1auVsnGjrKVLy1arllSvnlS7tmRgSYRCJDlZioyUjh+X5eRJ5aany79cOfW//3717dtXd955pzw8PIxOKUny8PDQ08OG67NxYzUuuJ5Ke17/JSjdlqvJh2L04X9KxcGDB+v1N95QjRo13B8YAAAAAAAAAHAVykWgEPL399cjjzyiRx55RDabTREREVq5cqW+XbFChxcvlslikalaNdnr1JFq1ZIqVmRVY3Fhs0nR0dLx47KePCnb2bMymUxq0aqVerz0krp27ao2bdrIYrEYnfSannrqKf3f//2f5kbGaniDan95XHK2TdOOntZHB6IVn5GtQY8/rjfefFM1a9YswLQAAAAAAAAAgD+jXAQKOavVqvbt26t9+/YaN26cTp06pZUrV2rF999rw4YNyv7xR1m8vZVbvbpUo4ZUs6ZUrpxkMhkdHfkhN1c6e1aKjpYpKkqmqCjZs7NVrkIF9ejWTV27dtVdd92lgIAAo5M6JTAwUL179dKkTRs0LKiqTH/6fXr0UpomHozWzMhzSrfl6rFHH9Wbb72lWrVqGZQYAAAAAAAAAPBHlItAEVO9enWNGDFCI0aMUFZWlrZu3aoNGzbox3XrtH3tWuXabJe3UK1aVape/fJHhQqsbCwqsrKk06el6GiZY2Kk06dlz85WCS8v3Xbbbeo2ZIjuueceNWnS5KpirqgYMXKkuixbpl/OX1T7W/xkdzi05nSCxh+K0Q8x8Sof4K9nX35Fw4YNU5UqVYyOCwAAAAAAAAD4A8pFoAgrUaKEOnbsqI4dO2rMmDFKTU3Vli1btGnTJm346SftWLdOtpwcWby85KhUSfZKlaQqVaTKlaWyZVndaDSHQ7pw4fLKxJgYWU+fVm5srBx2u3zLllXH9u3VYfhwtW/fXi1btiw09078pzp16qT6deros/2ntCsxWROPnNGxCylq2byZZr73sQYMGCAv7ikKAAAAAAAAAIUS5SJwE/Hx8dHdd9+tu+++W5KUkZGh7du3a9u2bdq2fbsitm3T2S1bJEnW0qWVW6mSHH8sHH18jIx/c7PbpcTEy0Xi2bMynzsn07lzys3IkCRVCgxUp44d87bADQoKkvkmXW1qMpk0PDRUzz33nFacTtD9/fpp5rPPqm3btkV2NSYAAAAAAAAAFBeUi8BNrGTJknkrG//r/Pnz2rFjh3bs2KGt/ykdL23cKEmy+vjIXr687OXKSeXLX/6oUEHy9jbqSyh6HA4pJUVKSMj7sJw/L8e5c7JnZUmSAqtV062tW6tVy5Zq2bKlWrRooYoVKxocvGCNGDFCNWvWVMuWLRUYGGh0HAAAAAAAAACAkygXgWKmYsWK6tGjh3r06CFJcjgcioqK0s6dO3XgwAEdOHBAu/fu1Yndu2XLyZF0eZWjvVy5y6Wjv//lLVX9/C7/WFy3r8zOlpKSLheIiYlSQoKsFy7IkZCg3MxMSZLVw0M1atZU63bt1PIPRaKfn5/B4Y3n4eGhXr16GR0DAAAAAAAAAOAiykWgmDOZTKpZs6Zq1qypfv365T2ek5Oj48eP5xWOBw4c0O59+xS9b5+y/lOeSZK1VCmZ/PyUU7r0/wrHMmUub7Hq7X35w9PTgK/sH7DZpOTkyx+XLl3xo0dKihyXLsmWnp53eFl/fwXVr69Gt96q+vXrKygoSEFBQapZs6asVv6YBQAAAAAAAADcPPiuN4Br8vDwUIMGDdSgQQPdf//9eY87HA7FxcXp5MmTioqKyvsx8sQJRZ44oTO//aac/6x4/C+zp6cspUvL4e0tW8mSUqlSl0vHkiUvF4///fDwuPLz/36YTP/7kK7+/HIwKTf3cjFos0k5Of/7+R8/z8qSMjKkzMzLP2ZkSOnpsmZmypSRIXtamnL/UBxKUukyZVS1WjXVrFtX1apVU9WqVVW1alXVrFlT9evXV7ly5dz23wEAAAAAAAAAgMKEchGAS0wmkypWrKiKFSvqtttuu+p5u92u8+fPKz4+XnFxcTp//rzi4uLyPs7HxSn23DmdP3VKyZcuKT0tTfbc3H8SSCaTSQ6H43LB6ASL1SrfMmVUpmxZBfj7q2KdOqpQoYLKlSun8uXLq3z58goMDMwrEb255yQAAAAAAAAAAJIoFwHkM7PZrEqVKqlSpUpOHe9wOJSdna3U1FSlpaUpNTX1io+0tDTZ7fa8D4fDcc2fm81mlSxZUl5eXtf88b8/9/X1lbe3t0x/XPUIAAAAAAAAAACcQrkIwFAmk0klSpRQiRIlFBAQYHQcAAAAAAAAAADwN8xGBwAAAAAAAAAAAABQNFAuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAAAAAAAAAAHAK5SIAAAAAAAAAAAAAp1AuAgAAACi05s2bp06dOqlJkybq37+/9u7da3QkAAAAAACKNcpFAAAAAIXSqlWrNHbsWI0cOVLLli1TUFCQhgwZosTERKOjAQAAAABQbFEuAgAAACiUZsyYoQceeED9+vVTnTp1NGbMGHl5eembb74xOhoAAAAAAMUW5SIAAACAQic7O1sHDhxQu3bt8h4zm81q166ddu3aZWAyAAAAAACKN6vRAQAAAADgzy5cuKDc3FwFBARc8XhAQIBOnDjh9HnMZsnhyO90BcNisah06dIqlZkpc0qK0XEAAIWAPTNTptKlZbFYZGbJgGH++xodlZEjy6V0o+MAAAqBqIwclS7ir9Emk/PHUi4CAAAAuGn5+5c2OsINu+OOdkpOTjY6BgAA+BNeowEAf9ZJ0lNGhyhARbQ/BQAAAHAz8/Pzk8ViUWJi4hWPJyYmqly5cgalAgAAAAAAlIsAAAAACh1PT081atRIEREReY/Z7XZFRESoRYsWBiYDAAAAAKB4Y1tUAAAAAIXS4MGD9eqrr6px48Zq2rSpZs2apYyMDPXt29foaAAAAAAAFFuUiwAAAAAKpW7duikpKUnjx49XfHy8GjRooKlTp7ItKgAAAAAABjI5HA6H0SEAAAAAAAAAAAAAFH7ccxEAAAAAAAAAAACAUygXAQAAAAAAAAAAADiFchEAAAAAAAAAAACAUygXAQAAAABAkfTaa69pxIgRRscAAOCmVL9+fa1bt87oGAAKIcpFAAAAAABwTa+99prq16+vKVOmXPH4unXrVL9+fafP06lTJ82cOdOlazscDn399dfq37+/WrRooeDgYPXt21czZ85URkaGS+cCAABXi4+P13vvvafOnTurcePG6tixo4YNG6aIiAijowEo5KxGBwAAAAAAAIVXiRIl9NVXX2nAgAEqU6ZMgV335Zdf1o8//qjhw4frrbfekr+/vw4fPqxZs2YpMDBQXbp0cdu1c3Jy5OHh4bbzAwBgtNOnT+uhhx6Sr6+vXnnlFdWrV082m02//PKLxowZox9++MEt183Ozpanp6dbzg2g4LByEQAAAAAA/KV27dqpXLly+vLLL//ymDVr1qh79+5q3LixOnXqpOnTp+c99+ijj+rMmTMaO3as6tev79SKx1WrVmnFihX69NNPNWzYMDVt2jSvUJw9e7batGlzxfHTpk1TSEiI2rRpozFjxignJyfvuWtt6RYcHKylS5dKuvzN1fr162vVqlV65JFH1KRJE61YsSJvy9W/OzcAAEXVmDFjZDKZtHjxYnXt2lU1a9ZU3bp1NXjwYC1atCjvuAsXLmjkyJFq1qyZ7r77bq1fvz7vuaVLlyo4OPiK8/55d4MJEyaod+/eWrx4sTp16qSmTZtKuvz6vHjx4r88N4DCjXIRAAAAAAD8JbPZrBdeeEFz587VuXPnrnp+//79eu6559StWzetWLFCoaGh+uKLL/LKuwkTJuiWW27RM888o19++UW//PLLda+5YsUK1axZ85qrE00mk0qXLp33+bZt2xQdHa1Zs2Zp3LhxWrZsmZYtW+by1/nJJ5/oscce06pVqxQSEpKv5wYAoDC5ePGiNm/erIEDB6pUqVJXPe/r65v384kTJ+ree+/Vd999pw4dOuill17SxYsXXbpedHS01qxZo4kTJ2r58uX5em4AxqBcBAAAAAAAf+uuu+5SgwYNNH78+KuemzFjhtq2bauRI0eqZs2a6tu3rwYOHKhp06ZJksqWLSuLxSJvb2+VL19e5cuXv+71Tp06pZo1azqVrUyZMvrXv/6l2rVr684771THjh1v6F5Rjz/+uO6++25VrVpVFSpUyNdzAwBQmERHR8vhcKhWrVrXPfa+++5Tjx49VL16db3wwgtKT0/X3r17XbpeTk6OPvroIzVs2FBBQUH5em4AxqBcBAAAAAAA1/XSSy9p+fLlioyMvOLxEydOqGXLllc81rJlS506dUq5ubk3dC2Hw+H0sXXq1JHFYsn7vHz58kpMTHT5mo0bN3bbuQEAKExceZ394xanpUqVko+Pj5KSkly6XuXKleXv7++WcwMwBuUiAAAAAAC4rtatWyskJESffvqp269Vo0YNnThxwqljrVbrFZ+bTKYrvmn6588lyWazXXWea20Ld71zAwBQFFWvXl0mk8mp11oPD48rPjeZTLLb7ZIub53+59fFa92buGTJki6fG0DhRrkIAAAAAACc8uKLL+qnn37Srl278h6rVauWdu7cecVxO3fuVI0aNfJW/Xl4eLj0zcKePXsqKipK69atu+o5h8OhlJQUp8/l7++vuLi4vM+joqKUkZHh9DwAADebsmXLKiQkRPPmzVN6evpVzycnJzt1Hj8/P6WlpV1xjsOHD+dbTgCFF+UiAAAAAABwSv369dWzZ0/NmTMn77EnnnhCERERCgsL08mTJ7Vs2TLNmzdPTzzxRN4xVapU0Y4dO3T+/Hmntju799571a1bN7344ouaPHmy9u3bpzNnzuinn37SoEGDtG3bNqcz33bbbZo3b54OHjyoffv26e23375qpQQAAMXN22+/Lbvdrv79+2vNmjWKiopSZGSkZs+erQEDBjh1jmbNmqlkyZL67LPPFB0drRUrVmjp0qVuTg6gMKBcBAAAAAAATnvmmWeuWIXYqFEjff7551q1apV69uyp8ePH65lnnlHfvn2vmDlz5oy6dOmitm3bXvcaJpNJn376qV577TWtW7dOjz76qHr16qUJEyaoc+fOCgkJcTrvq6++qkqVKmngwIF66aWX9MQTT8jLy8u1LxoAgJtM1apVtXTpUrVp00YffvihevToocGDBysiIkLvvPOOU+coW7asPv74Y23atEk9e/bUypUrNWrUKPcGB1AomBzcLAAAAAAAAAAAAACAE1i5CAAAAAAAAAAAAMApVqMDAAAAAACA4uXJJ5/U77//fs3nhg4dqmHDhhVwIgAAAADOYltUAAAAAABQoM6fP6/MzMxrPlemTBmVLVu2YAMBAAAAcBrlIgAAAAAAAAAAAACncM9FAAAAAAAAAAAAAE6hXAQAAAAAAAAAAADgFMpFAAAAAAAAAAAAAE6hXAQAAAAAAAAAAADgFMpFAAAAAAAAAAAAAE6hXAQAAAAAAABwlfj4eL333nvq3LmzGjdurI4dO2rYsGGKiIiQJHXq1EkzZ868am7ChAnq3bt33uevvfaaRowYcdVx27ZtU/369ZWcnCxJWrp0qerXr6/69esrKChIISEheu655xQbG3vF3KOPPqr69etr5cqVVzw+c+ZMderU6Z9+2QAA4DooFwEAAAAAAABc4fTp0+rbt6+2bt2qV155RStWrNDUqVPVpk0bjRkzxm3X9fHx0S+//KJNmzZp/PjxOnnypJ599tmrjitRooQ+//xz5eTkuC0LAAC4NqvRAQAAAAAAAAAULmPGjJHJZNLixYtVqlSpvMfr1q2rfv36ue26JpNJ5cuXlyRVqFBB999/v95//32lpqbKx8cn77ju3btrw4YNWrRokQYOHOi2PAAA4GqsXAQAAAAAAACQ5+LFi9q8ebMGDhx4RbH4X76+vgWSIzExUT/++KMsFovM5iu/jenj46Phw4dr0qRJSk9PL5A8AADgMlYuAgAAAAAAAMgTHR0th8OhWrVqXffYTz75RF988cUVj+Xk5Kh27do3dO2UlBS1aNFCDodDGRkZki7fY/FaJefDDz+s2bNna8aMGRo5cuQNXQ8AALiOchEAAAAAAABAHofD4fSxQ4YMUd++fa94bM6cOdqxY8cNXdvb21vLli2TzWbTpk2btGLFCj3//PPXPNbT01PPPPOM3nvvPT300EM3dD0AAOA6tkUFAAAAAAAAkKd69eoymUw6ceLEdY/18/NT9erVr/goU6bMFcf4+PgoJSXlqtmUlBRZLBaVLFky7zGz2azq1aurdu3aGjx4sJo1a6Z33nnnL6/fq1cvVa5cWeHh4c5/gQAA4B+hXAQAAAAAAACQp2zZsgoJCdG8efOueT/D5ORkl85Xs2ZNHT9+XNnZ2Vc8fuDAAQUGBsrDw+MvZ59++mmtXr1aBw4cuObzZrNZL774ohYsWKAzZ864lAsAANwYykUAAAAAAAAAV3j77bdlt9vVv39/rVmzRlFRUYqMjNTs2bM1YMAAl87Vs2dPmUwmvfLKK9q/f79OnTqlJUuWaNasWRo8ePDfzlaqVEldunTR+PHj//KYO+64Q82aNdPXX3/tUi4AAHBjKBcBAAAAAAAAXKFq1apaunSp2rRpow8//FA9evTQ4MGDFRER8bfblF6Lr6+v5s2bJ5vNpuHDh6tPnz6aM2eORo8erQcffPC684MGDdLPP/+svXv3/uUxL730krKyslzKBQAAbozJ4codmgEAAAAAAAAAAAAUW6xcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATqFcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATqFcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATqFcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATqFcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATqFcBAAAAAAAAAAAAOAUykUAAAAAAAAAAAAATvl/u2I/C4pP0vIAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"# Define colors for the plots\n",
"palette = ['#008080', '#FF6347', '#E50000', '#D2691E']\n",
"\n",
"# Calculate the percentage of positive and negative values\n",
"churn_distribute = train_df['CHURN'].value_counts()\n",
"plot_pie = [churn_distribute[0] / churn_distribute.sum() * 100, churn_distribute[1] / churn_distribute.sum() * 100]\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 7))\n",
"\n",
"# Plot the pie chart on the first subplot\n",
"axes[0].pie(plot_pie, labels=['Not_Churn', 'Churn'], autopct='%1.2f%%', explode=(0.1, 0),\n",
" colors=palette[:2], wedgeprops={'edgecolor': 'black', 'linewidth': 1, 'antialiased': True})\n",
"axes[0].set_title('Customer Not-Churn and Churn %')\n",
"\n",
"# Plot the countplot on the second subplot\n",
"sns.countplot(data=train_df, x='CHURN', palette=palette[:2], edgecolor='black', ax=axes[1])\n",
"axes[1].set_xticklabels(['Not_Churn', 'Churn'])\n",
"axes[1].set_title('Customers Not_Churn and Churn')\n",
"\n",
"# Add labels to the countplot bars\n",
"for container in axes[1].containers:\n",
" axes[1].bar_label(container)\n",
"\n",
"# Adjust spacing between subplots\n",
"plt.tight_layout()\n",
"\n",
"# Display the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 378
},
"id": "itQ4weNax-CF",
"outputId": "0e6c93e5-bd06-4070-ed18-8fd2d0acf84c"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABwsAAAKyCAYAAAAqzTExAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBwUlEQVR4nOzdd3gU5cLG4WfTCYRAChAIHRJqKKGL1EiRjoh0EBAPoBxUjoJ67IJdaYIiIkUFPQKCoiICSpUiXXqTDkkghfTd+f6I2Y+YAAkkmST7u68rl2ZmdvbZ2YTN7LPvOxbDMAwBAAAAAAAAAAAAcDhOZgcAAAAAAAAAAAAAYA7KQgAAAAAAAAAAAMBBURYCAAAAAAAAAAAADoqyEAAAAAAAAAAAAHBQlIUAAAAAAAAAAACAg6IsBAAAAAAAAAAAABwUZSEAAAAAAAAAAADgoCgLAQAAAAAAAAAAAAdFWQgAAAAAAAAAAAA4KMpC5Lp27dpp4sSJZse4a0uXLlVwcLDOnj1rdhQUIGfPnlVwcLDmzp1rdpR8Je24LF26NEf3265dOz366KM5uk8AAACgIOOcHMg6zikzlxv/jkycOFENGjTI0X0CAO4cZSHs0v7wvvGrefPmGjx4sH799Vez4xU4Bw8e1IQJE9S6dWvVqVNHTZo00bBhw/TNN9/IarXmyn1+/vnnOV6+5BfTp09XcHCwWrRoofj4+Azr7+YP+tmzZ2vNmjXZvp0Zz7GjCg8P15tvvqlOnTqpXr16ql+/vnr37q0PP/xQ0dHRZse7I5cuXdKoUaPUsGFD3X///Vq7dm2GbVavXq3mzZsrJibGhIQAAADIS5yT5yzOyfPe4MGDFRwcrH/9618Z1t3NB2kvXbqk6dOn6+DBg3ecrTCeU+ZXiYmJ+uyzz/Tggw8qNDRUdevWVceOHfXKK6/o5MmTZscDANyEi9kBkP+MGzdOgYGBMgxDERERWrZsmUaNGqXZs2erbdu2ZscrEL7++mu9+OKL8vX1VY8ePVSxYkVdv35dW7du1XPPPacrV65k+sfz3fryyy9VsmRJ9e7dO8f3nV9EREToyy+/1PDhw3Nsnx999JE6duyosLCwLN/GrOfYEe3du1ejRo1SXFycunfvrtq1a0uS9u/frzlz5mjHjh369NNPTU6Zfc8884wuXbqkCRMm6I8//tC///1v/fDDDwoMDJSUeoL15ptvavz48fLy8jI5LQAAAPIK5+R3j3Nyc61bt0779+9XnTp1cmR/ly9f1owZM1SuXDnVrFkz27cvrOeU+VFkZKRGjhypAwcOqG3bturatas8PT118uRJrVq1Sl999ZX2799vdkwAQCYoC5FBq1atVLduXfv3ffr00T333KPvvvuOE5Ms2L17t1588UXVr19fH3/8sYoVK2ZfN2zYMO3bt09Hjx41MWH+FR8fryJFitxym5o1a2ru3LkaMGCAPDw88ihZevnxOU5JSZHNZpObm1ue3m9ui46O1mOPPSZnZ2ctW7ZMVatWTbf+iSee0FdffZWnmQzDUGJi4l39/CUkJGjr1q1auHChGjdurP79+2vXrl3auHGj+vXrJ0maO3euvLy89OCDD+ZUdAAAABQAnJPfnfx4vlZQZOWc/HbKli2r69eva8aMGZo9e3YOJbtzhfWcMr+aNGmSDh48qGnTpqljx47p1o0fP17vv/9+nmeKi4uTp6dnnt8vABQ0TEOK2ypevLjc3d3l4pK+W547d6769eunpk2bKiQkRL1799aPP/542/1du3ZNb775prp166YGDRqoYcOGGjlypA4dOpRuu99//13BwcFatWqVZs2aZT9hGjp0qE6fPp1hv3v27NEjjzyixo0bq379+urWrZvmz5+fbpvjx49r3LhxatKkierWravevXvrl19+ybCvo0ePasiQIQoJCVGrVq304YcfymazZeVwacaMGbJYLHrnnXfSnZSkSbvfGx/j77//nm6bzK7nduXKFU2aNEmtWrVSnTp11LJlS40ePdp+vYZ27drp6NGj2rZtm33KmsGDB9tvf+bMGftjr1evnvr27av169enu98bj/mMGTN07733qkGDBho3bpxiYmKUlJSk119/Xc2bN1eDBg00adIkJSUlZXiM3377rXr37q2QkBA1adJETzzxhC5cuJBum8GDB6tr167av3+/Bg4cqHr16um999677fEdO3aswsPD9eWXX95227i4OL3xxhv2aWc6duyouXPnyjAM+zbBwcGKi4vTsmXL7MftdvPwZ+c5vtGSJUsUFhamOnXq6IEHHtDevXvTrR88eHC65yzNxIkT1a5dO/v3N07f8tlnnyksLEx169bV8ePH7dO1nj59WhMnTlSjRo0UGhqqSZMmZTp96z/t2LFD48aNU5s2bVSnTh21bt1akydPVkJCQoZMDRo00KVLlzRmzBg1aNBAzZo105tvvplhSp/o6GhNnDhRoaGhatSokZ555pksT6u5ePFiXbp0SRMnTsxwUidJfn5+GjNmTKaPo0+fPqpbt67at2+v5cuXp1ufdpz+KbProKRNcbthwwb7z/XixYuz/W/UjRITE2UYhooXLy5JslgsKl68uP04X7p0SXPmzNFzzz0nJydeqgEAABwZ5+Sck+f1Ofm+ffs0YsQI+89Wu3btNGnSpCwd/6JFi2ro0KFat26dDhw4cNvtb3dcfv/9d/Xp00dSahGVdmyzOt1rYT2nlKRz587ppZdeUseOHRUSEqKmTZtq3LhxGa7rmZZp586dmjJlipo1a6b69etr7NixioyMTLetYRj68MMP1apVK9WrV0+DBw/Ocrm+Z88erV+/Xn369MlQFEqSm5ubnnnmmQzLb/e+QnZ+T9Peq/jrr7/0yCOPqEGDBpowYYKk1Pd/XnnlFa1Zs0Zdu3ZVnTp11KVLF/32229ZenwAUNgxshAZxMbG2v9YiIiI0MKFC+1TNdxowYIFateunbp166bk5GR9//33+ve//62PPvpIbdq0uen+z5w5ozVr1qhTp04KDAxUeHi4lixZokGDBun7779X6dKl020/Z84cWSwWDR8+XLGxsfrkk080YcIEff311/ZtNm3apEcffVSlSpXSkCFD5Ofnp+PHj2v9+vUaOnSopNSTjf79+6t06dJ65JFH5OnpqR9++EFjx47V9OnTdd9990lKPQEYMmSIrFarRo0apSJFiuirr76Su7v7bY9dfHy8tm7dqkaNGqls2bJZOt5Z9fjjj+vYsWMaNGiQypUrp8jISG3atEkXLlxQYGCgnn32Wb366qvy9PS0T6fi5+cnKXVu/n79+ik+Pl6DBw9WyZIltWzZMo0ePVrTpk2zP/Y0H3/8sTw8PDRq1CidPn1aixYtkouLiywWi/1TeXv27NHSpUtVrlw5PfbYY/bbzpo1S1OnTlXnzp3Vp08fRUZGatGiRRo4cKCWL19uL0ek1JPURx55RF26dFH37t3l6+t72+MQGhqqZs2a6ZNPPlH//v1v+kk8wzA0evRo+4lFzZo1tWHDBr311lu6dOmSnn32WUnSW2+9peeff14hISHq27evJKlChQo3vf87fY6/++47Xb9+XQ899JAsFos++eQTPf7441qzZo1cXV2zvJ8bLV26VImJierbt6/c3Nzk7e1tXzd+/HgFBgbqySef1J9//qmvv/5aPj4++s9//nPLff74449KSEhQ//79VaJECe3du1eLFi3SxYsXNW3atHTbWq1WjRgxQiEhIXr66ae1ZcsWffrppypfvrwGDBggKfV5GDNmjHbu3Kl+/fqpatWq+vnnnzM9QcjM2rVr5eHhkemJxs2cPn1a//73v9WnTx/16tVL33zzjSZOnKjatWurevXqWd7PjU6ePKmnnnpKDz30kPr27avKlSvb12Xl36h/8vb2VoUKFfTRRx/piSee0K5du3Tw4EE9//zzklJ/Lu+99141btz4jvICAACg4OKcnHNyM8/JIyIiNGLECJUsWVKjRo1S8eLFdfbsWf38889ZPlZDhw7V/PnzNX369FuOLszKcalatarGjRunadOm6aGHHlJoaKgkqWHDhlnKUljPKaXUUnfXrl3q0qWLypQpo3PnzunLL7/UkCFD9P3332cYJfraa6+pePHieuyxx3Tu3DnNnz9fr7zyij744AP7NlOnTtWsWbPUunVrtW7dWgcOHNDw4cOVnJx828e4du1aSVKPHj2yfFyy8r5CdqWkpGjEiBEKDQ3VM888k+59o507d2r16tUaMGCAihYtqoULF2rcuHFat26dSpYseUf3BwCFhgH87ZtvvjGCgoIyfNWpU8dYunRphu3j4+PTfZ+UlGR07drVGDJkSLrlbdu2NZ555hn794mJiYbVak23zZkzZ4w6deoYM2bMsC/bunWrERQUZHTu3NlITEy0L58/f74RFBRkHD582DAMw0hJSTHatWtntG3b1oiKikq3X5vNZv//oUOHGl27dk23L5vNZjz00ENGhw4d7Mtef/11IygoyNizZ499WUREhBEaGmoEBQUZZ86cyeTopTp48KARFBRkvPbaazfd5kZpj3Hr1q0ZjkdQUJDxzTffGIZhGFFRUUZQUJDxySef3HJ/Xbp0MQYNGpRhedpj2r59u31ZbGys/bilPR9pebp27WokJSXZt33yySeN4OBgY+TIken2+9BDDxlt27a1f3/27FmjZs2axqxZs9Jtd/jwYaNWrVrplg8aNMgICgoyvvzyy1s+pjTTpk0zgoKCjIiICGPbtm1GUFCQMW/ePPv6tm3bGqNGjbJ///PPPxtBQUHGhx9+mG4/jz/+uBEcHGycPn3avqx+/frpfkZvJbvPcdpz2aRJE+PatWv25WvWrDGCgoKMtWvX2pcNGjQo0+fvmWeeSXec0/bZsGFDIyIiIt22acdp0qRJ6ZaPHTvWaNKkyW3z/vP32jAM46OPPjKCg4ONc+fOpcsUFBSU7nfWMAyjZ8+eRq9evezfpz0Pc+bMsS9LSUkxBgwYkO5n/GYaN25sdO/e/ba507Rt2zbDz3pERIRRp04d44033rAvSztO/5T27+CNv+dp+/ztt9/SbZvVf6NuZvPmzUbjxo3t/9a+/vrrhmEYxs6dO42QkBDj7NmzWX7cAAAAKPg4J0/FObm55+Rp53B79+695WPNzKBBg4wuXboYhmEY06dPN4KCgoz9+/cbhvH/x/TGY5jV47J3794snT9mpjCfU2Z2/r5r1y4jKCjIWLZsWYZMw4YNS/c7OXnyZKNmzZpGdHS0/XHWrl3bGDVqVLrt3nvvPSMoKOi275uMHTvWCAoKyvDvwM1k9X2FrP6e3rjPd955J8P9BQUFGbVr1073flDavxkLFy7MUmYAKMyY2wwZvPDCC5o3b57mzZunt99+W02bNtXzzz+v1atXp9vuxk/mREVFKSYmRqGhofrzzz9vuX83Nzf7tHpWq1VXr16Vp6enKleunOlte/fune46bI0aNZKU+mlISfrzzz919uxZDRkyJN0n5KTUqf2k1E/Lbd26VZ07d7Z/SjMyMlJXr15Vy5YtderUKV26dEmS9Ouvv6p+/foKCQmx78fHx0fdunW79YFT6idApdRpN3KSh4eHXF1dtW3bNkVFRWX79r/++qtCQkLsx05KzfjQQw/p3LlzOnbsWLrte/TokW60W0hIiAzD0AMPPJBuu5CQEF24cEEpKSmSpJ9//lk2m02dO3e2H+PIyEj5+fmpYsWKGaaMcHNzu6MLvzdu3FhNmzbVJ598kmF6zDS//fabnJ2dM0zrOXz4cBmGccfTTNzpc3z//fenG/n3z5/jO9GhQwf5+Phkui7tunc33t+1a9fs+W/mxt/ruLg4RUZGqkGDBjIMI9Pfz/79+6f7PjQ0NN2UJ7/99ptcXFzSbefs7KxBgwbdMkea2NjYbB/ratWqpftZ9/HxUeXKle/qWAcGBuree+/NdN3t/o26mebNm2vdunX66quvtH79ej377LOy2Wx67bXX9PDDD6tcuXL64osv1KlTJ3Xs2DFLU+8CAACg4OOcnHNyM8/Jvby8JEnr16/P0miymxk6dKi8vb01Y8aMm26T3eNyJwrzOeWN/wYkJyfr6tWrqlChgooXL57p73Lfvn3tv5Np92O1WnXu3DlJ0ubNm5WcnKxBgwal2y5tdPDt3Onv3+3eV7gT/9xnmhYtWqSbTapGjRoqVqzYXT23AFBYMA0pMggJCUl3MfWuXbuqZ8+eeuWVV9SmTRv7HzDr1q3TrFmzdPDgwXRz5N/4B0VmbDabFixYoC+++EJnz55NNw95iRIlMmz/z6lD0k4+oqOjJf3/H09BQUE3vc+//vpLhmFo6tSpmjp1aqbbREREqHTp0jp//rzq1auXYf2NU0TcTNr1EK5fv37bbbPDzc1NEyZM0Jtvvql77rlH9erVU5s2bdSzZ0/5+/vf9vY3e0xVqlSxr7/x+P3zmKedLAQEBGRYbrPZFBMTo5IlS+rUqVMyDEMdOnTINMc/r7FRunTpdH8QZ8fjjz+uQYMGafHixRo2bFiG9efOnVOpUqUyXKMi7RoFaX8M30xSUlKGk0AfH587fo7/eezSisO0n+M7ERgYeNN1N/u9iYqKyvS6HWnOnz+vadOmae3atRke/z+LRnd39wxlpbe3d7rbnTt3Tv7+/hlOFrLy+ySl/k7d7bHOLFd23cmxzspzW7Ro0XS/m998843Cw8M1atQobd68WW+//bbefvttSdKECRNUuXJlNWvW7E4eAgAAAAoIzsk5JzfznLxJkybq2LGjZsyYoc8++0xNmjRRWFiYunXrlq3zdy8vLw0ZMkTTp0/Xn3/+maFITnvc2Tkud6Iwn1MmJCToo48+0tKlS3Xp0iUZhmFfFxMTk+37OX/+vCSpUqVK6bbz8fFJ9+Hnm7nx9y+z5zszWXlfIbtcXFxUpkyZTNfd7Lm9m/dmAKCwoCzEbTk5Oalp06ZasGCBTp8+rerVq2vHjh0aPXq0GjdurBdffFH+/v5ydXXVN998o+++++6W+5s9e7amTp2qBx54QP/+97/l7e0tJycnTZ48Od0fNjfef2Yy2/Zm0i6EPnz48Jt+kutW16nLqooVK8rFxUVHjhzJ0vY3O4nL7MLtw4YNU7t27bRmzRpt3LhRU6dO1ccff6z58+erVq1ad5X7n252zG/3XNhsNlksFs2ZM0fOzs4ZtvP09Ez3/c2uN5gVjRs3VpMmTfTJJ59kGEWXE3bt2qUhQ4akW/bLL79k+zlOk9nxkLL2c3zjyfuNbnX87uT3xmq16uGHH1ZUVJRGjhypKlWqyNPT034x+H/+XN7sMeWkKlWq2N/8yOqJaVZy3ex3L6+OdWZiY2P1wQcf6Omnn5anp6e+++47dezYUWFhYZKkjh07auXKlZSFAAAADoZz8qzjnPzuz8ktFoumTZum3bt3a926ddqwYYOeffZZzZs3T0uWLMnWqLG0axfOmDFDzz77bJZvl5MK8znlq6++qqVLl2ro0KGqX7++vLy8ZLFY9MQTT+Ta7/KtpJW8R44cSTcy81bu5lhn9nsqpR89ndX7y6ljAAAFGWUhsiTtj524uDhJ0k8//SR3d3fNnTs33R9b33zzzW339dNPP6lp06aaPHlyuuXR0dF3dDHh8uXLS0r9Y6RFixa33MbV1fWm26QpW7asTp8+nWH5yZMnb5ulSJEiatasmbZu3aoLFy5k+omlG6V90uqfn/i62ai3ChUqaPjw4Ro+fLhOnTqlnj176tNPP9U777wj6eZ/QJUtWzbT/CdOnLCvzwkVKlSQYRgKDAzM8sixu/H4449r8ODBWrx4cYZ15cqV05YtWxQbG5tuJF3aYy5Xrtwt912jRg3Nmzcv3TJ/f3+5u7tn6znODm9v70ynvkj7dF9uO3LkiE6dOqU333xTPXv2tC/ftGnTHe+zXLly2rp1q65fv57upDIrv0+S1LZtW+3atUurV69W165d7zjHP934CcobP/GYV8c6MzNnzlRgYKC6d+8uSbp8+XK6Nx1KlSqlgwcPmhUPAAAAJuKcnHPyrMjJc/L69eurfv36euKJJ7Ry5UpNmDBBq1at0oMPPpjlfXh5eWno0KGaPn26evXqlWF9Vo/L7UbL3kphPqf86aef1LNnT02cONG+LDExMdNRhVmRdrxPnTpl/52VpMjIyCyN9Gvbtq0++ugjrVixIstlYVZk9/cUAHBnuGYhbis5OVmbNm2Sq6urfQpHZ2dnWSyWdJ+YOnv2rH755Zfb7s/Z2TnDJ3Z++OEH+/UJsqt27doKDAzUggULMkwbkHY/vr6+atKkiZYsWaLLly9n2EdkZKT9/1u3bq3du3dr79696davXLkyS3nGjh0rwzD09NNPZzrVxf79+7Vs2TJJqUWKs7Oztm/fnm6bf16bLD4+XomJiemWVahQQUWLFk033UyRIkUynTqhdevW2rt3r3bt2mVfFhcXp6+++krlypVTtWrVsvTYbqdDhw5ydnbWjBkzMjzHhmHo6tWrOXI/aZo0aWIfXfjP49OqVStZrVZ9/vnn6ZZ/9tlnslgsatWqlX2Zp6dnhuPm7e2tFi1apPtyd3eXlL3nODvKly+vEydOpPt5PHTokP74449s7+tOpH3y7sbnzjAMLViw4I732apVK6WkpKT7mbZarVq0aFGWbt+vXz/5+/vrjTfeyPQkMiIiQh9++GG2c6V9avnG3724uDgtX7482/vKCSdPntSiRYv03HPP2U+E/fz87CfJknT8+PEsTXEEAACAwoVzcs7JsyonzsmjoqIy3LZmzZqSlO6xZtXQoUNVvHhxzZw5M8O6rB6XIkWKSLqzy3gU5nPKzEbJLVy48KajG2+nRYsWcnV11aJFi9L9DMyfPz9Lt2/QoIHuvfdeff3111qzZk2G9UlJSXrzzTeznSurv6cAgLvDyEJk8Ntvv9nfoE77g/zUqVMaNWqUfYRW69atNW/ePI0cOVJdu3ZVRESEvvjiC1WoUEGHDx++5f7btGmjmTNnatKkSWrQoIGOHDmilStXpvvUUnY4OTnppZde0ujRo9WzZ0/17t1b/v7+OnHihI4dO6a5c+dKkl588UUNGDBA3bp1U9++fVW+fHmFh4dr9+7dunjxolasWCFJGjlypL799luNHDlSQ4YMUZEiRfTVV1+pbNmyt31sktSwYUO98MILevnll9W5c2f16NFDFStW1PXr17Vt2zatXbtW48ePl5T6KbtOnTpp0aJFslgsKl++vNavX6+IiIh0+zx16pSGDRumTp06qVq1anJ2dtaaNWsUHh6uLl262LerXbu2vvzyS3344YeqWLGifHx81Lx5c40aNUrff/+9HnnkEQ0ePFje3t5avny5zp49q+nTp990eobsqlChgsaPH693331X586dU1hYmIoWLaqzZ89qzZo16tu3r0aMGJEj95XmscceyzBdqCS1a9dOTZs21fvvv69z584pODhYmzZt0i+//KKhQ4emm+Kmdu3a2rJli+bNm6dSpUopMDAw0+smpMnOc5wdffr00WeffaYRI0aoT58+ioiI0OLFi1WtWrUcv+ZGZqpUqaIKFSrozTff1KVLl1SsWDH99NNPdzV3f7t27dSwYUP7z0S1atW0evXqLH/S0dvbWzNnztSoUaPUs2dPde/eXbVr15Yk/fnnn/ruu+/UoEGDbOe65557VLZsWT333HM6ceKEnJ2d9c0336hkyZKmjC6cMmWK7r//foWEhNiXdezYUWPGjNF7770nKfWaNLNnz87zbAAAAMhbnJNzTn6ncuKcfNmyZfryyy8VFhamChUq6Pr16/rqq69UrFixdB+6zaq0axfOmDEjw7qsHpcKFSqoePHiWrx4sYoWLSpPT0+FhIRk6We2MJ9TtmnTRt9++62KFSumatWqaffu3dq8eXOm1x7NCh8fHw0fPlwfffSRHn30UbVu3Vp//vmnfvvttyyPOn7rrbc0fPhwPfbYY2rbtq2aN2+uIkWK6PTp01q1apUuX76sZ555Jlu5svp7CgC4O5SFyGDatGn2/3d3d1eVKlX00ksvpbsuXPPmzfX6669rzpw5mjx5sgIDAzVhwgSdO3futn+8/+tf/1J8fLxWrlypVatWqVatWvroo4/07rvv3nHme++9V/Pnz9fMmTP16aefyjAMlS9fXn379rVvU61aNX3zzTeaMWOGli1bpmvXrsnHx0e1atXS2LFj7duVKlVKCxYs0GuvvaaPP/5YJUqUUL9+/VSqVCk999xzWcrTr18/1a1bV59++qmWL1+uq1evytPTU7Vq1dKUKVPs0wxK0vPPP6+UlBQtXrxYbm5u6tSpk55++ul002OUKVNGXbp00ZYtW7RixQo5OzurSpUq+uCDD9SxY0f7dmPHjtX58+f1ySef6Pr162rSpImaN28uPz8/LV68WG+//bYWLVqkxMREBQcHa/bs2WrTps0dH/fMjBo1SpUqVdJnn31m/+RgmTJldM8996hdu3Y5el+S1LRpUzVp0kTbtm1Lt9zJyUmzZs3StGnTtGrVKi1dulTlypXT008/reHDh6fbduLEiXrhhRf0wQcfKCEhQb169bplWShl7znOqqpVq+rNN9/UtGnTNGXKFFWrVk1vvfWWvvvuuwyPLze4urpq9uzZeu211/TRRx/J3d1d9913nwYOHKgePXrc0T7TnofJkydrxYoVslgsateunSZOnJhuqtNbqVevnlauXKm5c+dq/fr1+vbbb+Xk5KQqVapo1KhRGjRoULZzubq6asaMGXr55Zc1depU+fv72z/xOmnSpGzv7278+uuv2r59u3766ad0y9u2basnnnhCCxculGEYevLJJ9W6des8zQYAAIC8xzk55+R3427PyZs0aaJ9+/Zp1apVCg8Pl5eXl0JCQvTOO+/ccaGcdu3Cf35oNKvHxdXVVW+88Ybee+89vfTSS0pJSdGUKVOynKewnlM+99xzcnJy0sqVK5WYmKiGDRvaP0Rwp8aPHy83NzctXrxYv//+u0JCQvTpp5/q0UcfzdLtfXx8tHjxYn3xxRdatWqV3n//fSUnJ6tcuXJq165dph/2zoqs/J4CAO6OxeAKrgAAAAAAAAAAAIBD4pqFAAAAAAAAAAAAgINiGlIAAAAAAAAABUZCQkKGaU3/ydvbW25ubnmUCACAgo2yEAAAAAAAAECBsWrVqtteG3DBggVq2rRpHiUCAKBg45qFAAAAAAAAAAqMy5cv69ixY7fcpnbt2vL29s6jRAAAFGyUhQAAAAAAAAAAAICDcjI7AAAAAAAAAAAAAABzUBYCAAAAAAAAAAAADoqyEAAAAAAAAAAAAHBQLmYHAAAAAICsioiIEVddBwAAAADg1iwWydfXK0vbUhYCAAAAKDAMQ5SFAAAAAADkIKYhBQAAAAAAAAAAABwUZSEAAAAAAAAAAADgoCgLAcBEEydO1JgxY8yOAQAAAAAAAABwUJSFAAq1iRMnKjg4WB9//HG65WvWrFFwcHCW99OuXTt99tln2bpvwzC0ZMkSPfjgg2rQoIEaNWqk3r1767PPPlN8fHy29gUAAAAAAAAAQG6gLARQ6Lm7u2vOnDmKiorK0/v9z3/+o8mTJ6t9+/aaP3++li9frjFjxuiXX37Rpk2bcvW+k5OTc3X/AAAAAAAAAIDCgbIQQKHXokUL+fn56aOPPrrpNj/99JO6dOmiOnXqqF27dvr000/t6wYPHqxz585pypQpCg4OztKIxFWrVmnlypV699139a9//UshISEKDAxUWFiYFixYoKZNm6bbfu7cuWrZsqWaNm2ql19+OV3ZFxwcrDVr1qTbvlGjRlq6dKkk6ezZswoODtaqVas0aNAg1a1bVytXrrRPcXqrfQMAAAAAAAAAHBtlIYBCz8nJSU8++aQWLVqkixcvZli/f/9+jR8/Xvfff79Wrlypxx57TFOnTrWXcdOnT1eZMmU0btw4bdy4URs3brztfa5cuVKVK1dWWFhYhnUWi0VeXl7273///Xf99ddfmj9/vt544w0tW7ZMy5Yty/bjfOeddzRkyBCtWrVKLVu2zNF9AwAAAAAAAAAKJ8pCAA7hvvvuU82aNTVt2rQM6+bNm6fmzZtr7Nixqly5snr37q2BAwdq7ty5kqQSJUrI2dlZRYsWlb+/v/z9/W97f6dPn1blypWzlM3b21svvPCCqlatqrZt26p169basmVL9h6gpKFDh6pDhw4qX768SpUqlaP7BgAAAAAAAAAUTpSFABzGhAkTtHz5ch0/fjzd8hMnTqhhw4bpljVs2FCnT5+W1Wq9o/syDCPL21arVk3Ozs727/39/RUREZHt+6xTp06u7RsAAAAAAAAAUDhRFgJwGI0bN1bLli317rvv5vp9VapUSSdOnMjSti4uLum+t1gs6crGf34vSSkpKRn24+npme19AwAAAAAAAAAcG2UhAIfy1FNPad26ddq1a5d9WZUqVfTHH3+k2+6PP/5QpUqV7KPyXF1dZbPZsnw/3bp106lTp7RmzZoM6wzDUExMTJb35ePjo8uXL9u/P3XqlOLj47N8ewAAAAAAAAAAboayEIBDCQ4OVrdu3bRw4UL7suHDh2vLli2aOXOmTp48qWXLlunzzz/X8OHD7duUK1dO27dv16VLlxQZGXnb++ncubPuv/9+PfXUU5o9e7b27dunc+fOad26dRo2bJh+//33LGdu1qyZPv/8c/3555/at2+fXnzxRbm6umbvgQMAAAAAAAAAkAnKQgAOZ9y4celGCdauXVsffPCBVq1apW7dumnatGkaN26cevfune42586dU1hYmJo3b37b+7BYLHr33Xc1ceJErVmzRoMHD1b37t01ffp0tW/fXi1btsxy3meeeUYBAQEaOHCgJkyYoOHDh8vDwyN7DxoAAAAAAAAAgExYDC5eBQAAAKCACA+PEWcwQO6yWq369NOPtXr1D4qIiJCfn5/uv7+bhg4dIYvFIklq2bJRprcdM2acBgwYIknq06ebLl68kG79o48+psGDh9m/P3bsqN57700dOvSnSpQoqQce6KuBA4fa1//661otWDBP586dUUpKigIDK6hfv4Hq1KlLum2WL/9Ghw8fUnR0lObN+1zVqwfn1OEAACDf4DUaQHZYLJKfn1eWtnXJ5SwAAAAAAKAA+fzz+Vq+/H967rmXVblyFR069KcmT35FRYsW04MP9pMkffvtj+lus3XrZr3xxqtq3bpduuUjR/5L3br1tH/v6VnU/v/Xr8fqyScfU6NGTTRhwiSdOHFMU6a8omLFvNSjR+osH15exTVkyHBVrFhJrq6u2rRpg6ZMeUUlS/qoadPUGT/i4+MVElJf7drdpzfffC03DgkAAPkCr9EAcgtlIQDcgZEjR2rnzp2Zrnv00Uf1r3/9K48TAQAAADlj//69atmytVq0SJ06PyCgrNas+UkHDx6wb+Pr65fuNhs3/qqGDRupXLnAdMs9PT0zbJtm9eoflZycrEmTXpCrq6uqVKmqo0ePaMmSz+1vRDZsmH50RN++/fXjj99p797d9jci00YwXLhw/i4eNQAA+R+v0QByC9csBIA78Prrr2v58uWZfvXr18/seAAAAMAdq1MnRDt3btdff52WJB09ekR79+5Rs2YtMt0+MjJCmzdvVJcuPTKsW7Rovu6/v70efniAvvhigVJSUuzr9u/fq/r1G8jV1dW+rGnT5vrrr9OKjo7OsC/DMLRjxzb99ddp1a/f4G4fJgAABQ6v0QByCyMLAeAOlC5d2uwIAAAAQK4YNGiYrl+/roED+8jJyUk2m02jRo1Rhw6dM93+hx++k6dnUbVu3Tbd8j59HlJQUA0VL+6t/fv3aPbsmYqICNfjjz8pKfUNzICAsuluU7Kkj31d8eLFJUmxsbHq1auzkpKS5OzsrCeffEaNGzfL6YcNAEC+x2s0gNxCWQgAAAAAAOzWrv1ZP//8o1588TVVrlxVR48e1rRp78nPz1+dO3fNsP33369Qhw6d5O7unm55v36D7P9frVp1ubi46u23J+vRRx+Tm5tblvN4enpq3rwvFB8fpx07tmvGjPdVtmy5DNOfAQBQ2PEaDSC3UBYCAAAAAAC7Dz+cpoEDhyosrKMkqWrVarp48YIWLpyX4Y3IPXt26a+/Tuvll6fcdr+1atWR1WrVxYvnVaFCJfn4+Orq1ch026R97+Pja1/m5OSkwMDykqTq1YN1+vRJLVr0GW9EAgAcDq/RAHIL1ywEAAAAAAB2CQkJcnJK/3aBs7OzbDYjw7bfffetgoNrqnr1oNvu99ixI3JyclKJEqnTmNWpE6Ldu3elu0bS9u2/q0KFivbpzTJjs9mUlJSU1YcDAEChwWs0gNzCyEIAAAAAAGB3zz33asGCT1W6dBlVrlxFR44c1pIln+v++7un2+769VitW7dGjz02PsM+9u/fqz//3K8GDRrJ09NTBw7s07Rp76lDh872Nxnvu6+T5s2boylTXtHAgUN18uRxff31l/brJUnSwoXzVKNGTZUtG6jk5GRt2bJJP/20ShMmTLJvEx0dpUuXLio8/Iok6a+/TktKHfng6+uX04cHAADT8BoNILdYDMPI+LEDAAAAAMiHwsNjxBkMkLvi4q5rzpzZ+u23dbp69ar8/PwUFtZRDz/8iFxdXe3bffvtUk2b9q6+/fYnFStWLN0+Dh8+pHfffUN//XVKSUnJKlu2rDp2vF8PPTQw3bWQjh07qvfee1OHDv0pb+8SeuCBvho0aJh9/ccff6i1a3/W5cuX5e7urooVK+nBB/upffsO9m1WrVqpyZNfzvA4Hn74EY0Y8WgOHhkAAMzFazSA7LBYJD8/r6xtS1kIAAAAoKCgLAQAAAAA4PayUxZyzUIAAAAAAAAAAADAQXHNQgAAAADII2fPnlFkZITZMQAA+YiPj68CA8ubHcPh8RoNAPgnR3qNpiwEAAAAgDxw9uwZNW8RqsSEBLOjAADyEXcPD23ZvNNh3ozMj86ePaN7WoQqntdoAMANinh4aJODvEZTFgIAAABAHoiMjFBiQoI8O3WSk4+P2XEAAPmALTJScT/+qMjICId4IzK/ioyMUHxCgmbe31LVfbzNjgMAyAeORkZp7KqNDvMaTVkIAAAAAHnIycdHLqVKmR0DAJAPpJgdAOlU9/FWSGlfs2MAAJDnnMwOAAAAAAAAAAAAAMAclIUAAAAAAAAAAACAg6IsBAAAAAAAAAAAABwU1ywEUGAZhqGkpCQlJCTIarXKZrOl+zIMQ05OTnJ2dpaTk5P9y83NTUWKFJHFYjH7IQAAAAAAAAAAYCrKQgCmSklJ0aVLl3ThwgWdP39eFy5c0JUrVxQbG6uYmBjFxMQoNjZWUdHRuhYdnfr938virl+XNeXOLgfv5OSkIkWLqmixYipatKiKe3nJ29tb3l5e8rrhq1ixYvLx8VFAQIDKli2rgIAABQQEyMPDI4ePBAAAAAAAAAAAeY+yEECuiY+P1/Hjx3X8+HF7EXj+/HmdP39eZ86d0/kLF3Q1PFyGYfz/jSwWuRQrJou7u+TmJpubm2yurjJcXSV3d8nbWypVSnJzS/1yd5dcXCSLRXJySv1v2pckGUbGr5QU2ZKSdD0pSdcTE6WkJCkxUQoPl86fl1NyspySkmRJTpYSE5Vy/bqMf5SSXt7eKlOmjMoHBqrc3yViWplYqVIlBQUFqUSJEnl3sAEAAAAAAAAAuAOUhQDuitVq1ZkzZ3T48GEdOXJER44c0cFDh3Tw8GFdOHvWXgRanJzkUry4DC8vpXh6SsWKSbVrS15eqV/FiqX+t2hRpTiZezlV299fdoYhxcdLMTFSbKz094jHmNhYHb1wQc7HjskpNlbW6GjZkpPtN/Px81NwUJBq1qih4OBgBQUFKSgoSFWrVpW7u3tePywAAAAAAAAAADKgLASQJYZh6OTJk9q5c6d27dqlg4cO6c+DB3XyxAklJyVJkiwuLnLx81NyyZJShQpSgwaSn59UsqSMokWVbHIJeMcsFsnTM/WrdOkMq61/f8kwpIQE6epVKSJCkRER2hIRoe2rV8v44gtZExIkpU6BWq58edWsUUM1goNVv359hYaGqlatWnJx4Z9lAAAAAAAAAEDe4V1pABncWAzu3LlT27Zv146dOxUTFSVJci1RQlZfX9l8fKT27SVfX8nXV4a3d8EtBHOCxSIVKZL6VbasfXGKlFokxsZKERGyRUToTESEzpw+rXW7dil5+nTJMOTm7q66ISFq2rixQkND1ahRIwpEAAAAAAAAAECu4h1oADpz5oy2bt2aaTHoUqKEUsqUkRo2TC3AAgKUXKyYyYkLIIvl/6dcrVTJvjhZSr1e4sWLSjp/XjsvXNDeb77Rh7NmZVogNmnSRLVq1ZKTI5eyAAAAAAAAAIAcQ1kIOKCzZ89q3bp1Wr9+vX5eu1ZnTp2SlHkxmEIxmPvc3aWKFVO/dPsC0btkSbVr00bt2rVTmzZtKA8BAAAAAAAAAHeMshBwAOfOndP69eu1bt06/bx2rf46eVKS5BIQoJTy5aWmTaXy5SkG85ObFYjnzinq1Cmt2LVLy1eskGG1qoSPj9q3bau2bdvay0OLxWJqfAAAAAAAAABAwUBZCBRCERERWr16tdatW6fVv/yi0ydOSJJcypRRSoUKUuPGUsWKSila1OSkyBZ3d6lKFalKFVklKSlJOntW106d0vIdO7R0+XIZVqtK+vqqfbt2atumjTp16qQqVaqYnRwAAAAAAAAAkE9RFgKFxNGjR7VixQotW75cmzdvlmGzyaV06dRyMDQ0tRxk5GDh4uaWsTw8c0ZXT53Ssm3b9M3SpTKsVgXXrKnePXuqe/fuatKkCVOWAgAAAAAAAADsKAuBAspqtWrr1q1asWKFli5frmNHjsjJ1VVGlSoy7r9fCgpSSvHiZsdEXnJzk6pWlapWTS0PExOl48d1+PBhvTVtmqZMmSJff3/17N5d3bt3V1hYmDw9Pc1ODQAAAAAAAAAwEWUhUIDExsZq9erVWrFihb5duVLXIiPl4uWllGrVpH79ZKtSJbUwAqTUaUtr1ZJq1ZLVZpPOnFHE4cOav3Kl5s6dKzd3d913333q0b27unbtqoCAALMTAwAAAAAAAADyGGUhkM8lJCTou+++08JFi7Rq1SqlJCenXnuwVi0pOFgp5cpJTCuJ23FykipWTJ2OtkMHKTxcSUeO6Mf9+/X9999LhqHGTZtq2JAh6tu3r/z8/MxODAAAAAAAAADIA5SFQD5ks9n066+/6vPPP9eSr79WbHS0nAMDZW3XLrUg9PExOyIKOj8/yc9P1hYtpLg46ehR7fzzT+0YN07j/v1vdezYUUMGD1a3bt2YqhQAAAAAAAAACjHKQiAf2bt3rz7//HMtWLRIF8+fl4uvr1IaNJDq1pWVkV7ILZ6eUr16stWrJ12/LuuBA/pp3z6t6tdPnsWK6cEHHtCgQYPUtm1bOTs7m50WAAAAAAAAAJCDKAsBk505c0ZffvmlPluwQAcPHJBz0aKy1qolde6slMBAyWIxOyIcSdGiUpMmsjZpIkVEKG7fPn2+apXmz58v/9KlNXjgQA0aNEj169eXhZ9NAAAAAAAAACjwKAsBE6SkpOi7777TjJkztfaXX2RxcZERHCz17y9r1aqSC7+ayAd8faU2bZTSurV07pyu7N2raXPm6L333lONWrX0+NixGjx4sLy8vMxOCgAAAAAAAAC4QzQSQB66ePGiPvnkE82cNUsXz5+Xc4UKMrp3l1GzpuThYXY8IHMWixQYKAUGKqVjR+n4cR3evVuPPf64Jjz9tB4eOlSjR49WnTp1zE4KAAAAAAAAAMgmykIglxmGoY0bN2rmzJn65ptvZHNykq1OHalrV1nLljU7HpA9zs5SUJCMoCApKkrxO3fq40WL9OGHH+qeli31+GOPqVevXnJzczM7KQAAAAAAAAAgCygLgVwSExOjRYsWadqMGTr0559y8fdXSliYVK+eVKSI2fGAu+ftLbVrp5RWraRDh7Rl505t6tdPvv7+Gv3ooxo1apTKly9vdkoAAAAAAAAAwC04mR0AKGwOHz6ssWPHqnRAgMaOHavDhiENGaKUMWOkZs0oClH4uLhIderINnSoNGaMIipV0pR33lHFSpXUo2dPrV27VoZhmJ0SAAAAAAAAAJAJRhYCOWTnzp16ffJkLV+2TM5eXkoJDZVCQ1NHXwGOolQpqUsXWcPCpL17ter337WifXs1DA3V8889px49esjJic+pAAAAAAAAAEB+QVkI3AXDMLRu3Tq9Nnmy1v3yi1z8/GR07aqUevVSR1sBjsrdXWrcWCmNGknHj2v3pk3q3bu3qgcH67lJkzRgwAC5urqanRIAAAAAAAAAHB7DO4A7YLPZtHz5cjVu0kTt27fXb3/+KfXpkzrVaGgoRSGQxmKRqlVLnaJ0xAgdlzRs2DBVrFxZ06ZNU1xcnNkJAQAAAAAAAMChURYC2ZCcnKwFCxaoZu3a6tWrl3aHh0sDB8o6apRUp47E9IrAzZUvL1v//tLo0bro66vxTzyhcuXL67XXXtPVq1fNTgcAAAAAAAAADolmA8iCxMREzZw5U5WrVtXQoUN1zDCk4cNlHTZMql49dfQUgKwpXVpG794yHn9c16pU0YuvvKLAChX09NNP6/Lly2anAwAAAAAAAACHQlkI3ILVatX8+fNVpVo1PT5unM6XKCH961+po6MqVDA7HlCwlSwpde0q27hxiqtfX+/NmKGKlSvrxRdfVHR0tNnpAAAAAAAAAMAhUBYCmTAMQytWrFDtunU1bNgwXSheXMbo0TIeeEAqU8bseEDh4uUlhYXJ+vjjSqhfX69NmaJKlSvrgw8+UGJiotnpAAAAAAAAAKBQoywE/mHDhg1q3qKFevTooaOJidLIkTL69pX8/c2OBhRunp5Shw6yPfaYrlasqCefekpVq1fXggULZLVazU4HAAAAAAAAAIUSZSHwt7179+r+Ll3UqlUr7fjrL2nQINkGD5YCA82OBjgWb2+pRw8Zo0frvJeXhg4dqjohIVq5cqUMwzA7HQAAAAAAAAAUKpSFcHgnT57UoEGDVL9+ff28bZvUp4+sI0dK1apJFovZ8QDH5e+fOqp35EgdiY9X9+7d1eKee7Rx40azkwEAAAAAAABAoUFZCIcVHR2tCRMmKCg4WEtWrpRx//1KGT1aqlNHcuJXA8g3AgNlGzJEGjRI20+f1r333qtu3bvrxIkTZicDAAAAAAAAgALPxewAQF4zDENffPGFnnjqKUVcvSpby5ZS8+aSm5vZ0QDcjMUiVasma5Uq0oED+vGXX1SjZk09O2mSnnnmGRUpUsTshAAAAAAAAABQIDF8Cg5l3759urd1aw0aNEjhvr6yjRkjtW5NUQgUFE5OUt26ShkzRslNmuiV115TcM2aWrFiBdczBAAAAAAAAIA7QFkIhxAVFaXx48erfoMG+v3QIWnw4NRroZUoYXY0AHfCzU0KC5MxerTOubqqR48eur9LFx07dszsZAAAAAAAAABQoFAWolAzDEMLFixQ1erVNWP2bNnatlXKo49KVauaHQ1ATvDzk23gQKlvX63ZulU1a9XSf//7X8XFxZmdDAAAAAAAAAAKBMpCFFp79uxRi3vu0dChQxVZurSsY8ZILVtKLlyqEyhULBapVi2ljB6tlGbNNPmNNxRUo4aWL1/O1KQAAAAAAAAAcBuUhSh04uLi9OSTT6pBw4bacfy4NGSIjD59JG9vs6MByE1ublL79rKNHq0LRYqoV69e6nz//frrr7/MTgYAAAAAAAAA+RZlIQqVDRs2qFadOpo6Y4aMdu2UMmqUVKWK2bEA5CVfX9n695f69dMvW7eqZu3a+uSTTxhlCKDQsVqt+uCDD9SuXTuFhIQoLCxMM2fOTPfvnWEYmjp1qlq2bKmQkBANGzZMp06dSrefa9eu6amnnlLDhg3VqFEjPfvss7p+/Xq6bQ4dOqQBAwaobt26at26tebMmZMhzw8//KBOnTqpbt266tatm3799dd067OSBQAAAAAA5D3KQhQKcXFxGj9+vFq3bq2zNptsjz7KlKOAI7NYpBo1lPLoo4qrXl2PPPKIOnTsyChDAIXKnDlz9OWXX+qFF17QqlWrNGHCBH3yySdauHBhum0WLlyol156SV999ZWKFCmiESNGKDEx0b7NhAkTdOzYMc2bN0+zZ8/Wjh079MILL9jXx8bGasSIESpbtqyWLl2qp59+WjNmzNCSJUvs2/zxxx966qmn1KdPHy1fvlzt27fX2LFjdeTIkWxlAQAAAAAAeY+yEAVe2mjC6R9+KOO++2QdOlTy8zM7FoD8oEgRqUcPaeBArd++nVGGAAqVXbt2qX379mrTpo0CAwPVqVMntWzZUnv37pWUOpJvwYIFGj16tMLCwlSjRg299dZbunz5stasWSNJOn78uDZs2KDXXntN9erVU6NGjfT888/r+++/16VLlyRJK1asUHJysiZPnqzq1aurS5cuGjx4sObNm2fPsmDBAt17770aOXKkqlatqvHjx6tWrVpatGhRlrMAAAAAAABzUBaiwMp0NGGLFpITP9YA/qF6dUYZAih0GjRooK1bt+rkyZOSUqcK3blzp1q1aiVJOnv2rK5cuaIWLVrYb+Pl5aV69epp165dklILx+LFi6tu3br2bVq0aCEnJyd76bh79241atRIbm5u9m1atmypkydPKioqyr5N8+bN0+Vr2bKldu/eneUsWWWxFNwvAABuxezXKUf+AgDgVsx+ncqL1zjmaESBtGHDBg0eOlRnzp5NHU3YrBklIYBbSxtlWKuW1n//vWrWrq2p77+vESNGyMLZIYACaNSoUYqNjVXnzp3l7Owsq9WqJ554Qt27d5ckXblyRZLk6+ub7na+vr4KDw+XJIWHh8vHxyfdehcXF3l7e9tvHx4ersDAwHTb+P09i0N4eLi8vb0VHh5uX5bZ/WQlS1b5+npla/v8pGTJomZHAADkUyVLFpWfX8F9jSvoeI0GANyMo7xGUxaiQImLi9Ozzz6radOmyalChdTRhEw5CiA7/h5lmLJ6tR555BEt+eorzf3kE1WoUMHsZACQLT/88INWrlypd999V9WqVdPBgwc1ZcoUlSpVSr169TI7Xq6JiIhRQZ1N+urV62ZHAADkU1evXld4eIzZMRwWr9EAgJspyK/RFkvWP3BLWYgCY9++fXrgwQd1/MQJRhMCuDv/GGVYJyREn336qXr37m12MgDIsrfeekujRo1Sly5dJEnBwcE6f/68PvroI/Xq1Uv+/v6SpIiICJUqVcp+u4iICNWoUUNS6gjByMjIdPtNSUlRVFSU/fZ+fn4ZRv+lfZ82mjCzbSIiIuzrs5IlqwxDBbYsBADgVnh9AwAgf3KE12iaFuR7hmHo448/VqPGjXUiKkq2UaO4NiGAnPH3KMPYcuX0wAMPaOzYsUpISDA7FQBkSUJCQoZplJ2dnWX8fRYTGBgof39/bdmyxb4+NjZWe/bsUYMGDSSlXvcwOjpa+/fvt2+zdetW2Ww2hYSESJLq16+vHTt2KDk52b7N5s2bVblyZXl7e9u32bp1a7osmzdvVv369bOcBQAAAAAAmIO2BfladHS0+vXrp0cffVRJderIOmKE9Pcn0wEgRxQpIuPBB6X779fsOXPUuGlTHTlyxOxUAHBbbdu21ezZs7V+/XqdPXtWP//8s+bNm6ewsDBJksVi0ZAhQzRr1iz98ssvOnz4sJ5++mmVKlXKvk3VqlV177336r///a/27t2rnTt36tVXX1WXLl1UunRpSVK3bt3k6uqq5557TkePHtWqVau0YMECPfzww/YsQ4YM0YYNG/Tpp5/q+PHjmj59uvbv369BgwZlOQsAAAAAADAH05Ai39qxY4ceePBBnbt0SerTR6pTx+xIAAori0Vq0kS28uV1aOlS1W/QQB9/9JH9TW4AyI+ef/55TZ06VS+//LJ9es+HHnpIY8eOtW/zyCOPKD4+Xi+88IKio6MVGhqqTz75RO7u7vZt3nnnHb366qsaOnSonJyc1KFDBz3//PP29V5eXpo7d65eeeUV9e7dWyVLltSYMWP00EMP2bdp2LCh3nnnHX3wwQd67733VKlSJc2cOVNBQUHZygIAAAAAAPKexTAcYbZVFCSGYWjq1Kn6z9NPyyhdWtbevSUfH7NjAXAUiYmyfP+9jL17NWzYMM2YMUNFixY1OxUA4G/h4TEF9noRe/fuVlhYKxUbMEAuN1y7EQDguFIuX1bsF19ozZrfFBJS3+w4DivtNXr1oC4KKe1rdhwAQD6w91KEOiz6vkC/Rlsskp+fV5a2ZRpS5CsRERHq3qOHnnjiCaWEhso6bBhFIYC85e4uo1cvqUcPLfjiCzUIDU13LS8AAAAAAAAAKEwoC5FvbNq0SXVCQvTD2rVS//5Sp06SCzPlAjCBxSI1aCDbI4/oRFSUQhs10pw5c8RgfAAAAAAAAACFDWUhTGcYhmbMmKFWrVvriqurrKNGScHBZscCAMnfX9YRI5RUp45GjRqlYQ8/rISEBLNTAQAAAAAAAECOYdgWTJWUlKQxY8Zo7ty5UrNm0n33Sc7OZscCgP/n6ip16yZVqKBFX3yhgwcP6tvlyxUQEGB2MgAAAAAAAAC4a4wshGkuX76sNm3bat78+VKPHqnTjlIUAsiv6tWTbehQ7Tp8WA1CQ7Vjxw6zEwEAAAAAAADAXaMshCl2796tBqGh2rZvn2xDh0oNGpgdCQBuLzBQKSNGKNzFRfe0bKkvvvjC7EQAAAAAAAAAcFcoC5Hnvv76azVr3lyXDEPWkSOl8uXNjgQAWVe8uKxDhii5Rg0NHDhQEydOlNVqNTsVAAAAAAAAANwRykLkGZvNphdeeEF9+/ZVUvXqsg4dKnl7mx0LALLP1VVGz55Shw566+231a17d0VHR5udCgAAAAAAAACyzcXsAHAMMTExGjR4sFasWCG1by+jZUvJYjE7FgDcOYtFatFChr+/Vi9dqkZNmuj7lStVvXp1s5MBAAAAAAAAQJYxshC57vTp02rSrJm+/+knqV8/6d57KQoBFB7Vq8s6YoRORkYqtHFj/fLLL2YnAgAAAAAAAIAsoyxErtq3b5+aNGumYxcvyjp8uBQcbHYkAMh5fn5KGT5c1/391alzZy1ZssTsRAAAAAAAAACQJZSFyDUbNmxQi5YtFeHkpJSHH5ZKlTI7EgDkniJFZOvfX9aaNdW/f39Nnz7d7EQAAAAAAAAAcFuUhcgVy5cvV/uwMMX5+ck6ZIjk5WV2JADIfc7OMnr2lNG8ucaNG6dnn31WhmGYnQoAAAAAAAAAboqyEDnu448/Vu8HHlBK9eqyDRggeXiYHQkA8o6Tk9Shg3TffZoyZYpGjBihlJQUs1MBAAAAAAAAQKZczA6AwsMwDL322mt64YUXpMaNpc6dU980BwBHdM89UrFi+mzBAl26fFlff/WVPD09zU4FAAAAAAAAAOnQ5CBHWK1WjR07NrUobNdOuv9+ikIAqFdPRr9++vHnn9WufXtFRkaanQgAAAAAAAAA0qHNwV1LSEhQ34ce0uyPPpK6dZNatZIsFrNjAUD+UL26bEOGaMe+fWp+zz06c+aM2YkAAAAAAAAAwI6yEHclJiZGHTt31vIVK2T07SuFhpodCQDyn8BAWR9+WCcuXVKTZs108OBBsxMBAAAAAAAAgCTKQtyFqKgohd13nzb9/rtsgwZJNWqYHQkA8i8/P6U8/LDCbTa1bNVKBw4cMDsRAAAAAAAAAFAW4s5cu3ZN7cPCtHPfPlkHDZIqVjQ7EgDkf8WLK2XwYEW5uureVq20d+9esxMBAAAAAAAAcHCUhci2yMhItWnXTrsPHkwtCsuVMzsSABQcRYvKOniwoj081LpNG+3evdvsRAAAAAAAAAAcGGUhsiUiIkKt27bV/qNHZR08WCpb1uxIAFDweHrKOniwYooWVeu2bbVz506zEwEAAAAAAABwUJSFyLK0EYUHT5xILQrLlDE7EgAUXEWKyDpwoK57ealt+/b6448/zE4EAAAAAAAAwAFRFiJLrl69qnbt2/9/UVi6tNmRAKDg+7swjPPyUruwMO3Zs8fsRAAAAAAAAAAcDGUhbisqKkph992XOvXooEEUhQCQkzw8ZB04ULGenmrTrp32799vdiIAAAAAAAAADoSyELcUHR2t+zp00J6DB1OLQqYeBYCc9/cIwxgPD7Vq00Z//vmn2YkAAAAAAAAAOAjKQtxUfHy87u/aVX/s2yfrwIFSQIDZkQCg8PL0lHXgQEW7uqp127Y6ceKE2YkAAAAAAAAAOADKQmTKarWqX//+2vL777L27y+VK2d2JAAo/IoWlXXQIF2z2dT+vvt0+fJlsxMBAAAAAAAAKOQoC5GBYRgaPXq0Vq5cKVufPlKFCmZHAgDHUayYUgYM0JkrV9ShUyfFxMSYnQgAAAAAAABAIUZZiAxeeuklzZkzR0a3blJQkNlxAMDx+PjIOmCA9h88qF69eyspKcnsRAAAAAAAAAAKKcpCpPPhhx/qlVdekcLCpAYNzI4DAI4rIEDWhx7SuvXrNXToUNlsNrMTAQAAAAAAACiEKAth97///U+PPfaY1LSpdM89ZscBAFSuLFuvXlq8ZImefPJJGYZhdiIAAAAAAAAAhYyL2QGQP6xfv179BwyQ6tSROnaULBazIwEAJKl2bSkuTlOnTlVAQICeeeYZsxMBAAAAAAAAKEQoC6Hdu3era/fuslWoIKNHD8mJAacAkK80bizFxGjixIkqXbq0hg0bZnYiAAAAAAAAAIUEZaGDO3HihO7r2FEJxYvL1rev5MKPBADkS23bSrGxGjFypPz9/dWlSxezEwEAAAAAAAAoBBhC5sCioqLUoVMnXbVaZe3fX3J3NzsSAOBmLBapSxcZQUHq8+CD2r17t9mJAAAAAAAAABQClIUOymq16qF+/XTq7NnUorBYMbMjAQBux9lZRq9eSvbxUZdu3XT58mWzEwEAAAAAAAAo4CgLHdSkSZO0evVqWR94QPLzMzsOACCr3Nxk7dtXl6Oi1LNXLyUlJZmdCAAAAAAAAEABRlnogBYuXKi3335bxn33SdWqmR0HAJBd3t5K6dtXv2/bpjFjxsgwDLMTAQAAAAAAACigKAsdzLZt2zRi5Eipfn2pWTOz4wAA7lT58rJ16aK5c+dq5syZZqcBAAAAAAAAUEBRFjqQ8+fPq2v37rKVLi117SpZLGZHAgDcjQYNpGbN9O/x47V27Vqz0wAAAAAAAAAogCgLHUR8fLy6de+uqwkJsvbtK7m4mB0JAJAT7rtPqlRJvfv00fHjx81OAwAAAAAAAKCAoTFyAIZh6JFHHtHuvXtlGzZM8vIyOxIg37175bt/f7plScWL61TXrpIki9Uq/z/+kNfp07LYbLoeEKDLjRrJWqTIzXdqGPLdt0/ex47JKTlZ8X5+uty4sZKLF7dv4pSYqFI7dqjouXOSxaLY8uV1OTRUhqurJMklNlZltmyRR2SkEnx8dLF5c6UUK2a/fdn16xVdpYpiK1TIwaMB3AVnZ9n69NH1uXPVpVs3bf/9d3nx7zwAAAAAAACALGJkoQN499139fnnn8vWvbtUrpzZcQC7RG9vHe/Vy/71V1iYfZ3/zp0qeu6czrdsqTNhYXKJi1PZDRtuub+SBw+qxOHDutSkif7q0EGGi4vKrVsni9Vq3yZg82a5RUXpXLt2Ote6tYpcvqzS27b9//3u2qUUT0+d7txZ1iJF5L9rl31dsdOnUwtGikLkN0WKKOWhh3Ts1CkNGDhQNpvN7EQAAAAAAAAACgjKwkJuzZo1evrpp6WWLaW6dc2OA6RjWCyyFili/7J5eEiSnJKS5H3ihK40bKj4MmWU6OOji82aqUh4uDzCw2+yM0MlDx1SZJ06uh4YqKSSJXWxeXO5xMer2JkzkiS3qCgVvXBBl5o2VYKfnxJKldLlRo3kdfq0nOPi7NtEV66s5OLFFVWlityio+2Z/Pbs0eVGjXL/wAB3wt9f1l699N133+mVV14xOw0AAAAAAACAAoKysBC7ePGiHurfX5YqVaR27cyOA2TgFhOjKsuWqdK336rMpk1yuX5dkuQeGSmLzaa4MmXs2yZ7eyvZ0/OmZaHr9etySUhIdxubm5sS/Pzst/EID5fV1VWJvr72beLKlJEsFhWJiJAkJZYsKc+LFyXDUNELF5RYooSk1BGH14KClFK0aI4eAyBHBQVJbdrolVde0bp168xOAwAAAAAAAKAAoCwspGw2mwYMGqSoxETZevWSnHiqkb/E+/npYvPmOtumjS43bizX69dV/uefZUlOlktCgmxOTrK5uaW7jdXDQy7x8Znuz/nv5Sl/j05Md5uEBEmSS0KCrP9YLycnWd3c5Pz3NuENGsgtOlqVv/1WrjExCm/QQEUuX5b71auKrlxZARs3qtK336rUtm3SDdObAvnGvffKUrmyHurfX5cvXzY7DQAAAAAAAIB8jgapkHrjjTe0bu1aWXv1kooVMzsOkEFc2bKKrVBBSSVLKq5sWZ1r00ZOycny+usvU3OleHrqfJs2Otmzp863aSOru7tKbd+uS02ayHf/ftlcXHSqWze5xcSoxLFjpmYFMuXkJFuvXoq8fl2DBg/m+oUAAAAAAAAAbomysBDauHGjnv/vf6V775WqVDE7DpAlNjc3JXt5yS0mRikeHnKy2eSUlJRuG+eEBKUUKZLp7a1/L08bRZjuNn+PJkzx8LCPIPz/O7bJOSkp44jDv/kcOKC4v6+bWOTyZcWWLy85OSmmfHkVYdQW8isvL1l79tTPq1frnXfeMTsNAAAAAAAAgHyMsrCQiYiI0IMPPSSnChWk1q3NjgNkmSU5Wa6xsUopUkSJPj4ynJxSrx34N9foaLnGxSnBzy/T2ycXLaoUD490t3FKTpZHeLj9Ngl+fnJOTpZ7ZKR9G89LlyTDUPwN1zFM4xYVJa9TpxRer15qRsOQDCP1/2221O+B/KpaNallS0169llt2bLF7DQAAAAAAAAA8inKwkLEMAwNGTpUV6KiUqcfdXY2OxJwU35//KEily7JJTZWHleuqOyGDTIsFsVUrCibm5uiqlSR/9/buEdGqszWrYr380tXFlb67jsVO3Mm9RuLRVdr1JDP/v0qevas3K5dU5ktW5RSpEjqaEBJSd7euh4QoNK//y6P8HB5XLmiUjt2KKZiRVk9PdMHNAyV2rZNV0JDZbi4SJLi/f3lfeyY3KKiVPzkScXfpLgE8o22bWUJDFSfvn119epVs9MAAAAAAAAAyIdczA6AnDN16lSt+v57qX9/ydvb7DjALbnExSlg82Y5JSbK6u6ueH9/nenQwT4d6JXQUMliUdkNG2SxWnU9IECXGzdOtw+36Gg5JSfbv79as6acUlJUets2OSUlKd7fX+fatpVxQ3F+oUULldqxQ4Fr18qwWBRbvrwuh4ZmyOd97JisHh66Xq6cfVlE3boqs2mTyv/0k+LKltW1oKCcPixAznJ2lrVXL136+GMNe/hhLV+2TBaLxexUAAAAAAAAAPIRysJCYseOHfrPf/4jNWsmBQebHQe4rYstW95yveHsrMuNG2coCG90ZMCA9AssFkWEhCgiJOSmt7G5u+viPffcNl9U9eqKql493TKrh4fOtW9/29sC+UqJErJ266YVS5Zo5syZeuyxx8xOBAAAAAAAACAfYRrSQiA6OloPPPigjDJlpLAws+MAAPKbmjWlpk31xJNPateuXWanAQAAAAAAAJCPUBYWAuPHj9e5ixdl7d1bcmGwKAAgE/fdJ8PfX/0GDFBCQoLZaQAAAAAAAADkE5SFBdyPP/6oefPmyXrffZKPj9lxAAD5lYuLrD166OjRo3rllVfMTgMAAAAAAAAgn6AsLMCioqL08IgRcqpWTWrY0Ow4AID8rnRpGa1b640339T27dvNTgMAAAAAAAAgH6AsLMCeeOIJXYmMlK1rV8liMTsOAKAguOceOQUEaNCQIUxHCgAAAAAAAICysKBKN/1oiRJmxwEAFBTOzrJ27850pAAAAAAAAAAkURYWSEw/CgC4K0xHCgAAAAAAAOBvlIUFENOPAgDuGtORAgAAAAAAABBlYYHD9KMAgBzBdKQAAAAAAAAARFlYoDD9KAAgRzEdKQAAAAAAAODwKAsLkCeffJLpRwEAOeuG6UgTExPNTgMAAAAAAAAgj1EWFhAbN27Up59+KmtYGNOPAgByzg3Tkb777rtmpwEAAAAAAACQxygLC4CUlBQ9Onq0nMuXZ/pRAEDOK11aRpMmeuXVV/XXX3+ZnQYAAAAAAABAHqIsLABmzZqlPw8ckLVTJ8mJpwwAkAtat1aKm5vGP/GE2UkAAAAAAAAA5CGap3zu0qVLevb551NHFJYrZ3YcAEBh5eEha1iYli1dqp9//tnsNAAAAAAAAADyCGVhPvfMxImKt1ql9u3NjgIAKOzq1pVT5coaPXaskpKSzE4DAAAAAAAAIA9QFuZjW7Zs0fzPPpO1bVvJ09PsOACAws5ika1TJ504flzvv/++2WkAAAAAAAAA5AHKwnzKarVq1L/+JefAwNQpSAEAyAulS8to0kQvvfKKzpw5Y3YaAAAAAAAAALmMsjCfmj17tvbv2ydrp06SE08TACAPtWmjZGdnPfHkk2YnAQAAAAAAAJDLaKHyoStXrmjSc89JDRpIgYFmxwEAOBoPD1nDwvTN//6nNWvWmJ0GAAAAAAAAQC6iLMyHnnnmGcUlJ0vt25sdBQDgqEJC5FyxokaPHaukpCSz0wAAAAAAAADIJZSF+cyePXv02WefydqmjVS0qNlxAACOymKRtXNnHTt6VB9//LHZaQAAAAAAAADkEsrCfGbipEly9vOTQkPNjgIAcHRlykj16unFl19WbGys2WkAAAAAAAAA5ALKwnzkt99+048//KCUNm0kZ2ez4wAAILVpo2vXrun99983OwkAAAAAAACAXEBZmE8YhqH/PP20nMuVk2rWNDsOAACpSpSQrVEjvfHWWwoPDzc7DQAAAAAAAIAcRlmYT6xYsULbfv9d1nbtJCeeFgBAPnLvvUpMSdHkyZPNTgIAAAAAAAAgh9FK5QNWq1VPT5wop6pVpapVzY4DAEB6RYvK2ry5ps+YodOnT5udBgAAAAAAAEAOoizMBxYuXKgjhw7J1q6d2VEAAMhcs2YyPDz04ksvmZ0EAAAAAAAAQA6iLDRZQkKCnn3+eVlq15bKlTM7DgAAmXN3l7VlSy1YsEAHDhwwOw0AAAAAAACAHEJZaLIPP/xQFy9ckNG2rdlRAAC4tdBQOZcsqYmTJpmdBAAAAAAAAEAOoSw0UVRUlF557TUZDRpIfn5mxwEA4NZcXJTSurW+W7lSmzdvNjsNAAAAAAAAgBxAWWii999/XzGxsVLr1mZHAQAga+rUkXNAgCY++6zZSQAAAAAAAADkAMpCk8TExOj9Dz6QLTRUKl7c7DgAAGSNk5OsrVppw6+/asuWLWanAQAAAAAAAHCXKAtN8vHHH6eOKmze3OwoAABkT3CwXEqX1uuTJ5udBAAAAAAAAMBdoiw0QWJiot565x0ZISGSt7fZcQAAyB4nJ6U0b67vv/tO+/fvNzsNAAAAAAAAgLtAWWiCBQsW6PKlS9I995gdBQCAO1O3rlxKltSUKVPMTgIAAAAAAADgLlAW5jGr1arJb7whS82akp+f2XEAALgzzs5KadZMi5cs0cmTJ81OAwAAAAAAAOAOURbmsf/97386deKEjJYtzY4CAMDdadBATp6eevvtt81OAgAAAAAAAOAOURbmIcMw9Orrr8upalWpbFmz4wAAcHfc3JTSuLE+mTtXFy9eNDsNAAAAAAAAgDtAWZiHfvzxRx3Yt082RhUCAAqLxo1lc3LSBx98YHYSAAAAAAAAAHeAsjAPvfb663IuX16qVMnsKAAA5IwiRWQNDdX0mTN17do1s9MAAAAAAAAAyCbKwjyyadMmbd60SdZ77pEsFrPjAACQc5o1U0Jioj788EOzkwAAAAAAAADIJsrCPPLOu+/KpVQpKSjI7CgAAOQsLy/ZQkL03gcfKCkpyew0AAAAAAAAALKBsjAPnD17VitWrFBK48aSE4ccAFAINW2qiCtXtHz5crOTAAAAAAAAAMgGmqs88PHHH8vi4iKFhJgdBQCA3FGqlJwrV9b0GTPMTgIAAAAAAAAgGygLc1lSUpJmffSRrCEhkru72XEAAMg11tBQbdywQQcOHDA7CgAAAAAAAIAsoizMZcuXL1f45ctSo0ZmRwEAIHfVqCGX4sU1a9Yss5MAAAAAAAAAyCLKwlw2fcYMOVeqJJUubXYUAAByl4uLUurX17z58xUTE2N2GgAAAAAAAABZQFmYiw4cOKCNGzbIyqhCAICjCA1VfFycPv/8c7OTAAAAAAAAAMgCysJcNGvWLLkULy7VqGF2FAAA8oa3txQcrGkzZsgwDLPTAAAAAAAAALgNysJcEhMTo3nz5yulfn3JxcXsOAAA5BmjUSMdPHBAmzZtMjsKAAAAAAAAgNugLMwln3/+ueKvX5dCQ82OAgBA3qpcWS7+/po5c6bZSQAAAAAAAADcBmVhLjAMQ9NmzEidftTb2+w4AADkLScnpTRsqP99840uXbpkdhoAAAAAAAAAt0BZmAt27NihgwcOyGBUIQDAUdWvL5ukhQsXmp0EAAAAAAAAwC1QFuaCRYsWyaV4calKFbOjAABgjiJFZAQFaT5lIQAAAAAAAJCvURbmsJSUFC364gul1K4tOXF4AQCOy6hbV/v37tX+/fvNjgIAAAAAAADgJmizctiaNWsUGR4u1a1rdhQAAMxVrZqcixbV559/bnYSAAAAAAAAADdBWZjDFi5aJJfSpaWAALOjAABgLhcXWWvW1IJFi2Sz2cxOAwAAAAAAACATlIU5KDY2VkuXLk2dgtRiMTsOAADmCwnR+bNntXHjRrOTAAAAAAAAAMgEZWEO+vbbb5UQH88UpAAApClfXi4+Plq0aJHZSQAAAAAAAABkgrIwBy1YuFDOlSpJJUuaHQUAgPzBYlFK7dr6cskSJSQkmJ0GAAAAAAAAwD9QFuaQS5cu6eeff5a1dm2zowAAkL+EhCg2OlqrVq0yOwkAAAAAAACAf6AszCGLFy9OvU4hZSEAAOn5+8u5XDmmIgUAAAAAAADyIcrCHDJ/4UKpenXJ09PsKAAA5DvWOnW08rvvdPXqVbOjAAAAAAAAALgBZWEOOHnypHbt3CmjTh2zowAAkD/VqaOUlBQtX77c7CQAAAAAAAAAbkBZmANWrFghJxeX1JGFAAAgIy8vOZcvrxUrVpidBAAAAAAAAMANKAtzwLJvv5UqV5bc3c2OAgBAvmWtXl0/rl6thIQEs6MAAAAAAAAA+Btl4V26du2aNm7YIBujCgEAuLXgYCXExWndunVmJwEKjUuXLmnChAlq2rSpQkJC1K1bN+3bt8++3jAMTZ06VS1btlRISIiGDRumU6dOpdvHtWvX9NRTT6lhw4Zq1KiRnn32WV2/fj3dNocOHdKAAQNUt25dtW7dWnPmzMmQ5YcfflCnTp1Ut25ddevWTb/++mu69VnJAgAAAAAA8h5l4V368ccfZU1JkYKDzY4CAED+5u8vF19fpiIFckhUVJT69+8vV1dXzZkzR99//72eeeYZeXt727eZM2eOFi5cqJdeeklfffWVihQpohEjRigxMdG+zYQJE3Ts2DHNmzdPs2fP1o4dO/TCCy/Y18fGxmrEiBEqW7asli5dqqefflozZszQkiVL7Nv88ccfeuqpp9SnTx8tX75c7du319ixY3XkyJFsZQEAAAAAAHmPsvAufbtihVzKlZNueFMGAABkwmJRSvXqWrp8uQzDMDsNUODNmTNHZcqU0ZQpUxQSEqLy5curZcuWqlChgqTUkXwLFizQ6NGjFRYWpho1auitt97S5cuXtWbNGknS8ePHtWHDBr322muqV6+eGjVqpOeff17ff/+9Ll26JCn1+tzJycmaPHmyqlevri5dumjw4MGaN2+ePcuCBQt07733auTIkapatarGjx+vWrVqadGiRVnOAgAAAAAAzEFZeBeSk5P13fffK6VaNbOjAABQMAQH6/LFi/rjjz/MTgIUeGvXrlWdOnU0btw4NW/eXD179tRXX31lX3/27FlduXJFLVq0sC/z8vJSvXr1tGvXLknSrl27VLx4cdWtW9e+TYsWLeTk5KS9e/dKknbv3q1GjRrJzc3Nvk3Lli118uRJRUVF2bdp3rx5unwtW7bU7t27s5wFAAAAAACYw8XsAAXZhg0bFBsdzRSkAABkVYUKcvb01MqVKxUaGmp2GqBAO3PmjL788ks9/PDD+te//qV9+/bptddek6urq3r16qUrV65Iknx9fdPdztfXV+Hh4ZKk8PBw+fj4pFvv4uIib29v++3Dw8MVGBiYbhs/Pz/7Om9vb4WHh9uXZXY/WcmSVRZLtjYHAKDA4DUOAID8qaC+RmcnN2XhXVixYoVcSpRQSkCA2VEAACgYnJ1lrVpVS5cv10svvWR2GqBAMwxDderU0ZNPPilJqlWrlo4eParFixerV69eJqfLPb6+XmZHuGMlSxY1OwIAIJ8qWbKo/PwK7mtcQcdrNADgZhzlNZqy8A4ZhqGly5enTkFaUGtlAADMEBysff/7n86cOaPy5cubnQYosPz9/VW1atV0y6pUqaKffvrJvl6SIiIiVKpUKfs2ERERqlGjhqTUEYKRkZHp9pGSkqKoqCj77f38/DKM/kv7Pm00YWbbRERE2NdnJUtWRUTEqKBe9vTq1etmRwAA5FNXr15XeHiM2TEcFq/RAICbKciv0RZL1j9wyzUL79CBAwd05vRppiAFACC7qlWTxdlZK1euNDsJUKA1bNhQJ0+eTLfs1KlTKleunCQpMDBQ/v7+2rJli319bGys9uzZowYNGkiSGjRooOjoaO3fv9++zdatW2Wz2RQSEiJJql+/vnbs2KHk5GT7Nps3b1blypXl7e1t32br1q3psmzevFn169fPcpasMoyC+wUAwK2Y/TrlyF8AANyK2a9TefEaR1l4h7777js5u7tLlSqZHQUAgILFw0OWSpW0grIQuCtDhw7Vnj17NHv2bJ0+fVorV67UV199pQEDBkiSLBaLhgwZolmzZumXX37R4cOH9fTTT6tUqVIKCwuTJFWtWlX33nuv/vvf/2rv3r3auXOnXn31VXXp0kWlS5eWJHXr1k2urq567rnndPToUa1atUoLFizQww8/bM8yZMgQbdiwQZ9++qmOHz+u6dOna//+/Ro0aFCWswAAAAAAAHMwDekdWvPLLzIqVJBcXc2OAgBAgWOrXFm//vabkpOT5cprKXBHQkJCNGPGDL333nuaOXOmAgMD9eyzz6p79+72bR555BHFx8frhRdeUHR0tEJDQ/XJJ5/I3d3dvs0777yjV199VUOHDpWTk5M6dOig559/3r7ey8tLc+fO1SuvvKLevXurZMmSGjNmjB566CH7Ng0bNtQ777yjDz74QO+9954qVaqkmTNnKigoKFtZAAAAAABA3rMYBoPtsyspKUneJUoooWVL6Z57zI4DAEDBc/as9Mkn2rJli5o1a2Z2GgAFSHh4wb1m4d69uxUW1krFBgyQyw3XbgQAOK6Uy5cV+8UXWrPmN4WE1Dc7jsNKe41ePaiLQkr7mh0HAJAP7L0UoQ6Lvi/Qr9EWi+TnxzULc82OHTuUEB/PFKQAANypgAA5e3ho/fr1ZicBAAAAAAAAHBpl4R1Yt26dnD08pDJlzI4CAEDB5Owso3x5/bJ2rdlJAAAAAAAAAIdGWXgH1q5bJ1uFCpKzs9lRAAAosGyVKmnjxo1KTk42OwoAAAAAAADgsCgLsykpKUmbNm2SUbGi2VEAACjYKlVSQny8duzYYXYSAAAAAAAAwGFRFmbTtm3blJiQIFWubHYUAAAKtjJl5OzhoXXr1pmdBAAAAAAAAHBYlIXZtH79ejkXKcL1CgEAuFvOzrJVqKC1lIUAAAAAAACAaSgLs2nN2rWp1yt04tABAHC3jIoVtWnTJiUlJZkdBQAAAAAAAHBINF7ZkJiYqC2bN3O9QgAAcsrf1y3cvn272UkAAAAAAAAAh0RZmA3btm1TUmKiVKmS2VEAACgcypSRc5EiXLcQAAAAAAAAMAllYTZs3rxZzh4eXK8QAICc4uwsW2CgNm3ebHYSAAAAAAAAwCFRFmbDzp07U4tCrlcIAECOMQICtH3HDhmGYXYUAAAAAAAAwOHQemXD1u3bZWVUIQAAOSsgQBFXruj8+fNmJwEAAAAAAAAcDmVhFl29elVnTp2SypY1OwoAAIXL36+tO3bsMDkIAAAAAAAA4HgoC7No586dqf8TEGBuEAAACpvixeXi5fX/r7UAAAAAAAAA8gxlYRbt3LlTzh4ekq+v2VEAAChcLBZZy5TRdkYWAgAAAAAAAHmOsjCLdu7cKZUpIzlxyAAAyGlGQIC279ghwzDMjgIAAAAAAAA4FJqvLNq6fbusZcqYHQMAgMIpIEARV67o3LlzZicBAAAAAAAAHAplYRZcvXpVZ06dksqWNTsKAACF09+vsVy3EAAAAAAAAMhblIVZ8Mcff6T+T0CAuUEAACisiheXi5cXZSEAAAAAAACQxygLs2DHjh1y9vCQfH3NjgIAQOFkschapoy279hhdhIAAAAAAADAoVAWZsEff/whlSkjOXG4AADILUZAAGUhAAAAAAAAkMdov7Jg34EDsvr5mR0DAIDCzd9fEVeu6OrVq2YnAQAAAAAAABwGZeFt2Gw2nTh+nClIAQDIbX+/1h49etTkIAAAAAAAAIDjoCy8jbNnzyoxIYGyEACA3Pb3a+3hw4dNDgIAAAAAAAA4DsrC2zhy5Ejq/zANKQAAucvdXa7e3v//2gsAAAAAAAAg11EW3saRI0dkcXaWvL3NjgIAQKFn9fGhLAQAAAAAAADyEGXhbRw+fFgufn6Ss7PZUQAAKPRsPj46cPCg2TEAAAAAAAAAh0FZeBuHDh9WcokSZscAAMAx+Prq+LFjMgzD7CQAAAAAAACAQ6AsvI2Dhw5Jvr5mxwAAwDH4+iohPl7nzp0zOwkAAAAAAADgECgLbyExMVHnzpyhLAQAIK/8/ZrLdQsBAAAAAACAvEFZeAvHjx+XzWajLAQAIK+ULCmLkxNlIQAAAAAAAJBHKAtvwf5GJWUhAAB5w9lZLr6+lIUAAAAAAABAHqEsvIVjx47J2cNDKlbM7CgAADiMlBIlKAsBAAAAAACAPEJZeAvnzp2Tk7e3ZLGYHQUAAIdhFC+uv86dMzsGAAAAAAAA4BAoC2/hwoULshYtanYMAAAcS7FiunDhgtkpAAAAAAAAAIdAWXgLZ86elY2yEACAvOXlpcgrV2S1Ws1OAgAAAAAAABR6lIW3cPb8ecnLy+wYAAA4Fi8v2Ww2Xb582ewkAAAAAAAAQKFHWXgThmHo8qVLUrFiZkcBAMCx/P1BnfPnz5scBAAAAAAAACj8KAtvIiYmRglxcYwsBAAgr/39QR2uWwgAAAAAAADkPsrCm7C/QUlZCABA3ipaVLJYGFkIAAAAAAAA5AHKwpuwv0HJNKQAAOQtZ2e5eHkxshAAAAAAAADIA5SFN8HIQgAAzGMpXpyRhQAAAAAAAEAeoCy8iQsXLsjZw0Nydzc7CgAADifZ01PnGVkIAAAAAAAA5DrKwps4f/68nIoXNzsGAACOqVgx/XX2rNkpAAAAAAAAgEKPsvAmLl++LJunp9kxAABwTMWK6dKlS2anAAAAAAAAAAo9ysKbiImJkdXV1ewYAAA4Jjc3XY+NNTsFAAAAAAAAUOhRFt7Etagoyc3N7BgAADgmd3fFXb8uwzDMTgIAAAAAAAAUapSFNxEVEyO5u5sdAwAAx+TmJpvVqoSEBLOTAAAAAAAAAIUaZeFNxMTEMLIQAACz/P0aHMtUpAAAAAAAAECuoiy8iVjKQgAAzPP36P6YmBiTgwAAAAAAAACFG2XhTVyPjWUaUgAAzPL3B3YoCwEAAAAAAIDcRVmYCcMwFBcXx8hCAADMwjSkAAAAAAAAQJ6gLMxEQkKCbFYrIwsBADAL05ACAAAAAAAAeYKyMBP2NyYZWQgAgDmYhhQAAAAAAADIE5SFmbBPeUZZCACAOZiGFAAAAAAAAMgTlIWZsI9iYBpSAADM4ewsJ1dXRhYCAAAAAAAAuYyyMBNxcXGp/+Pqam4QAAAcmJOb2/+/JgMAAAAAAADIFZSFmbDZbKn/Y7GYGwQAAEfm5PT/r8kAAAAAAAAAcgVlYSYoCwEAyAcsFspCAAAAAAAAIJdRFmbCarWm/g9lIQAAprE4Of3/azIAAAAAAACAXEFZmAlGFgIAkA8wshAAAAAAAADIdS5mB8iP7G9M7tsneXqaGwYAAAdlS0ykLAQAAAAAAAByGWVhJoKDg1U6IEDhGzaYHQUAAIfl7Oyse+65x+wYAAAAAAAAQKFGWZiJ8uXL6+L582bHAAAAAAAAAAAAAHIV1ywEAAAAAAAAAAAAHBRlIQAAAAAAAAAAAOCgKAsBAAAAAAAAAAAAB0VZCAAAAAAAAAAAADgoykIAAAAAAAAAAADAQVEWAgAAAHloyJAhio6OzrA8NjZWQ4YMMSERAAAAAABwZJSFAAAAQB7atm2bkpOTMyxPTEzUzp07TUgEAAAAAAAcmYvZAQAAAABHcOjQIfv/Hzt2TFeuXLF/b7PZtGHDBpUuXdqMaAAAAAAAwIFRFgIAAAB5oGfPnrJYLLJYLBo6dGiG9R4eHnr++edNSAYAAAAAABwZZSEAAACQB3755RcZhqGwsDB9/fXX8vHxsa9zdXWVr6+vnJ2dTUwIAAAAAAAcEWUhAAAAkAfKlSsnKf10pAAAAAAAAGajLAQAAADy2KlTp/T7778rIiJCNpst3brHHnvMpFQAAAAAAMARURYCAAAAeeirr77SSy+9pJIlS8rPz08Wi8W+zmKxUBYCAAAAAIA8RVkIAAAA5KFZs2Zp/PjxGjVqlNlRAAAAAAAA5GR2AAAAAMCRREVFqXPnzmbHAAAAAAAAkERZCAAAAOSpTp06aePGjWbHAAAAAAAAkMQ0pAAAAECeqlixoqZOnao9e/YoKChILi7p/yQfMmSISckAAAAAAIAjoiwEAAAA8tCSJUvk6empbdu2adu2benWWSwWykIAAAAAAJCnKAsBAACAPLR27VqzIwAAAAAAANhxzUIAAAAAAAAAAADAQTGyEAAAAMhDkyZNuuX6KVOm5FESAAAAAAAAysKbOnDggCIjI82OAQCAw3J2dlbz5s1lsVjMjgLkqOjo6HTfp6Sk6OjRo4qOjlazZs1MSgUAAAAAABwVZWEm9uzZo9DQUFmtVrOjAADg0GbOnKkxY8aYHQPIUTNnzsywzGaz6aWXXlL58uVNSAQAAAAAABwZZWEmwsPDZbVataZzIwV6epgdBwAAh9T2pz908eJFs2MAecLJyUnDhg3TkCFD9Mgjj5gdBwAAAAAAOBDKwkw4OTlJkioXK6IqxT1NTgMAgGNycrLYX5MBR3DmzBmlpKSYHQMAAAAAADgYysJMpL0xaZNhchIAAByXzTAoC1EoTZkyJd33hmHoypUrWr9+vXr16mVSKgAAAAAA4KgoCzOR9sak1WZyEAAAHJjNEGUhCqU///wz3fdOTk7y8fHRxIkT9cADD5iUCgAAAAAAOCrKwkwwshAAAPMxshCF1cKFC82OAAAAAAAAYEdZmAkXl9TDkmKjLAQAwCzJVpucnZ3NjgHkmsjISJ04cUKSVKVKFfn4+JicCAAAAAAAOCLKwkwULVpUknQ9xWpyEgAAHNf15GQVK1bM7BhAjouLi9Orr76qb7/9VjZb6rz3zs7O6tGjh/773/+qSJEiJicEAAAAAACOhLm9MuHl5SVJiklOMTkJAACOKdFqU7LVZn9NBgqTN954Q9u3b9esWbO0Y8cO7dixQx9++KG2b9+uN954w+x4AAAAAADAwVAWZiJtFENMMiMLAQAwQ9oHdhhZiMLop59+0uuvv67WrVurWLFiKlasmFq3bq1XX31VP/30k9nxAAAAAACAg6EszAQjCwEAMFfs3x/YYWQhCqOEhAT5+fllWO7r66uEhAQTEgEAAAAAAEdGWZgJNzc3ubm62t+oBAAAeSvtAzuUhSiM6tevr2nTpikxMdG+LCEhQTNmzFD9+vXNCwYAAAAAABySi9kB8iuvYkUZWQgAgEkoC1GYPfvssxo5cqRatWqlGjVqSJIOHTokNzc3ffrppyanAwAAAAAAjoay8CaKFS3KNQsBADBJ2uh+rlmIwig4OFirV6/WypUrdeLECUlS165d1a1bN3l4eJicDgAAAAAAOBrKwpvw8vJSTHKc2TEAAHBIjCxEYfbRRx/J19dXffv2Tbf8f//7nyIjIzVq1CiTkgEAAAAAAEfENQtvwsurONcsBADAJDGMLEQhtmTJElWpUiXD8urVq2vx4sUmJAIAAAAAAI6MsvAmihX34pqFAACYJDYlRW6urnJzczM7CpDjrly5In9//wzLfXx8dOXKFRMSAQAAAAAAR0ZZeBNexb0Vk2IzOwYAAA4pJtkqr2JFzY4B5IqAgAD98ccfGZbv3LlTpUqVMiERAAAAAABwZFyz8Ca8vb11LoVpSAEAMENUUoqKc71CFFIPPvigJk+erJSUFDVr1kyStGXLFr399tsaPny4yekAAAAAAICjoSy8iTJlymhtfJLZMQAAcEgX4hIVULa82TGAXDFy5Ehdu3ZNL7/8spKTkyVJ7u7uGjlypB599FGT0wEAAAAAAEdDWXgTAQEBuhAbL8MwZLFYzI4DAIBDuZCQpIBygWbHAHKFxWLRf/7zH40ZM0bHjx+Xh4eHKlWqxDU6AQAAAACAKSgLb6Js2bJKsloVmZgsXw/euAEAIC+dT0hRjbJlzY4B5KqiRYsqJCTE7BgAAAAAAMDBOZkdIL8KCAiQlDoNGgAAyFsXrifYX4sBAAAAAAAA5B7Kwpuwl4XxlIUAAOSlhBSrIuMTVJaRhQAAAAAAAECuoyy8ibSy8DwjCwEAyFMX45MkiZGFAAAAAAAAQB6gLLwJDw8PlfQuzjSkAADksfNxCZLEyEIAAAAAAAAgD1AW3kLZgABGFgIAkMfSPqjDyEIAAAAAAAAg91EW3kJAuXKMLAQAII+dj0uUm6urfHx8zI4CAAAAAAAAFHqUhbcQULacLiSmmB0DAACHciE+UQGlS8lisZgdBQAAAAAAACj0KAtvoWzZsjofn2R2DAAAHMr5uESVLVvO7BgAAAAAAACAQ6AsvIXAwECdi4mT1WaYHQUAAIdxJi5JgRUrmh0DAAAAAAAAcAiUhbcQFBSkJKtVf12PNzsKAAAO40hMvIKCgsyOAQAAAAAAADgEysJbSHuj8nDUdZOTAADgGK4np+hs9HXKQgAAAAAAACCPUBbeQvny5eXu5qYjUXFmRwEAwCEcjU59zaUsBAAAAAAAAPIGZeEtODs7q1qVyjrCyEIAAPJE2gd0KAsBAAAAAACAvEFZeBvBtWrrSAzXLAQAIC8cibou35Il5OPjY3YUoMD5+OOPFRwcrNdff92+LDExUS+//LKaNm2qBg0a6PHHH1d4eHi6250/f16jRo1SvXr11Lx5c7355ptKSUlJt83vv/+uXr16qU6dOrrvvvu0dOnSDPf/+eefq127dqpbt64efPBB7d27N936rGQBAAAAAAB5j7LwNoKCgnQ4JsHsGAAAOITDUdcVHBxsdgygwNm7d68WL16c4fdn8uTJWrdunT744AMtXLhQly9f1mOPPWZfb7Va9eijjyo5OVmLFy/WG2+8oWXLlmnatGn2bc6cOaNHH31UTZs21bfffquhQ4fq+eef14YNG+zbrFq1SlOmTNHYsWO1bNky1ahRQyNGjFBERESWswAAAAAAAHNQFt5GUFCQ/oqKVXyK1ewoAAAUekdiExVUo6bZMYAC5fr16/rPf/6j1157Td7e3vblMTEx+uabbzRx4kQ1b95cderU0eTJk7Vr1y7t3r1bkrRx40YdO3ZMb7/9tmrWrKnWrVvr3//+tz7//HMlJSVJkhYvXqzAwEBNnDhRVatW1aBBg9SxY0d99tln9vuaN2+e+vbtqwf+r707D6uyTNw4fh8OICCLbG5p7uC+l+mQC5mWpaaOaWKZWZNlWqOWto1ZjVrZZGqLM5UrVlpqmqapaWrirqGYKyoqyo7scOCc3x8Wv8gNFHiB8/1cF5ee9zzneW+95vJtuHmeZ8AANWzYUJMnT5aLi4u+/fbbQmcBAAAAAADGoCy8gT9+OvtESobBSQAAqNhsNpuOXUrnvEKgiN5880116dJFnTp1KnD90KFDslgsBa43aNBANWvWzC/oDhw4oICAAPn5+eWPCQoKUlpamk6cOJE/pmPHjgXmDgoKyp8jJydHERERBe7j4OCgTp06af/+/YXOAgAAAAAAjOFodICy7o9vWB67lK4WPh4GpwEAoOKKz7IoOSubshAogtWrV+vw4cP65ptvrngvPj5eTk5O8vT0LHDd19dXcXFx+WP+XBRKyn99ozFpaWnKysrSpUuXlJeXJ19f3yvuExkZWegshWUyFWk4AADlBs84AADKpvL6jC5KbsrCG/D19ZW3l6eOXmJlIQAAJenopXRJoiwECunChQv697//rS+++EKVKlUyOk6p8fUtvz/A5+1d2egIAIAyytu7svz8yu8zrrzjGQ0AuBZ7eUZTFt6AyWRSQKMAHU2ONjoKAAAV2rGUdJlMJjVs2NDoKEC5EBERoYSEBPXv3z//Wl5ennbv3q3Q0FB9/vnnslgsSklJKbCiLyEhQf7+/pIurxAMDw8vMG98fLwkFRjzx7U/j3F3d5eLi4scHBxkNpuVkJBQYExCQkL+ikQ/P78bZimshIRU2WxF+kiZkZSUbnQEAEAZlZSUrvj4VKNj2C2e0QCAaynPz2iTqfA/cMuZhYXQrGVLhbOyEACAEhWemKr6dW6Xq6ur0VGAcuGuu+7SqlWrtGLFivyv5s2bq3fv3vm/d3JyUlhYWP5nIiMjFR0drdatW0uSWrdurWPHjhUo+rZv3y53d/f84r5169basWNHgXtv3749fw5nZ2c1a9aswH2sVqvCwsLUpk0bSSpUlsKy2crvFwAA12P0c8qevwAAuB6jn1Ol8YxjZWEhtGvXTgvmzVNWbp5cHM1GxwEAoELak5im9p3vNToGUG64u7tfsW2vm5ubqlSpkn99wIABmjZtmry8vOTu7q63335bbdq0yS/ogoKC1LBhQ7300kt68cUXFRcXpxkzZigkJETOzs6SpMGDBys0NFTvvvuuBgwYoB07duiHH37QnDlz8u87fPhwTZgwQc2bN1fLli01f/58ZWZm5q969PDwuGEWAAAAAABgDMrCQmjfvr1yrVYdTErTHf5eRscBAKDCybPatD8+VX3btTM6ClChvPLKK3JwcNCYMWOUk5OjoKAgTZo0Kf99s9msTz/9VG+88YYGDRokV1dX9evXT2PGjMkfU7t2bc2ZM0dTp07VggULVL16db399tu6++6788f06tVLiYmJmjlzpuLi4tSkSRN99tln+duQFiYLAAAAAAAwhslmY7H9jWRlZcnDw12z7gzUyCa1jY4DAECFczgpTc2W/aKNGzcqODjY6DgAyrD4+PJ7ZmF4+AF1795Z7kOGyLFqVaPjAADKgNzYWKUtXqwNG7aoZcvWRsexW388o38c+oBaVvM1Og4AoAwIj0lQj0Wry/Uz2mSS/Pw4s7DYuLi4qFnjJtobf8noKAAAVEh741MkSW3btjU4CQAAAAAAAGBfKAsLqd2dd2pPUrrRMQAAqJD2JlxSw3p1VaVKFaOjAAAAAAAAAHaFsrCQ2rVrp0MJKcrKzTM6CgAAFc6exDS1u7OD0TEAAAAAAAAAu0NZWEjt2rVTrtWqg0lpRkcBAKBCybPatD8+Ve3atTM6CgAAAAAAAGB3KAsLqWXLlnJ0NOefqQQAAIrH0UvpyrBYKAsBAAAAAAAAA1AWFpKrq6uaNW6ivfGXjI4CAECF8scP4rRt29bgJAAAAAAAAID9oSwsgnZ33qk9SelGxwAAoELZm3BJDevVVZUqVYyOAgAAAAAAANgdysIiaN++vQ4lpCgjN8/oKAAAVBi7EtLU7s4ORscAAAAAAAAA7BJlYREEBQUp12rVjthko6MAAFAhpFtytScuWXfffbfRUQAAAAAAAAC7RFlYBM2aNZOvdxVtupBodBQAACqEsNhLsuRZ1bVrV6OjAAAAAAAAAHaJsrAIHBwc1LVbsDbHXDI6CgAAFcKmC4ny9/VR06ZNjY4CAAAAAAAA2CXKwiLq2q2bdsYmcW4hAADFYHPsJXXtFiyTyWR0FAAAAAAAAMAuURYWUbdu3WTJs2p7TLLRUQAAKNfSLbnaFZOkbsHBRkcBAAAAAAAA7BZlYRE1bdpUfj7e2sy5hQAA3JJfYpKVa+W8QgAAAAAAAMBIlIVFZDKZ1LVbsDbFcm4hAAC3YvPFRFXz91Pjxo2NjgIAAAAAAADYLcrCm9AtOFi7YpKUbsk1OgoAAOXW5hjOKwQAAAAAAACMRll4E7p27apcq1XbY5ONjgIAQLmUZsnV7thkde3WzegoAAAAAAAAgF2jLLwJTZo0UVU/X23i3EIAAG4K5xUCAAAAAAAAZQNl4U3IP7cwhnMLAQC4GZsvJKq6v78CAwONjgIAAAAAAADYNcrCm9T93nu1OzZZCVk5RkcBAKDcWXshSff06MF5hQAAAAAAAIDBKAtv0gMPPKA8q1U/nIs3OgoAAOVKVFqmDsQlq0+fPkZHAQAAAAAAAOweZeFNqlmzpu5o11Yro+KMjgIAQLmyKipOTo6O6tmzp9FRAAAAAAAAALtHWXgL+jzUT2ujE5WdZzU6CgAA5cbKc/Hq2qWLvLy8jI4CAAAAAAAA2D3KwlvQp08fpWbn6OcLiUZHAQCgXEjJydWm6AT17tvX6CgAAAAAAAAARFl4S1q0aKE6tWppZVSs0VEAACgX1p2PlyXPqt69exsdBQAAAAAAAIAoC2+JyWRSn379tPJ8omw2m9FxAAAo81ZGxalls2aqW7eu0VEAAAAAAAAAiLLwlvXu3VtnU9L1a2Kq0VEAACjTcq1WrT6foD79+hkdBQAAAAAAAMDvKAtvUZcuXeRRubJWRcUZHQUAgDJte0yykjKz2YIUAAAAAAAAKEMoC2+Rs7Oz7u/VSyvPJRgdBQCAMm1lVJyq+/urffv2RkcBAAAAAAAA8DvKwmLQp29f7YlN0vn0LKOjAABQJtlsNn13PkG9H3pIDg785wcAAAAAAABQVvDdumJw//33y9HRrOVnYoyOAgBAmXQoKU0nklLVp08fo6MAAAAAAAAA+BPKwmLg4+Oj+3r0VOipWKOjAABQJoWevCCfKl7q0aOH0VEAAAAAAAAA/AllYTEZ+thj2nExUSdS0o2OAgBAmWK12RR6KlaDHhkiZ2dno+MAAAAAAAAA+BPKwmLSu3dvubu5KfTEBaOjAABQpmy5mKRzqekaOnSo0VEAAAAAAAAA/AVlYTFxc3PTgIEDFXo6Vjabzeg4AACUGaEnolXv9tvVsWNHo6MAAAAAAAAA+AvKwmI0dOhQHU9K1e74S0ZHAQCgTMjKzdPSqHiFPPaYTCaT0XEAAAAAAAAA/AVlYTHq1q2balSrqkVsRQoAgCRp9dk4XcrKVkhIiNFRAAAAAAAAAFwFZWExMpvNeiRkqL46HSuL1Wp0HAAADBcaeVHt27ZR48aNjY4CAAAAAAAA4CooC4vZ0KFDFZeRpQ3nE4yOAgCAoRKzc7T6bLyGPjbM6CgAAAAAAAAAroGysJi1bt1aTQIDtOgkW5ECAOzbN6dilGuzadCgQUZHAQAAAAAAAHANlIXFzGQyaehjw7QiKl5pllyj4wAAYJjQUzG69557VL16daOjAAAAAAAAALgGysISMGTIEGVYLFp6KsboKAAAGOJkSoa2RCdo6GOPGR0FAAAAAAAAwHVQFpaAunXr6r4ePfTJsfNGRwEAwBCfHjkrnypeGjBggNFRAAAAAAAAAFwHZWEJefa557Q7Jkm74y4ZHQUAgFKVmZunL05c0BNPPiVXV1ej4wAAAAAAAAC4DsrCEtKrVy/dfttt+uTIWaOjAABQqpacuqjEzGyNHDnS6CgAAAAAAAAAboCysISYzWaNHDVKX0bGKDE7x+g4AACUmo+Pntd9PXqoQYMGRkcBAAAAAAAAcAOUhSVoxIgRypM071i00VEAACgVe+IuaVdMkp597jmjowAAAAAAAAAoBMrCElS1alUNHDhQnxyLltVmMzoOAAAl7pMjZ3X7bbepV69eRkcBAAAAAAAAUAiUhSXs2VGjdCI5VRvOJxgdBQCAEpWUbdHiyBiNHDVKZrPZ6DgAAAAAAAAACoGysIR16tRJLZs108dHzxkdBQCAEjXv+Hnl6fI23AAAAAAAAADKB8rCEmYymfTs6NFadSZWUWmZRscBAKBEWG02fXIsWgMHDlTVqlWNjgMAAAAAAACgkCgLS0FISIgqu7npv0dYXQgAqJg2RifoeFKqnh01yugoAAAAAAAAAIqAsrAUuLu76/EnntCc49HKyM0zOg4AAMXug4izatm8mTp16mR0FAAAAAAAAABFQFlYSsaOHauk7Bx9xtmFAIAK5kBCin44G6uXJr4sk8lkdBwAAAAAAAAARUBZWErq1q2rRwY/oumHzyonz2p0HAAAis208NOqV+d2DRo0yOgoAAAAAAAAAIqIsrAUTXz5ZZ1NSdeXkReMjgIAQLE4kZKupacu6sUJE+Xo6Gh0HAAAAAAAAABFRFlYipo1a6Y+vR/UO4eiZLXZjI4DAMAtezf8tPz9fDV8+HCjowAAAAAAAAC4CZSFpezlV17Vb4kp+u5MrNFRAAC4JdHpWZp/4oL+OW68XFxcjI4DAAAAAAAA4CZQFpayu+66S107d9bUQ2dkY3UhAKAc+8+hM3J1c9MzzzxjdBQAAAAAAAAAN4my0AAvv/qqdsck6acLiUZHAQDgpiRm5+jTY+c1avRoeXp6Gh0HAAAAAAAAwE2iLDTAvffeq7atW2nqwdNGRwEA4KbMPhylPJODnn/+eaOjAAAAAAAAALgFlIUGMJlMevnV17TxXLx2x10yOg4AAEWSbsnVzCPn9eRTT6lq1apGxwEAAAAAAABwCygLDdKvXz8FNGigKeGnjI4CAECR/O/oOSVnWzR+/HijowAAAAAAAAC4RZSFBjGbzXrl9de14nSM9rC6EABQTqRZcjX1UJQee/RR1alTx+g4AAAAAAAAAG4RZaGBhg4dqqaNAzVx3wmjowAAUCj/OXRayTm5emPyZKOjAAAAAAAAACgGlIUGMpvNmjLtHW08F68N5xOMjgMAwHXFZeZoesRZjXruOd1+++1GxwEAAAAAAABQDCgLDdanTx917NBBE/edlNVmMzoOAADXNOXXSMnRSa+88orRUQAAAAAAAAAUE8pCg5lMJk17913tjU3St6djjI4DAMBVnUnN1MdHzunFCRPk5+dndBwAAAAAAAAAxYSysAzo3Lmzet1/n17dHymL1Wp0HAAArjBp/0l5+3jrn//8p9FRAAAAAAAAABQjysIyYuq0d3QiOU1fHDtvdBQAAAo4lJiqBSei9fqkN+Tu7m50HAAAAAAAAADFiLKwjGjZsqWGPPKIJv96Whm5eUbHAQAg36v7Tqpendv11FNPGR0FAAAAAAAAQDGjLCxD3nzrLcVn5WhmxBmjowAAIEn6JSZJK8/E6K1/T5Gzs7PRcQAAAAAAAAAUM8rCMqR+/fp6euRIvXMoSknZFqPjAADsnM1m08S9J9WqRXMNHjzY6DgAAAAAAAAASgBlYRnz2muvKdfBrMn7TxgdBQBg55afidW2Cwma+s67cnDgPxkAAAAAAACAiojv/JUx1apV0+uTJmn2b+d0MDHV6DgAADuVkZunf+4+rl7336f77rvP6DgAAAAAAAAASghlYRn0wgsvqFHDBhq146hsNpvRcQAAdmjKgUhdzMzRhzNnyWQyGR0HAAAAAAAAQAmhLCyDnJ2dNeujj7X1QoIWn7xgdBwAgJ05fild7x06o5cmTFDDhg2NjgMAAAAAAACgBFEWllHdu3fX3wcM0Pi9J5SSk2t0HACAnbDZbHp+5zHVqFlDL7/8stFxAAAAAAAAAJQwysIy7D8ffKCUPJsm7z9hdBQAgJ1YGRWnH87GasbMWXJzczM6DgAAAAAAAIASRllYhtWuXVuv/2uSPjx8VhFJaUbHAQBUcJm5eXph93Hd17OH+vbta3QcAAAAAAAAAKWAsrCMGzt2rBrUr6fndhyVzWYzOg4AoAKbFn5K0RnZmjlrtkwmk9FxAAAAAAAAAJQCysIyztnZWbM++libo+P1deRFo+MAACqokykZeufgaY1/8UU1atTI6DgAAAAAAAAASgllYTnQo0cP9e/XT+P2nFBqTq7RcQAAFdDzO4+qarVqeuWVV4yOAgAAAAAAAKAUURaWEx/MmKGkXKte33fc6CgAgApm2ekYrY6K1QcfzlTlypWNjgMAAAAAAACgFFEWlhO33367/j1limYePqutF5OMjgMAqCDis3L0zI6j6tunt/r37290HAAAAAAAAACljLKwHBkzZow63XWXnvjlN2Xk5hkdBwBQAYzecUQWR2d98ukcmUwmo+MAAAAAAAAAKGWUheWI2WzWF/Pm6Vxmjl7Zc8zoOACAcm7Z6Rh9dfKCZn30kWrUqGF0HAAAAAAAAAAGoCwsZwICAjRl6lS2IwUA3JI/bz86ZMgQo+MAAAAAAAAAMAhlYTnEdqQAgFvF9qMAAAAAAAAAJMrCcontSAEAt4LtRwEAAAAAAAD8gbKwnGI7UgDAzWD7UQAAAAAAAAB/RllYjv2xHenwXw4r3ZJrdBwAQDnA9qMAAAAAAAAA/oyysBz7YzvS85kWvbr3uNFxAABlHNuPAgAAAAAAAPgrR6MD4Nb8sR3p2LFj1auWv3rU8jM6ElAos84kaXZUcoFr9VydtLZ9LUlSttWqaZGJWhOXrhyrTUHerprU0E9+zuZrzmmz2TTzTLKWXkxVSp5VbT0r6Y2Gfqrr6pQ/JtmSp7dOJmhTYoYcZFIPPze92sBXlc2Xf3biXJZFE47GKSItR83cnfVOoL9qufz/55+OuKj+1TzU069yMf5tACUvOj1LT4cdYftRAAAAAAAAAAWwsrACeP7559Wje3c9uu2wLmZkGx0HKLRGbk7a1qF2/tfiVv+/0mnKyURtSszQjCZVtbBlDcXm5Om532KuO9//zl3SwugUvdHIV0ta15Srg4NGHLqobKs1f8z4o3E6kWHR3ObV9WmzatpzKUv/Oh6f//47kYmqVslRK9reJn9nR70bmZj/3pq4NJlkoihEuZNntSlkS4ScPb30v88+Z/tRAAAAAAAAAPkoCysABwcHLQwNlUNld4VsOaQ8q83oSEChmE0m+Ts75n/5OF1eNZiaa9W3MamaWM9XHau4qrlHJU0J8NP+lGwdSMm66lw2m00LzqfomdurqLtvZTWu7Kx3A/0Vm52nDfEZkqSTGTnampSptxv5qZWni9p7uei1Br5aHZeumOzc38dY9FBVd9V1dVK/au46mWmRJKXk5mnG6SRNauhbCn8zQPF6+8BJbbmYqMVffS1/f3+j4wAAAAAAAAAoQygLK4iqVatq0eIvtSk6QVN/jTQ6DlAoZzItCtoZpXt2n9W4I7GKzrpc2B1Ky5bFJnXydskf28DNWTUrmXUg9eqrZ89l5SrOkqdOVf7/Mx6ODmrlUUn7f//M/pRseTo6qIVHpfwxnbxd5SAp/Pcxjd2dFZacKavNpl+SMhVY2VmS9O6pRA2p6akaldi9GeXL5guJevNApCZNmqQuXboYHQcAAAAAAABAGUNZWIHcc889eu211zRp/0ltvZhkdBzgulp6VNLUAH991ry63mjoq/NZuQoJj1ZarlXxOXlyMkmejgXPJ/R1MisuJ++q88VZLl/3/cuZhr7OZsX//pn4nLz81Yt/cDSZ5OXkkD/vhHo+isy0KHj3WZ3JsmhCPR/tvpSp39Jy9FBVdz3/W6zu2X1W/zoerxxW8aKMi8vM0ZAtEerSubNeffVVo+MAAAAAAAAAKINYIlPB/Otf/9Lmn37SI1v260CfDvJzcTY6EnBVXXzc8n/fuLKzWnlUUrddZ/VDfLpcHIw7T61aJUfNaVY9/3WO1aYRhy5qWoC/PjmbrMpmk9a2q6UnD13U1xdS9OhtXoZlBa7HarNp2NYI5VZy0aLFi2U2m2/8IQAAAAAAAAB2h5WFFYyjo6MWf/WVshwrafjWCNlsrHxC+eDpaFZdVydFZVrk52yWxXb5nMA/S7Dkyd/56oWH/+8rBhP+svIwISdPfr9/xs/ZrERLwfdzbTZdslivOe+nZ5P1N+/L5ybuSs5ST7/KcnIwqYdfZe26dPXzE4Gy4P2Dp/XD2VgtWBSqmjVrGh0HAAAAAAAAQBlFWVgB1apVS/MXLtT3UbGaEXHG6DhAoaTnWXU2K1f+zmY1d68kJ5MUlvz/ZVxkRo6is/PU+k/nDf5ZLRdH+TuZC3wmLdeqX1Oz1eb3z7TxrKSUXKsO/encwx3JmbLq8raof3UyI0ffx6bp+TrekqQ8SZbfC3iLzaarb4gKGG9HbLJe2XtCEyZM0H333Wd0HAAAAAAAAABlGGVhBfXAAw9o3LhxmrDnhHbHXTI6DnCFdyITtCs5U+eyLNqXkqXnDsfIQdKD/u7ycHTQgGoemhaZoB3JmTqUmq1XjsWrjUcltfZ0yZ/jvj3ntD4+XZJkMpn02G2e+uRssjYmpOtoeo5eOhanqpXM6u53ecvTBm7OutvbVa8fj1d4arb2XsrSWycT9IB/ZVWrVHBXZpvNptePx+vl+r5yM1/+p7KtZyUtvZiqkxk5+i4mTW09r15cAkZKyrZo8M+HdMcdd+itt94yOg4AAAAAAACAMo4zCyuwKVOmaOvPmzXo50Pa2/tOeVdyMjoSkO9idp7GHo1TsiVPPk5mtfN00ZLWNeXz+3agrzTwkUOkNOa3WOVYbQrydtWkhr4F5jiVaVFqnjX/9VO1vJSZZ9O/jicoJdeqdl6V9Fmz6qrk8P8/FzE90F9vnUzQsIMX5CCph19lvdag4LyS9PXFVPk5mdXN9//PVhx9u7fGHY3VwAPRutvbTSE1PIv5bwW4NTabTSO2ReiSzPr566/l5MS/+wAAAAAAAACuj7KwAnN2dtZXS5aqfdu2GrT5oNbc21qODiwmRdnwQZOq132/koODJjX006SGftccc/TuegVem0wmPV/XW8/X9b7mZ6o4mfV+4+vfW5IG1/DU4L+Ugb7OZs1rUeOGnwWM8vaBSC0/HaPvvvtOderUMToOAAAAAAAAgHKA5qiCq1evnpZ8841+upCgl3YdMzoOAKCELD8do3/tO6G33npLffr0MToOAAAAAAAAgHKCstAO3HPPPfrggxn6IOKM5h07b3QcAEAxO5iYqke3Rmjg3/+uV1991eg4AAAAAAAAAMoRykI78dxzz+nJESP09PbfFBaTbHQcAEAxic/KUZ+fwtWocWPNnTdPJpPJ6EgAAAAAAAAAyhHKQjthMpn00ccf684OHdRvU7jOpWcZHQkAcIssVqv+vilc6Y6V9N2q71W5cmWjIwEAAAAAAAAoZygL7Yizs7O+Xb5czlW89dBP4crMzTM6EgDgFjy/44i2x17SshUrdPvttxsdBwAAAAAAAEA5RFloZ6pWraqV36/W4ZRMjdgWIZvNZnQkAMBN+PS3s/rkt7P6+JNPFBQUZHQcAAAAAAAAAOUUZaEdat26teYvWKAvT17QO+GnjI4DACiiny8kavSOIxr93HN68sknjY4DAAAAAAAAoByjLLRTAwcO1Ouvv65X9p7QyjOxRscBABTSqdQM/X3zQXXp0kX/+eADo+MAAAAAAAAAKOcoC+3YG2+8oYf69tEjPx/Szthko+MAAG4gLjNH960/IK9q1fX10qVydHQ0OhIAAAAAAACAco6y0I45ODgodPGXatO+vR7Y+KuOJKcZHQkAcA1pllw9sOGAks3OWrd+g3x9fY2OBAAAAAAAAKACoCy0c66urlr5/feqXqeueq4/oPPpWUZHAgD8hcVq1d83hetIeo7W/rheDRo0MDoSAAAAAAAAgAqCshDy8fHR2h/Xy+bhpfvWH1BStsXoSACA31ltNj2xNUKbLiZrxcqVatOmjdGRAAAAAAAAAFQglIWQJNWqVUvr1m9QdJ5JfTb+qszcPKMjAQAkvbTrmEJPXtDCRYsUHBxsdBwAAAAAAAAAFQxlIfI1adJEq3/4QXuT0jXk54PKtVqNjgQAdm36wVN6/9Bpffjhh3r44YeNjgMAAAAAAACgAqIsRAF33XWXln7zjVadjdOz23+TzWYzOhIA2KWFx6P14q5jevXVVzV69Gij4wAAAAAAAACooCgLcYUHHnhAn3/+hf539Jwm7TthdBwAsDs/nI3TE9siNOKJJ/TWW28ZHQcAAAAAAABABeZodACUTcOGDVNMTIwmTJigqq7Oeq5pHaMjAYBd2BGbrL9vOqj7e92vT+fMkclkMjoSAAAAAAAAgAqMlYW4phdffFHjxo3T6LAj+t+Rs0bHAYAKb3fcJfX8cb/a3nGHvvp6iRwd+ZkeANc2Z84cDRgwQG3atFHHjh317LPPKjIyssCY7OxsTZ48WR06dFCbNm00evRoxcfHFxgTHR2tf/zjH2rVqpU6duyod955R7m5uQXG7Ny5U/369VPz5s117733atmyZVfkCQ0NVXBwsFq0aKGBAwcqPDy8yFkAAAAAAEDpoyzENZlMJr333nt6btQo/eOXw5p77LzRkQCgwtoXn6IeP+5Xs9ZttGbtWrm5uRkdCUAZt2vXLoWEhGjJkiWaO3eucnNzNWLECGVkZOSPmTJlijZt2qQZM2Zo4cKFio2N1XPPPZf/fl5enp5++mlZLBZ99dVXmjZtmpYvX66ZM2fmjzl79qyefvppdejQQd99952GDRum1157TVu3bs0fs2bNGk2dOlWjRo3S8uXL1bhxY40YMUIJCQmFzgIAAAAAAIxBWYjrMplMmjlrlkY+/bRGbIvQwuPRRkcCgArnQEKKuv+4TwHNW+iHdevk4eFhdCQA5cDnn3+u/v37q1GjRmrcuLGmTZum6OhoRURESJJSU1P17bffauLEierYsaOaN2+uKVOmaP/+/Tpw4IAkadu2bTpx4oTee+89NWnSRF26dNHzzz+v0NBQ5eTkSJK++uor1apVSxMnTlSDBg00dOhQ9ezZU/PmzcvPMnfuXD388MMaMGCAGjZsqMmTJ8vFxUXffvttobMAAAAAAABjUBbihkwmkz76+GONeOIJPb71kBafpDAEgOJyMDFV3X/cr/qNm2rd+vXy8vIyOhKAcio1NVWS8v8dOXTokCwWizp16pQ/pkGDBqpZs2Z+QXfgwAEFBATIz88vf0xQUJDS0tJ04sSJ/DEdO3YscK+goKD8OXJychQREVHgPg4ODurUqZP2799f6CyFZTKV3y8AAK7H6OeUPX8BAHA9Rj+nSuMZx2FIKBQHBwfN+e9/lZeXp0fnz5fNJoU0rGl0LAAo135NSFH3H/fr9kYB+nHDBlWpUsXoSADKKavVqilTpqht27YKCAiQJMXHx8vJyUmenp4Fxvr6+iouLi5/zJ+LQkn5r280Ji0tTVlZWbp06ZLy8vLk6+t7xX3+OEOxMFkKy9e3/K6+9vaubHQEAEAZ5e1dWX5+5fcZV97xjAYAXIu9PKMpC1FoDg4O+t9nn8lkMunRefOUa7NpWKPbjI4FAOXSvvgU3fvjPtUNbKL1GzfKx8fH6EgAyrHJkyfr+PHjWrx4sdFRSlxCQqpsNqNT3JykpHSjIwAAyqikpHTFx6caHcNu8YwGAFxLeX5Gm0yF/4FbykIUidls1v8++0yOjo4a/tlnyrXaNCKwltGxAKBc2RN3Sff+uF+NmjXXuvXr5e3tbXQkAOXYm2++qc2bN2vRokWqXr16/nU/Pz9ZLBalpKQUWNGXkJAgf3///DHh4eEF5ouPj5ekAmP+uPbnMe7u7nJxcZGDg4PMZrMSEhIKjElISMhfkViYLIVls6ncloUAAFwPzzcAAMome3hGc2YhiszBwUGffPqpnhk5Uk9ui9B/j5w1OhIAlBs7Y5PV/cd9atyyldZv3EhRCOCm2Ww2vfnmm1q/fr3mz5+v2rVrF3i/efPmcnJyUlhYWP61yMhIRUdHq3Xr1pKk1q1b69ixYwWKvu3bt8vd3V0NGzbMH7Njx44Cc2/fvj1/DmdnZzVr1qzAfaxWq8LCwtSmTZtCZwEAAAAAAMZgZSFuioODg2Z/9JEcnZz09MyZSrHkanyLekbHAoAy7afoBD30U7hatm2nNWvXXnF2FwAUxeTJk/X999/r448/VuXKlfPP/vPw8JCLi4s8PDw0YMAATZs2TV5eXnJ3d9fbb7+tNm3a5Bd0QUFBatiwoV566SW9+OKLiouL04wZMxQSEiJnZ2dJ0uDBgxUaGqp3331XAwYM0I4dO/TDDz9ozpw5+VmGDx+uCRMmqHnz5mrZsqXmz5+vzMxM9e/fPz/TjbIAAAAAAABjUBbipplMJs2YMUMeHh568d//1sWMHL17Z4AcTCajowFAmbMk8qKGbjmo4Hvu0TffLpO7u7vRkQCUc19++aUk6dFHHy1wferUqfkl3SuvvCIHBweNGTNGOTk5CgoK0qRJk/LHms1mffrpp3rjjTc0aNAgubq6ql+/fhozZkz+mNq1a2vOnDmaOnWqFixYoOrVq+vtt9/W3XffnT+mV69eSkxM1MyZMxUXF6cmTZros88+y9+GtDBZAAAAAACAMUw2mz3stoqSNnv2bI0ZM0YhDWroi7ubycmBHW4B4A+zIs7o+Z1HFTJkiD7/4ov81ToAgKKLj08tt+dFhIcfUPfuneU+ZIgcq1Y1Og4AoAzIjY1V2uLF2rBhi1q2bG10HLv1xzP6x6EPqGU1X6PjAADKgPCYBPVYtLpcP6NNJsnPz6NQY2l0UCyee+45ffXVV1pyJk69NxxQmiXX6EgAYDibzaZX9xzXmB1HNHbsWM1fsICiEAAAAAAAAECZQlmIYvPwww/rh7VrtT0xQ8Fr9ykuM8foSABgmFyrVU9tO6wpv0bqvffe0/Tp0+XAqmsAAAAAAAAAZQzftUSxCg4O1s9btyrKZtbfftij06mZRkcCgFKXkZunAT+Fa/7JC1qwYIHGjx9vdCQAAAAAAAAAuCrKQhS7Nm3a6JewHbJW8VWnNXsUnphqdCQAKDWJ2Tnq8eM+bYi9pJWrVunRRx81OhIAAAAAAAAAXBNlIUpEgwYN9EvYDtVo2Eh3r9mjny8kGh0JAErcufQs3b1mr45k2fTTps26//77jY4EAAAAAAAAANdFWYgSU61aNW3eslV3dPqbeqzbp/nHzxsdCQBKzJ64S7pr9W6luXnol7AwdejQwehIAAAAAAAAAHBDlIUoUR4eHlqzdq0eHTZMj285pPE7jyrPajM6FgAUqy9PXtDda/botsCmCtu5S4GBgUZHAgAAAAAAAIBCoSxEiXN2dtb/PvtMM2fO1IzfovTghv1KzrYYHQsAblme1aaXdx/TkM3hGjh4sH7eulU1a9Y0OhYAAAAAAAAAFBplIUqFyWTS6NGjtXbtOu1MyVGH1bt1NDnd6FgAcNNScnLVd+MBvXvojKZPn675CxbIxcXF6FgAAAAAAAAAUCSUhShV3bt31649e2SuWkMdVu/SD2fjjI4EAEV2IiVdd63erW1JmVq9erXGjRsnk8lkdCwAAAAAAAAAKDLKQpS6hg0baseu3QoKvkcPrt+v9w+els3GOYYAyocN5xN05/e7lefjr527d+u+++4zOhIAAAAAAAAA3DTKQhjC09NT361cpZcmTND4XUc1bMshZeXmGR0LAK7JZrNpZsQZ3ffjPt15d2ft3L1HgYGBRscCAAAAAAAAgFtCWQjDmM1mTZ06VYsXL9bSswnqsnavzqVnGR0LAK6QmZunJ7cd1vM7juiFf/5Tq9f8oCpVqhgdCwAAAAAAAABuGWUhDPfII49o67Ztija7qPXKnfo+KtboSACQ70hymjqs3q3FZ+I0b948TZ8+XWaz2ehYAAAAAAAAAFAsKAtRJrRv314Hwg+qU/A96r1+v8btPKKcPKvRsQDYufnHz6vdyl2y+FTVrt27NWzYMKMjAQAAAAAAAECxoixEmeHr66vvVq7SBx98oFlHzitozR5FpmQYHQuAHUqz5Oqxnw/q8S2HNCgkRHv27VeLFi2MjgUAAAAAAAAAxY6yEGWKyWTSCy+8oO1hYUpw81SblTu1JPKi0bEA2JEDCSlqt2qXlkUnaeHChfpi7lxVrlzZ6FgAAAAAAAAAUCIoC1EmtW/fXvsO/Kr7+vTVoE2/auQvh5WZm2d0LAAVmM1m08eHo3TX97vkVruu9u0/oKFDhxodCwAAAAAAAABKFGUhyiwvLy999fXXmjNnjuafilWH1bt1JDnN6FgAKqDkbIsGbgrXqLDf9OQ/nlbYzl0KCAgwOhYAAAAAAAAAlDjKQpRpJpNJ//jHP7Rr925ZfKqq3cpd+uLYOdlsNqOjAaggwmKS1WbVLm2IT9e3336r2R99JBcXF6NjAQAAAAAAAECpoCxEudCiRQvt2bdfg0JCNGJrhHpvOKDz6VlGxwJQjmXm5unFXUcVtHqXqgc20YHwcPXv39/oWAAAAAAAAABQqigLUW5UrlxZX8ydq++++057s2xqtiJM84+fZ5UhgCLbEZusNit3aeaR85oydaq2/rJddevWNToWAAAAAAAAAJQ6ykKUO3369FHEb0fUe8BAPb7lkHpvOKBoVhkCKIQ/VhP+7ftd8moQoP0HDmjChAlydHQ0OhoAAAAAAAAAGIKyEOWSj4+PFi5a9KdVhjtYZQjgunbEJqvtqv9fTfhLWJiaNm1qdCwAAAAAAAAAMBRlIcq1P1YZPjjg76wyBHBVWbl5eun31YSe9VlNCAAAAAAAAAB/RlmIcu9qqwwXsMoQgH4/m3DVLn3IakIAAAAAAAAAuCrKQlQYf15lOGzLIfVav18nUtKNjgXAAMnZFj0f9hurCQEAAAAAAADgBigLUaH8scpw1apVOmJyUbPlYXptz3Fl5OYZHQ1AKbDabJp//LwCl4fpi9Pxeve991hNCAAAAAAAAADXQVmICunBBx/U4SNHNfGVVzX9t3NqsjxMy07HsDUpUIEdSEjR3Wv26PEth3RP7746cuyYxo0bx2pCAAAAAAAAALgOykJUWK6urpo8ebIiDh9Wy6AuGrDxgO5bv1/HLrE1KVCRJGdbNDrsN7X7boeSq/jrp59+0uIvv9Rtt91mdDQAAAAAAAAAKPMoC1HhNWjQQKtWr9bKlSt13MFVzZeH6ZU9x5RuyTU6GoBbYLXZNPfYeQUs2675ZxL03vTpOhB+UN26dTM6GgAAAAAAAACUG5SFsBu9e/dWxG9H9Orrr+uDI9FqsmKHvjl1ka1JgXJoX3yK/rZ6j57Yekg9Huqvo8ePa+zYsXJycjI6GgAAAAAAAACUK5SFsCuurq6aNGmSDv/2m9p06aaBP/2q7uv2aU/cJaOjASiE8+lZempbhNqv3KE032ravHmzFoWGqkaNGkZHAwAAAAAAAIByibIQdqlevXr6buUqrV69Whc9fHXHyh0a+NOvOprMeYZAWZSYnaMJu46q4be/aHlsumbMmKF9B35Vly5djI4GAAAAAAAAAOUaZSHsWq9evRR+KEJz587VzhwHNVu+Xf/YFqHz6VlGRwMgKSM3T9N+jVSDb7bro5MxeunlVxR5+rTGjBnDlqMAAAAAAAAAUAwoC2H3zGazHn/8cR07cVLvTZ+uZbHpavjNL5qw66iSsi1GxwPsksVq1ZwjZ9Xw2+3614FTGvrkUzoZeUqTJ0+Wp6en0fEAAAAAAAAAoMKgLAR+5+Lion/+8586eeqUXnz5ZX10Mkb1v/lF036NVEZuntHxALtgtdm0JPKimq3YoWe2/6bgPg/pyNGjmjVrlqpVq2Z0PAAAAAAAAACocCgLgb/w8vLSm2++qZORpxQy4km9vj9SDb/drjlHzionz2p0PKBCstls+vFcvO78frcGbfpVje76m/bv369FoaGqX7++0fEAAAAAAAAAoMKiLASuoVq1apo9e7aOHjumbr37auQvh9Xg2+368NAZpVtyjY4HVAhWm03LT8eow/e71XPdXjnXC9DPP/+s1Wt+UKtWrYyOBwAAAAAAAAAVHmUhcAP169dX6OLFOnTokLr17adxe46rztJf9Nb+k5xpCNwki9Wq+cfPq/mKHeq/8YDcAptr7dq1+iUsTJ07dzY6HgAAAAAAAADYDcpCoJCaNWumBQsX6sSJExr8xAhNiTir25ds1Yu7jupCRrbR8YByISM3TzMjzqjBt9v1+JZDatjxbm3fvl2bt2xRz549ZTKZjI4IAAAAAAAAAHaFshAoorp162r27Nk6feaMRo8br/+eilfdJVv19C8ROpmSYXQ8oExKzrbo3wdOqs7SbRq7+5g6P9hX4eHhWvn99+rYsaPR8QAAAAAAAADAblEWAjepWrVqmjJliqLOndPkt9/WivhMBXyzTY9sDteBhBSj4wFlQnR6libsOqrbl27TWwejNHDYcB0/fkKLQkPVokULo+MBAAAAAAAAgN2jLARukZeXlyZOnKjTUWc1a/Zs7bA4qs2KMAWt2a3FJ6OVnWc1OiJQqmw2mzZfSNTDm35VnSVb9UlknJ594Z86feaMPv74Y9WrV8/oiAAAAAAAAACA31EWAsXE1dVVzz77rI6dOKlvvvlGlQJbKmTzQd2+dJte3XNcZ1IzjY4IlKhLORbNPnxGzVbsULc1u3XQ7KH/zJihs+fPa9q0aapevbrREQEAAAAAAAAAf+FodACgonFyctKAAQM0YMAA/fbbb/r00081+4svNC38lB68vaqebVxL997mKweTyeioQLEIT0zVx79FaVFkjLLyrOr30EP6aNQode3aVSb+dw4AAAAAAAAAZRorC4ES1KRJE3344Yc6f+GCPp0zR2c8/XXfur0KWBam9w+eVkJWjtERgZuSnWfV4pPRClqzW62Wb9fKpByNf/kVnTlzRku/+UbdunWjKAQAAAAAAACAcoCyECgF7u7ueuqpp7T/13D98ssvuqtXb72yP1K1lmzVoz8f1I/n4pVr5WxDlG02m00HElL04q6jun3pNoVsPijngBZaunSpzpw9pzfeeEO33Xab0TEBAAAAAAAAAEXANqRAKTKZTOrUqZM6deqk/3zwgb744gvN/ewzLVq3V9Xd3fRIHX+FNKyhtr6erMpCmRGVlqnFJy9o0alYRSRckp+Pt4aMeEojR45UkyZNjI4HAAAAAAAAALgFlIWAQapWraqJEydqwoQJ2rt3rxYtWqTQ0EX6IGKHGvt4ami9qhrSoIbqebgZHRV2KCnbom9OXdSiUzHaEp0gV5dKeuihfnpn6FD16NFDTk5ORkcEAAAAAAAAABQDykLAYCaTSe3bt1f79u01ffp0bdy4UYsWLtTU5cv02t4T+lsNX4XUq6qH61WXr4uz0XFRgWXnWbX6bJwWnbyg1WfjlWuzqXtwsBZMe0wPPfSQPDw8jI4IAAAAAAAAAChmlIVAGeLo6KiePXuqZ8+eSk9P13fffadFCxdo9PoNen7nUfW4zU8P3e6vB2v7q7pbJaPjogJIs+Rq/fkErYyK1YqzCUrOyla7Nq01bcwEDR48WDVq1DA6IgAAAAAAAACgBFEWAmVU5cqVNWTIEA0ZMkQxMTH6+uuv9c2Sr/X09h2yWiN0ZzVv9anlqz63V1Vzb3fOOEShnU/P0qqoOK08G6efLiQqOzdPTQMDNWrccIWEhHAOIQAAAAAAAADYEcpCoByoVq2axowZozFjxig+Pl5r1qzRqpUrNe2HH/Ta3hOq6+WuPrf5qE+dqupc3VtODg5GR0YZYrPZ9GtiqlZGxWrluUTtjU2S2WxW56AgTRv7kHr37q0GDRoYHRMAAAAAAAAAYADKQqCc8fPz02OPPabHHntM2dnZ2rx5s1auXKlly5dr5uE98nKppPtq+qh3bT/dU9OX7UrtVJolV1svJun7s3FadT5RZ1PS5enurvt79dLYvn11//33y9vb2+iYAAAAAAAAAACDURYC5VilSpXyzzicPXu2Dhw4oJUrV2rliuUa+vOvkqTGPp7qVtVLXWv4qEsNb1VzpTysiNItufolJlmbLiRqc+wl7Y5NUp7Vpjq1aumhYU+oT58+6ty5s5ydnY2OCgAAAAAAAAAoQygLgQrCZDKpTZs2atOmjSZNmqQLFy7o559/1qZNm7Rx40Z9sulyedjU10tdq3qqWw0fdanuI39XyqPyKCM3T7/EJGnzhSRtjr2kXTFJyrVaVdXPV92Cu2tYt27q2rWrAgMDOc8SAAAAAAAAAHBNlIVABVWjRg0NHjxYgwcPliRFR0dr8+bN2rx5s9Zv3KiPf7pcHjbz9VK3al76W9UqaufnqQaebnKgXCpzLmZka298inbEJWtTzCXtik2SJc8qf18fde0WrJnBweratasaN25MOQgAAAAAAAAAKDTKQsBO1KxZU0OGDNGQIUMkSefOndPPP/+szZs364cNGzR7c7gkybOSs9r5eaqdj7va+XpSIBrgj2JwT/wl7U1I1d6kdEWnpkuS/Hy81bVbsD7o1k3dunVTkyZNKAcBAAAAAAAAADeNshCwU7Vq1VJISIhCQkIkSfHx8dq7d+/lrz17tHT3Lk0/eO0Csb6Hm8wOlFS3wmaz6UJGtvYnpF61GPSp4qX2d9yhYe3vULt27dSuXTvVqVOHchAAAAAAAAAAUGwoCwFIkvz8/NSzZ0/17Nkz/1p8fLz27dunPXv2XFEgOpvNaljFXQHuLgrwdFWAV2UFeFVWoJeb/F2cKbT+JCUnV8dT0nXsUoaOXkrXsUvpOpaerWPJ6UrNzpEk+XpXUbv27SkGAQAAAAAAAAClirIQwDX5+fmpR48e6tGjR/61+Ph4HThwQEePHtXRo0d17OgRLT1yRKcPHZbNZpMkeblUulweuldSoFdlNfR0U023SqrhVkk13SrJ3ali/dOTnWfVxYxsRWdk60JmtiJTM3TsUoaOpWbpaEqGLqZl5I+t7u+vgMAAtWncRIMCAhQQEKBWrVpRDAIAAAAAAAAADFGxvmMPoMT5+fmpe/fu6t69e4HrWVlZioyMvFwgHjt2+evIb/rxyFHFJZ4oMNbd2Uk13F1V08VJNVyc8ovEGq6Xy0R/F2d5ODnKw9ksDydHOTk4lOYfUXlWm9Jyc5VqyVOaJVcJ2RZd+KMM/OPXrBxdyMpVdHqWEjOzCv753NwU0KihAts2U9ffC8GAgAA1atRIXl5epfpnAQAAAAAAAADgeigLARQLFxcXNW3aVE2bNr3ivdTUVF24cEEXLlxQdHR0wV/PndP+8+cVfeq8UtPTrzp3JUez3J2d5OHsJA8nszwczXI3O8jD0UEeTma5ms1yMEkOJtPlX2WSg8kkk0my2myy2n7/VZd/zc6zXi4Cc/OUmmdTam6eUi15Ss2xKC0nVxkWy9VzODurRrWqqlmztmrUqqXGNWuqRo0aqvmXX318fFglCAAAAAAAAAAoFygLAZQ4Dw8PeXh4KCAg4Lrj0tLSdOHCBcXFxSktLU2pqalKTU295u9TU1J0ISVFmZkZslqtl7/yfv+yWmW1WWU2O8psNsvBwSH/y8nNWR6envLw8lJdDw+5u7vnZ/zz7/947ePjoxo1asjb25sSEAAAAAAAAABQoVAWAigz3N3d1ahRIzVq1MjoKAAAAAAAAAAA2IXSPQgMAAAAAAAAAAAAQJlBWQgAAAAAAAAAAADYKcpCAAAAAAAAAAAAwE5RFgIAAAAAAAAAAAB2irIQAAAAAAAAAAAAsFOUhQAAAAAAAAAAAICdoiwEAAAAAAAAAAAA7BRlIQAAAAAAAAAAAGCnKAsBAAAAAAAAAAAAO0VZCAAAAAAAAAAAANgpykIAAAAAAAAAAADATlEWAgAAAAAAAAAAAHaKshAAAAAAAAAAAACwU5SFAAAAAAAAAAAAgJ2iLAQAAAAAAAAAAADsFGUhgBIVGBioDRs2GB0DAAAAAAAAAABchaPRAQCUb3Fxcfr000+1efNmxcTEyNfXV02aNNGwYcPUsWNHo+MBAAAAAAAAAIDroCwEcNPOnTunRx55RJ6ennrppZcUEBCg3Nxcbdu2TZMnT9batWtL5L45OTlydnYukbkBAAAAAAAAALAnbEMK4KZNnjxZJpNJS5cuVc+ePVWvXj01atRIw4cP15IlS/LHJSUladSoUWrVqpV69OihjRs35r+3bNkytW/fvsC8GzZsUGBgYP7rWbNmqW/fvlq6dKmCg4PVsmVLSZe3OF26dOk15wYAAAAAAAAAANdHWQjgpiQnJ2vr1q0KCQmRm5vbFe97enrm/3727Nm6//77tXLlSnXu3Fnjx49XcnJyke4XFRWldevWafbs2VqxYkWxzg0AAAAAAAAAgL2iLARwU6KiomSz2VS/fv0bju3Xr58efPBB1alTR2PHjlVGRobCw8OLdD+LxaJ3331XTZs2VePGjYt1bgAAAAAAAAAA7BVlIYCbYrPZCj32z1uKurm5yd3dXYmJiUW6X82aNeXj41MicwMAAAAAAAAAYK8oCwHclDp16shkMikyMvKGY52cnAq8NplMslqtkiQHB4crikeLxXLFHK6urkWeGwAAAAAAAAAAXB9lIYCbUqVKFQUFBSk0NFQZGRlXvJ+SklKoeby9vZWenl5gjiNHjhRbTgAAAAAAAAAAcG2UhQBu2qRJk2S1WjVw4ECtW7dOp0+f1smTJ7VgwQINGjSoUHO0atVKrq6u+s9//qOoqCitWrVKy5YtK+HkAAAAAAAAAABAoiwEcAtq166tZcuWqUOHDnrnnXf04IMPavjw4QoLC9Mbb7xRqDmqVKmi9957T1u2bFHv3r21evVqjR49umSDAwAAAAAAAAAASZLJ9tfDwgAAAACgjIqPT1V5/X8w4eEH1L17Z7kPGSLHqlWNjgMAKANyY2OVtnixNmzYopYtWxsdx2798Yz+cegDalnN1+g4AIAyIDwmQT0WrS7Xz2iTSfLz8yjUWFYWAgAAAAAAAAAAAHaKshAAAAAAAAAAAACwU5SFAAAAAAAAAAAAgJ2iLAQAAAAAAAAAAADsFGUhAAAAAAAAAAAAYKcoCwEAAAAAAAAAAAA7RVkIAAAAAAAAAAAA2CnKQgAAAAAAAAAAAMBOURYCAAAAAAAAAAAAdoqyEAAAAAAAAAAAALBTlIUAAAAAAAAAAACAnaIsBAAAAAAAAAAAAOwUZSEAAAAAAAAAAABgpygLAQAAAAAAAAAAADtFWQgAAAAAAAAAAADYKcpCAAAAAAAAAAAAwE5RFgIAAAAAAAAAAAB2irIQAAAAAAAAAAAAsFOUhQAAAAAAAAAAAICdoiwEAAAAAAAAAAAA7BRlIQAAAAAAAAAAAGCnKAsBAAAAAAAAAAAAO0VZCAAAAAAAAAAAANgpykIAAAAAAAAAAADATlEWAgAAAAAAAAAAAHaKshAAAAAAAAAAAACwU5SFAAAAAAAAAAAAgJ2iLAQAAABQakJDQxUcHKwWLVpo4MCBCg8PNzoSAAAAAAB2jbIQAAAAQKlYs2aNpk6dqlGjRmn58uVq3LixRowYoYSEBKOjAQAAAABgtygLAQAAAJSKuXPn6uGHH9aAAQPUsGFDTZ48WS4uLvr222+NjgYAAAAAgN2iLAQAAABQ4nJychQREaFOnTrlX3NwcFCnTp20f/9+A5MBAAAAAGDfHI0OAAAAAKDiS0pKUl5ennx9fQtc9/X1VWRkZKHncXCQbLbiTlc6zGazPDw85JaVJYfUVKPjAADKAGtWlkweHjKbzXLgR/oN88cz+nSmReZLGUbHAQCUAaczLfIo589ok6nwYykLAQAAAJQbPj4eRke4aV27dlJKSorRMQAAwF/wjAYA/FWwpKeMDlGKymkfCgAAAKA88fb2ltlsVkJCQoHrCQkJ8vPzMygVAAAAAACgLAQAAABQ4pydndWsWTOFhYXlX7NarQoLC1ObNm0MTAYAAAAAgH1jG1IAAAAApWL48OGaMGGCmjdvrpYtW2r+/PnKzMxU//79jY4GAAAAAIDdoiwEAAAAUCp69eqlxMREzZw5U3FxcWrSpIk+++wztiEFAAAAAMBAJpvNZjM6BAAAAAAAAAAAAIDSx5mFAAAAAAAAAAAAgJ2iLAQAAAAAAAAAAADsFGUhAAAAAAAAAAAAYKcoCwEAAAAAQJkwceJEPfvss0bHAACgQgoMDNSGDRuMjgGgDKIsBAAAAADATkycOFGBgYH673//W+D6hg0bFBgYWOh5goODNW/evCLd22az6euvv9bAgQPVpk0btW/fXv3799e8efOUmZlZpLkAAMCV4uLi9NZbb+mee+5R8+bN1aVLF40cOVJhYWFGRwNQxjkaHQAAAAAAAJSeSpUq6X//+58GDRokLy+vUrvviy++qPXr1+uZZ57R66+/Lh8fHx05ckTz589XrVq11L179xK7t8VikZOTU4nNDwCA0c6dO6dHHnlEnp6eeumllxQQEKDc3Fxt27ZNkydP1tq1a0vkvjk5OXJ2di6RuQGUHlYWAgAAAABgRzp16iQ/Pz/NmTPnmmPWrVunBx54QM2bN1dwcLC++OKL/PceffRRnT9/XlOnTlVgYGChViSuWbNGq1at0vvvv6+RI0eqZcuW+QXhggUL1KFDhwLjP//8cwUFBalDhw6aPHmyLBZL/ntX20Ktffv2WrZsmaTL3ywNDAzUmjVrNHToULVo0UKrVq3K3+L0enMDAFBeTZ48WSaTSUuXLlXPnj1Vr149NWrUSMOHD9eSJUvyxyUlJWnUqFFq1aqVevTooY0bN+a/t2zZMrVv377AvH/dfWDWrFnq27evli5dquDgYLVs2VLS5efz0qVLrzk3gLKNshAAAAAAADvi4OCgsWPHatGiRbp48eIV7x86dEgvvPCCevXqpVWrVum5557Thx9+mF/GzZo1S9WrV9eYMWO0bds2bdu27Yb3XLVqlerVq3fV1YMmk0keHh75r3fu3KmoqCjNnz9f06ZN0/Lly7V8+fIi/zmnT5+uxx57TGvWrFFQUFCxzg0AQFmSnJysrVu3KiQkRG5uble87+npmf/72bNn6/7779fKlSvVuXNnjR8/XsnJyUW6X1RUlNatW6fZs2drxYoVxTo3AGNQFgIAAAAAYGfuvfdeNWnSRDNnzrzivblz56pjx44aNWqU6tWrp/79+yskJESff/65JKlKlSoym82qXLmy/P395e/vf8P7nTlzRvXq1StUNi8vL/3rX/9SgwYN1K1bN3Xp0uWmzloaNmyYevToodq1a6tq1arFOjcAAGVJVFSUbDab6tevf8Ox/fr104MPPqg6depo7NixysjIUHh4eJHuZ7FY9O6776pp06Zq3Lhxsc4NwBiUhQAAAAAA2KHx48drxYoVOnnyZIHrkZGRatu2bYFrbdu21ZkzZ5SXl3dT97LZbIUe27BhQ5nN5vzX/v7+SkhIKPI9mzdvXmJzAwBQlhTlOfvnLUXd3Nzk7u6uxMTEIt2vZs2a8vHxKZG5ARiDshAAAAAAADt0xx13KCgoSO+//36J36tu3bqKjIws1FhHR8cCr00mU4Fvgv71tSTl5uZeMc/VtmG70dwAAJRHderUkclkKtSz1snJqcBrk8kkq9Uq6fJW5X99Ll7tbF9XV9cizw2gbKMsBAAAAADATo0bN06bNm3S/v3786/Vr19f+/btKzBu3759qlu3bv6qPCcnpyJ986937946ffq0NmzYcMV7NptNqamphZ7Lx8dHsbGx+a9Pnz6tzMzMQn8eAICKpkqVKgoKClJoaKgyMjKueD8lJaVQ83h7eys9Pb3AHEeOHCm2nADKLspCAAAAAADsVGBgoHr37q2FCxfmX3viiScUFhamjz76SKdOndLy5csVGhqqJ554In/Mbbfdpt27dysmJqZQ24vdf//96tWrl8aNG6dPP/1UBw8e1Pnz57Vp0yY9/vjj2rlzZ6Ez33XXXQoNDdXhw4d18OBBTZo06YqVDAAA2JtJkybJarVq4MCBWrdunU6fPq2TJ09qwYIFGjRoUKHmaNWqlVxdXfWf//xHUVFRWrVqlZYtW1bCyQGUBZSFAAAAAADYsTFjxhRYJdisWTPNmDFDa9asUe/evTVz5kyNGTNG/fv3L/CZ8+fPq3v37urYseMN72EymfT+++9r4sSJ2rBhgx599FH16dNHs2bN0j333KOgoKBC550wYYJq1KihkJAQjR8/Xk888YRcXFyK9ocGAKCCqV27tpYtW6YOHTronXfe0YMPPqjhw4crLCxMb7zxRqHmqFKlit577z1t2bJFvXv31urVqzV69OiSDQ6gTDDZ2JwfAAAAAAAAAAAAsEusLAQAAAAAAAAAAADslKPRAQAAAAAAQPn25JNPau/evVd97+mnn9bIkSNLOREAAACAwmIbUgAAAAAAcEtiYmKUlZV11fe8vLxUpUqV0g0EAAAAoNAoCwEAAAAAAAAAAAA7xZmFAAAAAAAAAAAAgJ2iLAQAAAAAAAAAAADsFGUhAAAAAAAAAAAAYKcoCwEAAAAAAAAAAAA7RVkIAAAAAAAAAAAA2CnKQgAAAAAAAMAOxMXF6a233tI999yj5s2bq0uXLho5cqTCwsIkScHBwZo3b94Vn5s1a5b69u2b/3rixIl69tlnrxi3c+dOBQYGKiUlRZK0bNkyBQYGKjAwUI0bN1ZQUJBeeOEFRUdHF/jco48+qsDAQK1evbrA9Xnz5ik4OPhW/9gAAOAGKAsBAAAAAACACu7cuXPq37+/duzYoZdeekmrVq3SZ599pg4dOmjy5Mkldl93d3dt27ZNW7Zs0cyZM3Xq1Ck9//zzV4yrVKmSZsyYIYvFUmJZAADA1TkaHQAAAAAAAABAyZo8ebJMJpOWLl0qNze3/OuNGjXSgAEDSuy+JpNJ/v7+kqSqVavq73//u95++22lpaXJ3d09f9wDDzygn376SUuWLFFISEiJ5QEAAFdiZSEAAAAAAABQgSUnJ2vr1q0KCQkpUBT+wdPTs1RyJCQkaP369TKbzXJwKPhtSXd3dz3zzDP6+OOPlZGRUSp5AADAZawsBAAAAAAAACqwqKgo2Ww21a9f/4Zjp0+frg8//LDANYvFogYNGtzUvVNTU9WmTRvZbDZlZmZKunxG4dVKyyFDhmjBggWaO3euRo0adVP3AwAARUdZCAAAAAAAAFRgNput0GNHjBih/v37F7i2cOFC7d69+6buXblyZS1fvly5ubnasmWLVq1apX/+859XHevs7KwxY8borbfe0iOPPHJT9wMAAEXHNqQAAAAAAABABVanTh2ZTCZFRkbecKy3t7fq1KlT4MvLy6vAGHd3d6Wmpl7x2dTUVJnNZrm6uuZfc3BwUJ06ddSgQQMNHz5crVq10htvvHHN+/fp00c1a9bUJ598Uvg/IAAAuCWUhQAAAAAAAEAFVqVKFQUFBSk0NPSq5wGmpKQUab569erpxIkTysnJKXA9IiJCtWrVkpOT0zU/+49//EM//PCDIiIirvq+g4ODxo0bpy+//FLnz58vUi4AAHBzKAsBAAAAAACACm7SpEmyWq0aOHCg1q1bp9OnT+vkyZNasGCBBg0aVKS5evfuLZPJpJdeekmHDh3SmTNn9M0332j+/PkaPnz4dT9bo0YNde/eXTNnzrzmmK5du6pVq1b6+uuvi5QLAADcHMpCAAAAAAAAoIKrXbu2li1bpg4dOuidd97Rgw8+qOHDhyssLOy624Jejaenp0JDQ5Wbm6tnnnlGDz30kBYuXKiXX35ZgwcPvuHnH3/8cW3evFnh4eHXHDN+/HhlZ2cXKRcAALg5JltRTjgGAAAAAAAAAAAAUGGwshAAAAAAAAAAAACwU5SFAAAAAAAAAAAAgJ2iLAQAAAAAAAAAAADsFGUhAAAAAAAAAAAAYKcoCwEAAAAAAAAAAAA7RVkIAAAAAAAAAAAA2CnKQgAAAAAAAAAAAMBOURYCAAAAAAAAAAAAdoqyEAAAAAAAAAAAALBTlIUAAAAAAAAAAACAnaIsBAAAAAAAAAAAAOwUZSEAAAAAAAAAAABgp/4PCH+/u0BYMNAAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"# Separate the features and target variable\n",
"X = train_df.drop('CHURN', axis=1)\n",
"y = train_df['CHURN']\n",
"\n",
"# Perform oversampling\n",
"oversampler = RandomOverSampler(random_state=42)\n",
"X_balanced, y_balanced = oversampler.fit_resample(X, y)\n",
"\n",
"# Create a new DataFrame with balanced data\n",
"df_balanced = pd.concat([X_balanced, y_balanced], axis=1)\n",
"\n",
"# Calculate the percentage of positive and negative values in the balanced dataset\n",
"churn_distribute_balanced = df_balanced['CHURN'].value_counts()\n",
"plot_pie_balanced = [\n",
" churn_distribute_balanced[0] / churn_distribute_balanced.sum() * 100,\n",
" churn_distribute_balanced[1] / churn_distribute_balanced.sum() * 100\n",
"]\n",
"\n",
"# Create the figure and axes for subplots\n",
"fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 7))\n",
"\n",
"# Plot the pie chart on the first subplot\n",
"axes[0].pie(\n",
" plot_pie_balanced,\n",
" labels=['Not_Churn', 'Churn'],\n",
" autopct='%1.2f%%',\n",
" explode=(0.1, 0),\n",
" colors=palette[:2],\n",
" wedgeprops={'edgecolor': 'black', 'linewidth': 1, 'antialiased': True}\n",
")\n",
"axes[0].set_title('Balanced Customer Not-Churn and Churn %')\n",
"\n",
"# Plot the countplot on the second subplot\n",
"sns.countplot(data=df_balanced, x='CHURN', palette=palette[:2], edgecolor='black', ax=axes[1])\n",
"axes[1].set_xticklabels(['Not_Churn', 'Churn'])\n",
"axes[1].set_title('Balanced Customers Not_Churn and Churn')\n",
"\n",
"# Add labels to the countplot bars\n",
"for container in axes[1].containers:\n",
" axes[1].bar_label(container)\n",
"\n",
"# Adjust spacing between subplots\n",
"plt.tight_layout()\n",
"\n",
"# Display the plot\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "_tVRN09Ex-CJ"
},
"outputs": [],
"source": [
"def count_duplicate_rows(data):\n",
" \"\"\"Count the number of duplicate rows in a Pandas DataFrame.\n",
" data: The Pandas DataFrame to check for duplicate rows.\n",
" Returns: The number of duplicate rows in the DataFrame.\n",
" \"\"\"\n",
" duplicate_rows = data.duplicated()\n",
" return duplicate_rows.sum()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "F8mi5IqAx-CK",
"outputId": "cb3af848-167c-41c3-ceb1-5a98bf2a0bb8"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"990779"
]
},
"metadata": {},
"execution_count": 15
}
],
"source": [
"count_duplicate_rows(df_balanced)\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 617
},
"id": "Ef16kfW5x-CL",
"outputId": "9ae14e98-39ba-40a4-f4cc-cfaf78ba1e6a"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" REGION TENURE MONTANT FREQUENCE_RECH REVENUE \\\n",
"0 DAKAR K > 24 month 20000.0 47.0 21602.0 \n",
"1 DAKAR K > 24 month 3000.0 7.0 3000.0 \n",
"2 DAKAR K > 24 month 3000.0 7.0 3000.0 \n",
"3 SAINT-LOUIS K > 24 month 7900.0 19.0 7896.0 \n",
"4 DAKAR K > 24 month 12350.0 21.0 12351.0 \n",
"... ... ... ... ... ... \n",
"1077016 DAKAR K > 24 month 14800.0 34.0 16189.0 \n",
"1077017 DAKAR K > 24 month 2800.0 9.0 2950.0 \n",
"1077020 TAMBACOUNDA K > 24 month 2500.0 5.0 2500.0 \n",
"1077022 DAKAR K > 24 month 600.0 1.0 600.0 \n",
"1077023 FATICK K > 24 month 1500.0 4.0 1499.0 \n",
"\n",
" ARPU_SEGMENT FREQUENCE DATA_VOLUME ON_NET ORANGE TIGO ZONE1 \\\n",
"0 7201.0 52.0 8835.0 3391.0 396.0 185.0 1.0 \n",
"1 1000.0 9.0 258.0 27.0 29.0 6.0 1.0 \n",
"2 1000.0 9.0 258.0 27.0 29.0 6.0 1.0 \n",
"3 2632.0 25.0 9385.0 27.0 46.0 20.0 1.0 \n",
"4 4117.0 29.0 9360.0 66.0 102.0 34.0 1.0 \n",
"... ... ... ... ... ... ... ... \n",
"1077016 5396.0 38.0 17112.0 32.0 142.0 13.0 7.0 \n",
"1077017 983.0 9.0 258.0 19.0 42.0 0.0 1.0 \n",
"1077020 833.0 5.0 0.0 15.0 77.0 6.0 1.0 \n",
"1077022 200.0 1.0 591.0 11.0 37.0 5.0 1.0 \n",
"1077023 500.0 5.0 1265.0 30.0 4.0 6.0 1.0 \n",
"\n",
" ZONE2 MRG REGULARITY FREQ_TOP_PACK CHURN \n",
"0 2.0 NO 62 30.0 0 \n",
"1 2.0 NO 3 5.0 0 \n",
"2 2.0 NO 1 5.0 0 \n",
"3 2.0 NO 61 7.0 0 \n",
"4 2.0 NO 56 11.0 0 \n",
"... ... .. ... ... ... \n",
"1077016 2.0 NO 62 15.0 0 \n",
"1077017 2.0 NO 46 3.0 0 \n",
"1077020 2.0 NO 34 2.0 0 \n",
"1077022 2.0 NO 16 1.0 0 \n",
"1077023 0.0 NO 50 2.0 0 \n",
"\n",
"[759283 rows x 17 columns]"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" REGION | \n",
" TENURE | \n",
" MONTANT | \n",
" FREQUENCE_RECH | \n",
" REVENUE | \n",
" ARPU_SEGMENT | \n",
" FREQUENCE | \n",
" DATA_VOLUME | \n",
" ON_NET | \n",
" ORANGE | \n",
" TIGO | \n",
" ZONE1 | \n",
" ZONE2 | \n",
" MRG | \n",
" REGULARITY | \n",
" FREQ_TOP_PACK | \n",
" CHURN | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 20000.0 | \n",
" 47.0 | \n",
" 21602.0 | \n",
" 7201.0 | \n",
" 52.0 | \n",
" 8835.0 | \n",
" 3391.0 | \n",
" 396.0 | \n",
" 185.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 62 | \n",
" 30.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 3000.0 | \n",
" 7.0 | \n",
" 3000.0 | \n",
" 1000.0 | \n",
" 9.0 | \n",
" 258.0 | \n",
" 27.0 | \n",
" 29.0 | \n",
" 6.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 3 | \n",
" 5.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 3000.0 | \n",
" 7.0 | \n",
" 3000.0 | \n",
" 1000.0 | \n",
" 9.0 | \n",
" 258.0 | \n",
" 27.0 | \n",
" 29.0 | \n",
" 6.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 1 | \n",
" 5.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" SAINT-LOUIS | \n",
" K > 24 month | \n",
" 7900.0 | \n",
" 19.0 | \n",
" 7896.0 | \n",
" 2632.0 | \n",
" 25.0 | \n",
" 9385.0 | \n",
" 27.0 | \n",
" 46.0 | \n",
" 20.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 61 | \n",
" 7.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 12350.0 | \n",
" 21.0 | \n",
" 12351.0 | \n",
" 4117.0 | \n",
" 29.0 | \n",
" 9360.0 | \n",
" 66.0 | \n",
" 102.0 | \n",
" 34.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 56 | \n",
" 11.0 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1077016 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 14800.0 | \n",
" 34.0 | \n",
" 16189.0 | \n",
" 5396.0 | \n",
" 38.0 | \n",
" 17112.0 | \n",
" 32.0 | \n",
" 142.0 | \n",
" 13.0 | \n",
" 7.0 | \n",
" 2.0 | \n",
" NO | \n",
" 62 | \n",
" 15.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077017 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 2800.0 | \n",
" 9.0 | \n",
" 2950.0 | \n",
" 983.0 | \n",
" 9.0 | \n",
" 258.0 | \n",
" 19.0 | \n",
" 42.0 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 46 | \n",
" 3.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077020 | \n",
" TAMBACOUNDA | \n",
" K > 24 month | \n",
" 2500.0 | \n",
" 5.0 | \n",
" 2500.0 | \n",
" 833.0 | \n",
" 5.0 | \n",
" 0.0 | \n",
" 15.0 | \n",
" 77.0 | \n",
" 6.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 34 | \n",
" 2.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077022 | \n",
" DAKAR | \n",
" K > 24 month | \n",
" 600.0 | \n",
" 1.0 | \n",
" 600.0 | \n",
" 200.0 | \n",
" 1.0 | \n",
" 591.0 | \n",
" 11.0 | \n",
" 37.0 | \n",
" 5.0 | \n",
" 1.0 | \n",
" 2.0 | \n",
" NO | \n",
" 16 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1077023 | \n",
" FATICK | \n",
" K > 24 month | \n",
" 1500.0 | \n",
" 4.0 | \n",
" 1499.0 | \n",
" 500.0 | \n",
" 5.0 | \n",
" 1265.0 | \n",
" 30.0 | \n",
" 4.0 | \n",
" 6.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
" NO | \n",
" 50 | \n",
" 2.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
759283 rows × 17 columns
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 16
}
],
"source": [
"# Drop duplicate rows\n",
"df_balanced.drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "N2wCM6M0x-CM",
"outputId": "e7733b20-851e-4baf-e25b-c7e7120e6b25"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {},
"execution_count": 17
}
],
"source": [
"count_duplicate_rows(test_df)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "SISDrHhax-CN"
},
"outputs": [],
"source": [
"#import pandas as pd\n",
"#from sklearn.model_selection import train_test_split\n",
"\n",
"# Load your original dataset\n",
"#original_df = pd.read_csv('your_original_dataset.csv')\n",
"\n",
"# Specify the column you want to use for stratified sampling\n",
"stratify_column = 'REGION'\n",
"\n",
"# Split the dataset into a training set and a subset based on the 'REGION' column\n",
"train_df, subset_df = train_test_split(df_balanced, test_size=0.1, stratify=df_balanced[stratify_column], random_state=42)\n",
"\n",
"# 'subset_df' now contains a statistically representative subset of your original dataset\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cVY_G_sXx-CN",
"outputId": "562f7865-d2ca-42ef-ffaf-5babaa8116dc"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(175007, 17)"
]
},
"metadata": {},
"execution_count": 19
}
],
"source": [
"subset_df.shape"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "HD2jK_gVx-CO",
"outputId": "90aa7f2e-3e59-4145-b4ee-93f8d9c17ef7"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"Int64Index: 175007 entries, 158780 to 1279365\n",
"Data columns (total 17 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 REGION 175007 non-null object \n",
" 1 TENURE 175007 non-null object \n",
" 2 MONTANT 175007 non-null float64\n",
" 3 FREQUENCE_RECH 175007 non-null float64\n",
" 4 REVENUE 175007 non-null float64\n",
" 5 ARPU_SEGMENT 175007 non-null float64\n",
" 6 FREQUENCE 175007 non-null float64\n",
" 7 DATA_VOLUME 175007 non-null float64\n",
" 8 ON_NET 175007 non-null float64\n",
" 9 ORANGE 175007 non-null float64\n",
" 10 TIGO 175007 non-null float64\n",
" 11 ZONE1 175007 non-null float64\n",
" 12 ZONE2 175007 non-null float64\n",
" 13 MRG 175007 non-null object \n",
" 14 REGULARITY 175007 non-null int64 \n",
" 15 FREQ_TOP_PACK 175007 non-null float64\n",
" 16 CHURN 175007 non-null int64 \n",
"dtypes: float64(12), int64(2), object(3)\n",
"memory usage: 24.0+ MB\n"
]
}
],
"source": [
"subset_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "r_SBmUFhx-CP",
"outputId": "dc265523-3333-4a19-e9f0-f2d47d998c90"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"X_sub_train shape: (140005, 16)\n",
"y_sub_train shape: (140005, 1)\n",
"X_sub_test shape: (35002, 16)\n",
"y_sub_test shape: (35002, 1)\n"
]
}
],
"source": [
"# Split subset_df to train and Test\n",
"\n",
"\n",
"# Create the feature dataframe using the selected columns\n",
"X = subset_df.iloc[:, :-1]\n",
"\n",
"# Get the target variable\n",
"y = subset_df.iloc[:, -1:]\n",
"\n",
"# Split the data into training and testing sets\n",
"X_sub_train, X_sub_test, y_sub_train, y_sub_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Print the shapes of the train and validation sets\n",
"print(\"X_sub_train shape:\", X_sub_train.shape)\n",
"print(\"y_sub_train shape:\", y_sub_train.shape)\n",
"print(\"X_sub_test shape:\", X_sub_test.shape)\n",
"print(\"y_sub_test shape:\", y_sub_test.shape)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9_pfmc4_x-CQ",
"outputId": "a02487fd-2e77-49d8-f097-869dff9b8c5b"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[[-0.20523322 -0.18438173 -0.19873423 ... 0. 0.\n",
" 1. ]\n",
" [ 2.29789481 4.47062928 2.19775709 ... 0. 0.\n",
" 1. ]\n",
" [-0.60827926 -0.40604892 -0.46732969 ... 0. 0.\n",
" 1. ]\n",
" ...\n",
" [-0.20523322 -0.18438173 -0.19873423 ... 0. 0.\n",
" 1. ]\n",
" [-0.41736271 -0.51688251 -0.40555273 ... 0. 0.\n",
" 1. ]\n",
" [-0.20523322 -0.18438173 -0.19873423 ... 0. 0.\n",
" 1. ]]\n",
"[[-0.20062496 -0.18756534 -0.19320094 ... 0. 0.\n",
" 1. ]\n",
" [-0.20062496 -0.18756534 -0.19320094 ... 0. 0.\n",
" 1. ]\n",
" [-0.21087318 0.25706315 -0.19912948 ... 0. 0.\n",
" 1. ]\n",
" ...\n",
" [-0.20062496 -0.18756534 -0.19320094 ... 0. 0.\n",
" 1. ]\n",
" [-0.20062496 -0.18756534 -0.19320094 ... 0. 0.\n",
" 1. ]\n",
" [-0.40558941 -0.5210367 -0.39081908 ... 0. 0.\n",
" 1. ]]\n"
]
}
],
"source": [
"# Define preprocessing steps for numerical and categorical features\n",
"numerical_features = X_sub_train.select_dtypes(include=['int', 'float']).columns.tolist()\n",
"categorical_features = X_sub_train.select_dtypes(include=['object']).columns.tolist()\n",
"\n",
"numerical_transformer = Pipeline([\n",
" ('imputer', SimpleImputer(strategy='mean')), # You can change the imputation strategy as needed\n",
" ('scaler', StandardScaler())\n",
" ])\n",
"\n",
"categorical_transformer = Pipeline([\n",
" ('onehot', OneHotEncoder(drop='first'))\n",
" ])\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', numerical_transformer, numerical_features),\n",
" ('cat', categorical_transformer, categorical_features)\n",
" ])\n",
"\n",
"# Fit and transform the data\n",
"X_sub_train_preprocessed = preprocessor.fit_transform(X_sub_train)\n",
"X_sub_test_preprocessed = preprocessor.fit_transform(X_sub_test)\n",
"\n",
"# Now, X_preprocessed contains the preprocessed data\n",
"print(X_sub_train_preprocessed)\n",
"print(X_sub_test_preprocessed)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "mHB-e_tQx-CQ"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "oJcR9rauhXlh"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1YtUHmvZhXlh",
"outputId": "6cbfeab6-b2eb-4e9b-91d9-c79a8d39be41"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"X_train shape: (1400049, 16)\n",
"y_train shape: (1400049, 1)\n",
"X_eval shape: (350013, 16)\n",
"y_eval shape: (350013, 1)\n"
]
}
],
"source": [
"# split train+validation set into training and validation sets\n",
"X_train, X_eval, y_train, y_eval = train_test_split(df_balanced.iloc[:, :-1], df_balanced.iloc[:, -1:], test_size=0.2, random_state=42, stratify=df_balanced.iloc[:, -1:])\n",
"\n",
"# Print the shapes of the train and validation sets\n",
"print(\"X_train shape:\", X_train.shape)\n",
"print(\"y_train shape:\", y_train.shape)\n",
"print(\"X_eval shape:\", X_eval.shape)\n",
"print(\"y_eval shape:\", y_eval.shape)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "sNgsew3TjJoA",
"outputId": "2d9670f7-baa2-4c46-fcc6-26e459f7d532"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[[-0.19966668 -0.18371369 -0.19367986 ... 0. 0.\n",
" 1. ]\n",
" [ 1.67869056 4.88087698 1.7470594 ... 0. 0.\n",
" 1. ]\n",
" [-0.19966668 -0.18371369 -0.19367986 ... 0. 0.\n",
" 1. ]\n",
" ...\n",
" [ 1.77208954 0.94175091 1.46543409 ... 0. 0.\n",
" 1. ]\n",
" [-0.19966668 -0.18371369 -0.19367986 ... 0. 0.\n",
" 1. ]\n",
" [-0.78081589 -0.85899244 -0.76464068 ... 0. 0.\n",
" 1. ]]\n",
"[[-0.19957076 -0.18386324 -0.19392099 ... 0. 0.\n",
" 1. ]\n",
" [-0.19957076 -0.18386324 -0.19392099 ... 0. 0.\n",
" 1. ]\n",
" [-0.71602581 -0.85835766 -0.69712133 ... 0. 0.\n",
" 1. ]\n",
" ...\n",
" [-0.19957076 -0.18386324 -0.19392099 ... 0. 0.\n",
" 1. ]\n",
" [ 1.03992135 -0.85835766 1.02056092 ... 0. 0.\n",
" 1. ]\n",
" [-0.19957076 -0.18386324 -0.19392099 ... 0. 0.\n",
" 1. ]]\n"
]
}
],
"source": [
"# Define preprocessing steps for numerical and categorical features\n",
"numerical_features = X_train.select_dtypes(include=['int', 'float']).columns.tolist()\n",
"categorical_features = X_train.select_dtypes(include=['object']).columns.tolist()\n",
"\n",
"numerical_transformer = Pipeline([\n",
" ('imputer', SimpleImputer(strategy='mean')), # You can change the imputation strategy as needed\n",
" ('scaler', StandardScaler())\n",
" ])\n",
"\n",
"categorical_transformer = Pipeline([\n",
" ('onehot', OneHotEncoder(drop='first'))\n",
" ])\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', numerical_transformer, numerical_features),\n",
" ('cat', categorical_transformer, categorical_features)\n",
" ])\n",
"\n",
"# Fit and transform the data\n",
"X_train_preprocessed = preprocessor.fit_transform(X_train)\n",
"X_eval_preprocessed = preprocessor.fit_transform(X_eval)\n",
"\n",
"# Now, X_preprocessed contains the preprocessed data\n",
"print(X_train_preprocessed)\n",
"print(X_eval_preprocessed)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "D5S4J7KrhXli"
},
"source": [
"deal with oversampling in data"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "XeG_m4m5hXli"
},
"outputs": [],
"source": [
"# Use Over-sampling/Under-sampling methods, more details here: https://imbalanced-learn.org/stable/install.html\n",
"##oversample= SMOTE()\n",
"\n",
"#balancing train dataset\n",
"#X_train_resampled,y_train_resampled = oversample.fit_resample(X_train_preprocessed, y_train)\n",
"#X_train_resampled.shape,y_train_resampled.shape"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"id": "bpF0NLjXnKVH"
},
"outputs": [],
"source": [
"# balancing evaluation dataset\n",
"#X_eval_resampled,y_eval_resampled = oversample.fit_resample(X_eval_preprocessed, y_eval)\n",
"#X_eval_resampled.shape,y_eval_resampled.shape"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "TZu4K0g6hXlj"
},
"outputs": [],
"source": [
"# Confusion Matrix Function\n",
"def plot_metric(confusion, name):\n",
" group_names = ['True Neg','False Pos','False Neg','True Pos']\n",
" group_counts = [\"{0:0.0f}\".format(value) for value in\n",
" confusion.flatten()]\n",
" group_percentages = [\"{0:.2%}\".format(value) for value in\n",
" confusion.flatten()/np.sum(confusion)]\n",
" labels = [f\"{v1}\\n{v2}\\n{v3}\" for v1, v2, v3 in\n",
" zip(group_names,group_counts,group_percentages)]\n",
" labels = np.asarray(labels).reshape(2,2)\n",
" ax = sns.heatmap(confusion, annot=labels, fmt='', cmap='viridis')\n",
" ax.set_title(f'{name}\\n\\n');\n",
" ax.set_xlabel('\\nPredicted Values')\n",
" ax.set_ylabel('Actual Values ');\n",
" ## Ticket labels - List must be in alphabetical order\n",
" ax.xaxis.set_ticklabels(['False','True'])\n",
" ax.yaxis.set_ticklabels(['False','True'])\n",
" ## Display the visualization of the Confusion Matrix.\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"id": "wSRDxauNhXlk"
},
"outputs": [],
"source": [
"# Function for Training Models\n",
"def train_ml_model(X_train, y_train, X_eval, y_eval, model_class, **model_params):\n",
" \"\"\"\n",
" Train a machine learning model, calculate various metrics, generate an ROC curve,\n",
" and return results in a DataFrame.\n",
"\n",
" Parameters:\n",
" - X_train: Training features\n",
" - y_train: Training labels\n",
" - X_eval: Evaluation features\n",
" - y_eval: Evaluation labels\n",
" - model_class: Class of the machine learning model to be used (e.g., LogisticRegression)\n",
" - **model_params: Additional parameters for the model constructor\n",
"\n",
" Returns:\n",
" - result_df: DataFrame containing model, F1-score, AUC-score, and assessment\n",
" \"\"\"\n",
"\n",
" results = [] # List to store results for each model\n",
"\n",
"\n",
" # Fit the model with preprocessed data\n",
" model = model_class(**model_params)\n",
" model.fit(X_train, y_train)\n",
"\n",
" # Make predictions on the evaluation set\n",
" predictions = model.predict(X_eval)\n",
"\n",
" # Calculate F1 score\n",
" f1 = round(f1_score(y_eval, predictions), 2)\n",
"\n",
" # Calculate false positive rate, true positive rate, and thresholds using roc_curve\n",
" fpr, tpr, thresholds = roc_curve(y_eval, predictions)\n",
"\n",
" # Calculate AUC score\n",
" auc = round(roc_auc_score(y_eval, predictions), 2)\n",
"\n",
" # Determine if the model is overfitting, underfitting, or balanced\n",
" train_preds = model.predict(X_train)\n",
" train_f1 = f1_score(y_train, train_preds)\n",
" eval_f1 = f1_score(y_eval, predictions)\n",
"\n",
" if train_f1 > eval_f1:\n",
" assessment = \"Overfitting\"\n",
" elif train_f1 < eval_f1:\n",
" assessment = \"Underfitting\"\n",
" else:\n",
" assessment = \"Balanced\"\n",
"\n",
" # Calculate and Plot confusion matrix\n",
" confusion = confusion_matrix(y_eval, predictions)\n",
" #plot_metric(confusion, model_class())\n",
"\n",
" # Create ROC curve plot\n",
" plt.figure(figsize=(8, 6))\n",
" plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = {:.2f})'.format(auc))\n",
" plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')\n",
" plt.xlim([0.0, 1.0])\n",
" plt.ylim([0.0, 1.05])\n",
" plt.xlabel('False Positive Rate')\n",
" plt.ylabel('True Positive Rate')\n",
" plt.title('Receiver Operating Characteristic (ROC)')\n",
" plt.legend(loc='lower right')\n",
" plt.show()\n",
"\n",
" # Create a DataFrame to store the results\n",
" result_data = {\n",
" 'Model': model_class.__name__,\n",
" 'F1-Score': f1,\n",
" 'AUC-Score': auc,\n",
" 'Assessment': assessment\n",
" }\n",
"\n",
" results.append(result_data)\n",
"\n",
" result_df = pd.DataFrame(results)\n",
"\n",
" return result_df\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TojzddRthXll"
},
"source": [
"### Logistic Regression"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"id": "OD-3_VOihXll",
"outputId": "67d0a489-6391-4dc7-ed87-4a383fa72869"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk10lEQVR4nOzdeVxU9f7H8dfMMAwgrqCouGu4a5aampVLuVCZS5rmkmU31yxNu1n3Zt5sscXKNLXsZ+ntlpZblvvWoi3aopVmueAuKqACwgAz5/cHOTKBCjpwgHk/H48ezXznzJw3cxj88OW7WAzDMBARERERKeasZgcQERERESkIKnxFRERExC+o8BURERERv6DCV0RERET8ggpfEREREfELKnxFRERExC+o8BURERERv6DCV0RERET8ggpfEREREfELKnxFiqEOHTrwxBNPmB3D7wwcOJCBAweaHeOy3nzzTerWrUt8fLzZUQqdunXr8uabb/rktQ4fPkzdunVZvHixT14PYMeOHTRq1IgjR4747DV9bcyYMTzyyCNmxxDJUYDZAUSKmsWLFzNhwgTPfZvNRlhYGDfeeCNjxowhIiLCxHSF27lz55g7dy6rVq3i4MGDBAQEULduXfr06cNdd92FxWIxO+Jl7dmzh5UrV9KjRw+qVKlidhwvLpeLpUuXsnTpUnbv3s25c+eoUKECN9xwA/feey+NGzc2O+JVW758OXFxcQwePNjsKB4Fmem1117j9ttvJzIy0tM2cOBAvv/+e899h8NB9erV6dWrF4MGDcJqzd7HlZCQwNtvv82GDRs4evQowcHBNG7cmAEDBtC+ffscz52UlMR7773HmjVrOHToEC6Xi2rVqnHLLbcwaNAgz8++f/zjH/Tq1Yvff/+devXq+fgdELk6KnxFrtDo0aOpUqUKaWlp/PzzzyxZsoQffviBzz77DIfDYWq2VatWFboi8tSpUwwePJi9e/cSHR3NgAEDcDqdrFmzhn/+85988cUXvPLKK9hsNrOjXtKePXuYPn06LVu2zFb4vvvuuyalgtTUVEaNGsVXX31FixYtGDp0KKVLl+bIkSOsXLmSJUuWsGnTJipWrGhaRl/47LPP+PPPP/OtyNyxY0eevwcvlikyMpIdO3YQEOCbf2p37drFli1b+Oijj7I9VrFiRcaOHQtkFrWfffYZL7zwAgkJCYwZM8br2H379jF48GDi4+Pp2bMnjRs35uzZsyxfvpxhw4bxwAMP8M9//tPrOYcOHWLw4MEcO3aMLl26cM8992C329m9ezeffPIJ69atY/Xq1QA0aNCARo0a8X//93+89NJLPvnaRXxFha/IFbr55ps9PWi9e/embNmyvPPOO6xfv57o6GhTswUGBhb4OZ1OJ3a7PcfeJYB//vOf7N27l+nTp9OxY0dP+6BBg5gyZQr/93//R/369XnooYcKKjKQ2QsdEhLik9cy430/76WXXuKrr75iwoQJ2QqwUaNG8d577xVoHsMwcDqdBAUFFeh5r4Tb7SY9PR2Hw+HTX1otFotPX2/RokVUrlyZa6+9NttjJUuW5K677vLc79evH127dmX+/PmMHj3aU8ynp6fzyCOPcPbsWT744AOaNm3qec7gwYMZN24c//d//0fjxo09P8cyMjIYNWoUcXFxzJs3j+bNm3ude8yYMbzzzjtebV27duXNN98kOTmZEiVK+OotELlqGuMr4iPn/zE4dOiQV/vevXsZPXo0LVu2pHHjxvTs2ZP169dne/7Zs2d5/vnn6dChA40aNeLmm2/m8ccf9xqHmZaWxrRp07jtttto1KgRt9xyCy+99BJpaWler5V1jO8vv/xC3bp1WbJkSbZzfvXVV9StW5eNGzd62mJjY5kwYQJt2rShUaNG3H777XzyySdez/vuu++oW7cun3/+Oa+99ho33XQTTZs2JSkpKcf35ueff+brr7+mR48eXkXveY899hg1atRgzpw5pKamAhfGR7777ru89957tG/fniZNmjBgwAD++OOPbK+Rm/d58eLF1K1bl++//55nnnmG1q1bc8sttwBw5MgRnnnmGTp37kyTJk244YYbGD16NIcPH/Z6/vmxi4MGDaJu3brUrVuX7777Dsg+xvf8+7RixQpmzpzp+WXpvvvu48CBA9m+hg8++ICOHTvSpEkT7r77brZt25arccPHjx9nwYIF3HjjjTn2hNpsNoYMGZKttzcxMZEnnniC5s2bc/311zNhwgRSUlK8jlm0aBGDBg2idevWNGrUiOjoaP73v/9lO0eHDh0YOnQoX331FT179qRJkyaensncvgbAF198wYABA2jWrBnXXXcdvXr1Yvny5Z73d9OmTRw5csTz3nfo0MHz3Nx+PurWrct//vMfPv30U26//XYaN27MV1995Xks6xjfpKQknnvuOc/nsnXr1tx///389ttvl810sTG+e/fu5ZFHHqFVq1Y0adKEzp0789prr+X4fmS1fv16WrVqlau/5jgcDho1akRycjJxcXGe9jVr1vDHH3/wj3/8w6vohczvk//85z+UKlXK6z1Ys2YNv//+O8OGDctW9AKEhoZm61Vu06YN586dY8uWLZfNKlKQ1OMr4iPnJ5uUKlXK0/bnn3/Sr18/IiIi+Mc//kFISAgrV65k5MiRvPnmm9x2220AJCcn079/f/bu3UuvXr1o0KABCQkJbNiwgdjYWMqVK4fb7Wb48OH88MMP9OnTh9q1a/PHH3/w/vvvExMTw1tvvZVjrsaNG1O1alXPuNSsVqxYQenSpWnbti2QORyhT58+WCwW+vfvT7ly5fjyyy956qmnSEpKylZUvfXWW9jtdoYMGUJaWhp2uz3HDOcL6+7du+f4eEBAAHfccQfTp0/nxx9/pE2bNp7Hli5dSnJyMvfeey9Op5P58+dz3333sXz5csLDw/P0Pp83adIkypUrx8iRIzl37hyQ+QvCTz/9xO23307FihU5cuQIH374IYMGDeLzzz8nODiYFi1aMHDgQObPn8+wYcOoVasWALVr187x6zrvnXfewWKx8MADD5CUlMScOXMYN24cH3/8seeY//3vf/znP/+hefPmDB48mCNHjjBy5EhKlSp12eEJX375JRkZGXTr1u2Sx/3do48+SpUqVRg7diw7d+7k448/ply5cowfP95zzIcffsg111xDhw4dCAgIYOPGjUyaNAnDMOjfv7/X6+3fv5/HHnuMe+65hz59+lCzZs08vcbixYt58sknueaaaxg6dCglS5Zk165dfPXVV9x5550MGzaMxMREjh8/7hlnf743Ma+fj2+//ZaVK1fSv39/ypYt6zVmNquJEyeyevVqBgwYQO3atTl9+jQ//PADe/fupWHDhpfMlJPff/+d/v37ExAQwD333ENkZCQHDx5kw4YN2YrHrGJjYzl69CgNGjS46DF/d+TIESwWi9fPpA0bNgAX/yyWLFmSjh07smTJEg4cOED16tU9v0Bm7VG+nDp16hAUFMSPP/6Y7fMnYipDRPJk0aJFRlRUlLFlyxYjLi7OOHbsmLFq1SqjVatWRqNGjYxjx455jr3vvvuMO+64w3A6nZ42t9tt3HPPPUanTp08bW+88YYRFRVlrFmzJtv53G63YRiGsXTpUqNevXrG1q1bvR7/8MMPjaioKOOHH37wtLVv39745z//6bn/6quvGg0bNjROnz7taXM6nUbz5s2NCRMmeNqefPJJ48YbbzTi4+O9zjFmzBjj+uuvN1JSUgzDMIxvv/3WiIqKMjp27Ohpu5QRI0YYUVFRxpkzZy56zJo1a4yoqChj3rx5hmEYxqFDh4yoqCijSZMmxvHjxz3Hbd++3YiKijKef/55T1tu3+fz165fv35GRkaG1/lz+jp++uknIyoqyliyZImnbeXKlUZUVJTx7bffZjt+wIABxoABAzz3z79PXbt29cr2/vvvG1FRUcbu3bsNw8i8Fi1btjR69eplpKene45bvHixERUV5fWaOXn++eeNqKgoY+fOnZc87rxp06YZUVFRXtfeMAxj5MiRRsuWLb3acnpfHnjgAaNjx45ebe3btzeioqKML7/8MtvxuXmNs2fPGs2aNTN69+5tpKameh17/jNgGIbx0EMPGe3bt8/2enn5fERFRRn16tUz/vzzz2yvExUVZUybNs1z//rrrzcmTZqU7bisLpbp/PfwokWLPG39+/c3mjVrZhw5cuSiX2NOtmzZYkRFRRkbNmzI9tiAAQOMLl26GHFxcUZcXJyxd+9eY8qUKUZUVJTx0EMPeR171113Gddff/0lzzV37lwjKirKWL9+vWEYhtG9e/fLPicnnTp1Mh588ME8P08kP2mog8gVGjx4sOdP5aNHjyY4OJiZM2d6eudOnz7Nt99+S9euXUlKSiI+Pp74+HgSEhJo27YtMTExxMbGApl/SqxXr16OPSPn/6y5atUqateuTa1atTyvFR8fT6tWrQA8f27PSXR0NOnp6axZs8bTtnnzZs6ePesZx2cYBmvWrKFDhw4YhuF1jrZt25KYmOj58+553bt3z9UYzuTkZODSPWHnH/v7cIlbb73Va6WMJk2a0LRpU7744gsgb+/zeX369Mk2gSnr15Genk5CQgLVqlWjVKlS7Ny587Jf46X07NnTa/zv34fF/Prrr5w+fZo+ffp4TYS68847KV269GVf//x7ltexlH379vW637x5c06fPu11DbK+L4mJicTHx9OyZUsOHTpEYmKi1/OrVKnCTTfdlO08uXmNzZs3k5yczEMPPZRtXGxu/rSf189HixYtqFOnzmVft1SpUmzfvj3b99CViI+PZ+vWrfTq1YvKlSt7PXa5rzEhIcGTJyf79u2jdevWtG7dmq5du/Luu+/SoUMHXnjhBa/jcjPm9u+fxaSkpCsap1u6dGlPbpHCQkMdRK7Q008/Tc2aNUlMTGTRokVs3brVq7g5ePAghmHwxhtv8MYbb+T4GnFxcURERHDw4EE6dep0yfMdOHCAvXv30rp164u+1sXUq1ePWrVqsXLlSnr37g1kDnMoW7aspzCIj4/n7NmzLFiwgAULFuT4On9f9zW3y3md/0czOTn5ov9wX6w4rl69erZja9SowcqVK4G8vc+Xyp2amsrs2bNZvHgxsbGxGIbheezvBV5e/b3IOf8enD17FoCjR48CUK1aNa/jAgICLvon+KxCQ0OBC+/h1eY6c+aM5zV/+OEH3nzzTX7++eds438TExMpWbKk5/7Fvh9y8xoHDx4E4JprrsnT13BeXj8fuf3eHTduHE888QTt2rWjYcOG3HLLLXTv3p2qVavmOeP5X3SioqLy/Nzzsn5fZhUZGcnkyZNxu90cPHiQWbNmkZCQkO2XiBIlSly2GP37ZzE0NDTb3IXcZi1sq8uIqPAVuUJNmjTxrOpw6623cu+99/LYY4+xatUqSpQogdvtBuCBBx7IsRcMshc6l+J2u4mKivJaQziry40DjY6OZtasWcTHxxMaGsqGDRu4/fbbPT2M5/N269Yt21jg8+rWret1P7cz9mvXrs26devYvXs3LVq0yPGY3bt3A+SqFy6rK3mfc5pp/+yzz7J48WLuu+8+rr32WkqWLInFYmHMmDEXLTZy62IrXVzt6553fqzx7t27qV+/vs9yHTx4kMGDB1OrVi2eeOIJKlWqhN1u54svvuC9997zvPfn5fT9kNfXuFJ5/Xzk9ns3Ojqa5s2bs3btWjZv3sy7777LO++8w5tvvumZGFkQypYtC1z4ZenvQkJCvMbGX3fddfTs2ZPXXnuNf/3rX5722rVrs2vXLo4ePZrtF5/z/v5ZrFWrFjt37uTYsWNUqlQp15nPnj2b4y+uImZS4SviAzabjbFjxzJo0CA++OADHnroIU+PkN1u9/oHKSfVqlXjzz//vOwxv//+O61bt76iXpTo6GimT5/OmjVrCA8PJykpidtvv93zeLly5TwF++Xy5lW7du2YPXs2S5cuzbHwdblcLF++nNKlS3Pdddd5PZbT6gcxMTGentC8vM+Xsnr1arp37+61453T6czW25sfPVjnC5CDBw96euAhcxmp86sFXMrNN9+MzWZj+fLlF520dCU2bNhAWloaM2fO9CqSLjWs5kpf4/wvJ3/++ecli6WLvf9X+/m4lAoVKtC/f3/69+9PXFwcPXr0YNasWZ7CN7fnO/+9mtOqJJdz/pebrKuMXEq9evXo1q0bH330EQ888IDnvW/Xrh2fffYZS5cuZcSIEdmel5SUxPr166lVq5bnOrRv357PPvuMTz/9lKFDh+bq/BkZGRw7dsxr1Q2RwkBjfEV85IYbbqBJkya8//77OJ1OwsLCaNmyJQsWLODEiRPZjs86bKBTp078/vvvrF27Nttx53vfunbtSmxsLAsXLsx2TGpqqmd1goupXbs2UVFRrFixghUrVlC+fHmvItRms9G5c2dWr16d4z/MV7O97XXXXUebNm1YvHix19Jp57322mvExMTw4IMPZuuJW7dundf4yh07drB9+3ZuvvlmgDy9z5eS06YF8+fPx+VyebUFBwcDVz/8IatGjRpRpkwZFi5cSEZGhqd9+fLlnDlz5rLPr1SpEr179+brr79m/vz52R53u9383//9H8ePH89TrvPvyd+HfSxatMjnr9G2bVtKlCjB7NmzcTqdXo9lfW5wcHCO7/3Vfj5y4nK5sp0rLCyMChUqeC2RdrFMf1euXDlatGjBokWLPMNbzrtc739ERASVKlXi119/zXX+Bx98kIyMDObOnetp69y5M3Xq1OGdd97hl19+8Tre7XYzceJEzpw5w6hRo7yeExUVxaxZs/jpp5+ynScpKSnbcmx79uzB6XTSrFmzXOcVKQjq8RXxoSFDhvDII4+wePFi+vXrx8SJE7n33nu588476dOnD1WrVuXUqVP8/PPPHD9+nE8//dTzvNWrV/PII4/Qq1cvGjZsyJkzZ9iwYQOTJk2iXr163HXXXaxcuZKJEyfy3Xffcd111+Fyudi3bx+rVq1izpw5l92SNjo6mmnTpuFwOLj77ruz/an7scce47vvvqNPnz707t2bOnXqcObMGX777Te++eYbr21R82rKlCkMHjyYESNGcMcdd9C8eXPS0tJYs2YN33//PdHR0QwZMiTb86pVq0a/fv3o168faWlpzJs3jzJlyvDggw96jsnt+3wp7dq1Y9myZYSGhlKnTh1+/vlntmzZQpkyZbyOq1+/PjabjXfeeYfExEQCAwNp1aoVYWFhV/zeBAYG8vDDD/Pss89y33330bVrV44cOcLixYtzPRzmiSee4NChQ0yePJk1a9bQvn17SpUqxbFjx1i1ahX79u3z6uHPjRtvvBG73c6wYcPo27cvycnJfPzxx4SFhXHy5EmfvkZoaCgTJkzgX//6F3fffTd33HEHpUqV4vfffyc1NZUpU6YA0LBhQ1asWMELL7xA48aNCQkJoUOHDj75fPxdcnIyt9xyC507d6ZevXqEhISwZcsWfvnlF6+/DFwsU07+9a9/0a9fP3r06ME999xDlSpVOHLkCJs2bWLZsmWXzNOxY0fWrl2b67GzderU4ZZbbuGTTz5hxIgRlC1blsDAQKZNm8Z9993HvffeS8+ePWnUqBGJiYl89tln/PbbbzzwwANe3yt2u53p06dz//33M2DAALp06cJ1112H3W7nzz//5LPPPqNUqVJey7Ft2bKF4OBgn//1SORqqfAV8aFOnTpRrVo1/u///o8+ffpQp04dFi1axPTp01myZAmnT5+mXLlyNGjQgJEjR3qeV6JECT744APefPNN1q5dy5IlSwgLC6N169aeSVlWq5UZM2bw3nvvsWzZMtauXUtwcDBVqlRh4MCBnjVTLyU6OprXX3+dlJQUunbtmu3x8PBwPv74Y2bMmMHatWv58MMPKVOmDHXq1GHcuHFX9d5UqFCBjz/+mLlz57Jq1SrWrFmDzWajbt26vPjii3Tv3j3Hf8y7d++O1Wrl/fffJy4ujiZNmvDvf/+bChUqeI7J7ft8KU899RRWq5Xly5fjdDq57rrrmDt3rleBDVC+fHkmTZrE7Nmzeeqpp3C5XMybN++qCl+AAQMGYBgGc+fOZcqUKdSrV4+ZM2cyefLkXO3+FRwczDvvvMPixYtZunQpb731FqmpqVSoUIEbbriBV155xWuCX27UqlWLadOm8frrrzNlyhTCw8Pp168f5cqV48knn/T5a/Tu3ZuwsDDefvtt3nrrLQICAqhVq5bX+tH33nsvu3btYvHixbz33ntERkbSoUMHn3w+/i4oKIh+/fqxefNm1qxZg2EYVKtWzfOL1uUy5aRevXosXLiQN954gw8//BCn00nlypVz/Dz+Xa9evfjvf//LDz/8kONGEjkZMmQImzZt4r///S8PP/wwkPnXn08//ZS3336bDRs2sHjxYoKCgmjUqBEzZ87MMXv16tVZunQp7733HmvXrmX9+vW43W6qV69O7969s22ysmrVKm677TbPJEmRwsJi+Gp2hYiIDx0+fJiOHTvy+OOP59gT7A/cbjetW7fmtttuY/LkyWbHkULgvvvuo0KFCrz88stmR7moXbt20aNHD5YsWZKnyZYiBUFjfEVECgGn05ltnOfSpUs5ffo0LVu2NCmVFDZjx45l5cqVnp0iC6O3336bzp07q+iVQklDHURECoGff/6ZF154gS5dulCmTBl27tzJJ598QlRUFF26dDE7nhQSTZs2zdMENzP8faKbSGGiwldEpBCIjIykYsWKzJ8/nzNnzlC6dGnuuusuxo0b57UxioiIXDmN8RURERERv6AxviIiIiLiF1T4ioiIiIhfUOErIiIiIn5Bha+IiIiI+AW/XdUhPj4Rt9vsFJLfLBYICytJXFwimsZZ/Ol6+xddb/+i6+1frFYoV66kz1/Xbwtfw0AfHD+i6+1fdL39i663f9H19g/5dY011EFERERE/IIKXxERERHxCyp8RURERMQvqPAVEREREb+gwldERERE/IIKXxERERHxCyp8RURERMQvqPAVEREREb+gwldERERE/IIKXxERERHxCyp8RURERMQvqPAVEREREb+gwldERERE/IIKXxERERHxCyp8RURERMQvmFr4bt26lWHDhtG2bVvq1q3LunXrLvuc7777jh49etCoUSNuu+02Fi9eXABJRURERKSoM7XwPXfuHHXr1mXixIm5Ov7QoUMMHTqUG264gWXLlnHffffxr3/9i6+++iqfk4qIiIhIURdg5slvueUWbrnlllwf/9FHH1GlShWeeOIJAGrXrs0PP/zAe++9x0033ZRfMUVEREQkP7icWFNOYE05jjUlFmtKLCQf54/9KYQNe8PnpzO18M2rn3/+mdatW3u1tW3blueffz7Pr2WxZP4nxdv5a6xr7R90vf2Lrrd/0fUuQgwDS/rZzEL23HEsfxW0mf8d977tTPB66rGzody/oDs/nYwidpjvoxWpwvfUqVOEh4d7tYWHh5OUlERqaipBQUG5fq1y5Ur6Op4UYmFhut7+RNfbv+h6+xddbxO5XXDuBCQfg+Tjf/v/39oyUvL88st+rcuDH3fjVHIJSpbMnxK1SBW+vhQfn4jbbXYKyW8WS+YPybi4RAzD7DSS33S9/Yuut3/R9c5HGecu9MKeO55z7+y541icp7AYvimeDFsQ7uCKuIMjSLRW5vEP6vDuqhKexyuEB/rkPH9XpArf8PBwTp065dV26tQpQkND89TbC2AY6IPjR3S9/Yuut3/R9fYvut65ZBhYnPE5Dy/wGnoQizX9rM9O6w4sizuk4l9FbQVPcZv534V2w14KLBa2b49l+PAV7NlzYchD1661eeONzj7LlFWRKnyvvfZavvzyS6+2LVu2cO2115oTSERERKQgudKwpp6fDPbX/88dz2w7dxxraizWc7FYU2OxuNN9ckrDEpCleI34W1Gb9XYFsDly92W43MyYsZUXX9xCRkZmL3JISADPPtuOAQMaY7Plz2BuUwvf5ORkDh486Ll/+PBhdu3aRenSpalcuTKvvvoqsbGxvPTSSwD07duXDz74gJdeeolevXrx7bffsnLlSmbPnm3WlyAiIiJydQwDS3rixSeAeU0Gi/fZad32kriDKvzVQ5u1qPXuoTUcZcHi2xVwU1NdfPDBr56it2nTCGbNiqZ27bI+Pc/fmVr4/vrrrwwaNMhz/4UXXgCgR48evPjii5w8eZJjx455Hq9atSqzZ8/mhRdeYN68eVSsWJHJkydrKTMREREpfNwuLM44rCnHsaUcx5JyAtvfe2hTMm9bMs755JQGFoyg8GwFrCtrMRsSgTsoAuwlLv+C+aRECTuzZkVz550LGD78esaPb01goC3fz2sxDP8cKRMXp8lt/sBigfDwkpw6pckQ/kDX27/oevuXQnW9M1L+Nk72uPfQg/PtqSexGC6fnNKwOv7WM/v33tm/7geVB2vhG8malJRGYqKTSpW8V+U4diwxWxuA1Zo/K3gUvndGREREpKAZBpa0BO9i9q+xsp4e2vNt6Wd8dlp3YJmcC9i/9dAa9tJFdhHjrVuPMmLESipUKMGyZX0ICLgwbCKnojc/qfAVERGR4sud/ldP7CU2UfjrtsWd5pNTGhabdyEbFJE5vCDb+NkKYMvbqlRFSUaGm9de+46pU7/F5TI4cOAMb765lTFjbjAtkwpfERERKXrSkzLHy16shzblr5UNUuOw4JuxEUZAib/Gyl5kMlhIRdxBERhBYT6fDFbUxMScZsSIlWzbdmGuVosWlenZs56JqVT4ioiISGFhuLGkxuXYI2tLiYWMk5Q9ezSzdzYj2WendZ+fDOZZ4SD7GrSu4IpgD/XZOYsrwzBYuHAXEyZsICkpswfdZrMwblxrHnmkpdcwBzOo8BUREZH85Ur1HmqQdb3ZlKxr0J647GSw3M77N6yBl9hEIWsPbXmw2q/+axROn05l/Ph1LFv2h6etevXSzJzZlebNK5uY7AIVviIiIpJ3hoEl7XT2lQxyup122menddtLXxgvm2MP7V87gwWWLbKTwYqixEQnHTrM5/DhRE9b374Nef759oSG5s/2w1dCha+IiIhc4M7Amnry4sWsZ4WDWCyuVJ+c0rBYM4vYi/XQhkRgBEdQrkod4s9kmL+cmWRTsqSD6Og6vP32T5Qp4+CVV26jW7cos2Nlo8JXRETEH6Qne601a/Nad/bCbUvqKR9OBgvJsqpB5iYKxl/jZY3gCrg8O4OFgfXSgxgsFsAeDCRe8jgxz7/+dROpqS7GjLmByMiCXaYst1T4ioiIFFWGG4sz/tKbKJzvoU33XcHodpS7+LjZLDuDGfaSGm5QDBmGwfz5v2CzWejfv7GnPSgogFdeudXEZJenwldERKSwcTmzFLDZe2Uv3I7FYmT45JSG1X5hvdm/emhzLGyDKoCt8IzZlIJ16tQ5xo5dy6pVewkODqBFi8pERYWZHSvXVPiKiIgUBMPAkn724pPAsq5Bm5bgs9O67aUuvSvYX7cNRzn1zsolbdwYw8MPr+bEicyl5FJSMlizZp8KXxEREb/hdv01GeziO4J5dgZzpfjklJmTwcpfZEcw7/sEhPjknOK/UlMzeO65r5k9+0dPW1hYMK+/3onOnWubmCzvVPiKiIjkJOPcJYrYLD20qSexGG6fnNKwBV2yiPXcDgoHq/4Jl/y3c+dJhg9fya5dpzxtHTrU4I03OhMRUcLEZFdGnxoREfEfhvG3yWCxFy9u08/67LTuwLKe7Wyz99BmGW5gL6XhBlIoGIbBnDk/8Z//fIXTmbmpiMNhY+LEmxky5FosRfT7VIWviIgUfa40z9qyOa87G+vpobW4031ySsMS8FfB6r1xQvbbFcDm8Mk5RQpKcnI6M2f+4Cl6GzQIZ+bMaOrXDzc52dVR4SsiIoWTYWBJT/Te2vZvhS3pJymXeBSrM95np3XbS17YEcyrhzZrUXt+MpjVZ+cVKUxCQwN5662u9OjxMQ8+2IynnmpLUFDRLxuL/lcgIiJFi9uFxRnn2UTBknIiczOF8+vNnu+hTYnFknHusi+Xm9LTwIIRFJ5jr6zLq4c2AuyhV/81ihQxycnpnDuXTvnyFyZDtmpVhW++uZ8aNcqYF8zHVPiKiIhvZKRcYsxsljVoU09iMVy+OafNkVm4nu+hvdiEsKDymgwmchHbt8cyfPgKKlUK5eOP78ZqvTB+tzgVvaDCV0RELsUwsKQl5LyJwvke2vMrHKSf8dlp3YFlLrnmrDu4IkZIBcIqVyUhLgnDNzvsivgVl8vNjBnbePHFLWRkuNmzJ4FZs35gxIjmZkfLNyp8RUT8kTs9c+3Zcxdbd/bCbYs7zSenNCw2757Zi+4SFgG2oMu+nsWCVkAQuUJHjiQyatRKNm8+7Glr2jSiyK3Lm1cqfEVEipP0pMzxshfbEeyvHlpLahwWfNNNagSUwBUcgREc8dd42Yv00AaFaTKYSCGwbNluxo1bx5kzTiDz98fRo1syfnxrAgNtJqfLXyp8RUQKO8ONJTXuMuvOHseWEoslI9lnp3UHhWf2xgZHXHQNWldwRU0GEykiEhOdPPnkRhYs2Olpi4wsyYwZXWjTpqqJyQqOCl8REbO4UrNtaevVQ5tyoZfWV5PBDGvgpXcE8/xXAax2n5xTRMx39qyTjh3/y4EDF8bid+9el5de6kiZMpcfWlRcqPAVEfElw8CSfuai68563U477bPTuu2lL/TG5rgG7V87gwWW1bhYET9UqpSDm26qyoEDZwgNDeTFFzvQu3f9IrsD25VS4SsikhvujMzJYBctZi/8Z3Gl+uSUhsWaWcR69cp6b6LgmQwWEOyTc4pI8fWf/7QjJSWDf/6zTbFbpiy3VPiKiH9LT/ZaosuWdbmuLAWuJfWU7yaD2YIvFLIhF3poXcEVMbJsqGA4wsBavCeaiIjvGYbBwoW7sNut9OxZz9MeGhrIzJnRJiYznwpfESl+DDeW1PhLLtHlWeEgPdFnp3U7yl1y3VnPcAN7SQ03EJF8cfp0KuPHr2PZsj8oUcJOs2YVqVmzjNmxCg0VviJSdLjSsu8C9rfbOE8Slnwci5Hhk1MaVnv29WY9a9FmGXoQVAFsgT45p4jIldi8+RAjR67k6NEkIHMb4uXL/2D06JYmJys8VPiKiLkMA0v62YtPAsu6Bm1aQq5eMjd9qW57qSzjZS/eQ2s4ymrtWREp1NLSXEyZsoXp07d6djEsXdrBq6/eRrduUeaGK2RU+IpI/nC7/poMltNwA+8xtBZXik9OaWDBElKBjKAIXMEROewIVjHLZLAQn5xTRMRMe/bEM2zYCnbsOOFpu/HGKkyf3pXIyJImJiucVPiKSN5knLvkJgqeHtrUk1gMt09OadiCclhnNvt9Izic8AplOX0q0dPrISJSHBmGwbx5v/D005tISckc2mW3W5kw4UZGjGiO1ap5BDlR4SsimcMNnPEXL2azFrrpZ312WndgWe/1Zi/SQ2vYS+VqMpjmi4mIvzh71snLL3/jKXrr1CnLrFnRNGkSYXKywk2Fr0hx5krLXLngoqsaxHp6aC3udJ+c0rAE/DV29lI7g2VOCsPm8Mk5RUT8TenSQUyb1pm+fRdz331NmDTpFkJCtNvi5ajwFSlqDANLeuKFovVSvbPOOJ+d1h0Qmlm0ZtsRzHtDBcNRTpPBRER8LDU1g5SUdMqWvbBZTYcONfjyy0HUqxduYrKiRYWvSGHhdmFxxnk2UbCknPjr/7HYsvbQpsRiyTjnk1MaWDCCwv9WwGb2ymZupvDXJLHgCLCH+uScIiKSNzt3nmT48BVUqVKK//63u9c2wyp680aFr0h+c6V6Dyu42AoHqSexGC6fnNKwOrzXm81p3dngiriDwsGqP42JiBRGbrfBnDk/8eyzX+F0uti1K4733tvB/fc3NTtakaXCV+RKGAaWtIScN1E4vyPY+ba00z47rTuwjNcY2QtDDLxvG4FlNNNLRKQIi41NYvTo1WzceMDT1qBBOK1aRZqYquhT4StyEZa00wQe/Bxb8qEcemhjsbidPjmPYbF598wGV/zbCgcXhiBgC/LJOUVEpPBauXIPY8euJS7uwhrnQ4dex1NPtSUoSKXb1dC7J3IRpTb2JzD2qyt+vhFQAldwxF/jZLOvaHC+h9ZwlAOrzYfJRUSkKEpOTmfixC+YN2+Hpy0iogRvvtmFdu2qm5is+FDhK5ID25k/Llr0uoPCM3tjsxayOaxBa9i1Y46IiOTO6dOpREd/yJ49F7Zm79q1NlOndiIsLPgSz5S8UOErkgPH/oWe2+fqD8dZ856/CtoKmgwmIiI+V6ZMEE2aRLBnTwIhIQFMntye/v0bea3gIFdPha/I3xkGQfsyC18DCykNx+AOqWhyKBERKe6mTOlAamoG//73TdSuXdbsOMWSCl+Rvwk4tQ1bUgwA6RVvUdErIiI+t2zZbgIDbXTtWsfTVrp0EO+9183EVMWfCl+Rv8k6zCG1Vh8Tk4iISHGTmOjkySc3smDBTsqUcdC0aQSVK2tOSEHRvqIiWbkzCIpZDGRuApFW7U6TA4mISHGxdetR2rf/LwsW7ATg9Gknn3yyy+RU/kU9viJZ2I9twpp6EoC0Kl0wAkubnEhERIq6jAw3U6d+y2uvfYfLZQAQGhrIiy92oHfv+ian8y8qfEWyCNr/sed2as3eJiYREZHiICbmNCNGrGTbtmOethYtKvPWW12pXl2dKwVNha/IeRnnCDy4HAC3vTRpVTqZHEhERIoqwzBYsGAnEyZsIDk5HQCbzcJjj7Xi0UdvICBAo03NoMJX5C+Ow6uwZiQB4KzeTdsDi4jIFTt9OpVnnvnCU/RWr16amTO70rx5ZZOT+Tf9uiHyF8e+C6s5OGtqNQcREblyZcsGM3Vq5l8O+/ZtyMaNA1X0FgLq8RUBLM54Ao+uBcAVXJH0iLYmJxIRkaIkLc1FWpqL0NBAT1t0dB3Wru1P06YRJiaTrNTjKwI4DizD4s78c5Sz5t1gtZmcSEREioo9e+KJjv6QMWPWYBiG12MqegsXFb4ieG9aoWEOIiKSG4Zh8P77O+jY8b/s2HGCZcv+YOFCrctbmGmog/g9a/JhAmM3A5BR6hoyyjU1OZGIiBR2p06dY+zYtaxatdfTVqdOWerXDzMxlVyOCl/xe479n3huO2v1AYvFxDQiIlLYbdgQw+jRqzlxItnTdt99TZg06RZCQuwmJpPLUeErfs9r04oad5uYRERECrPU1Ayee+5rZs/+0dMWFhbM6693onPn2iYmk9xS4St+zXZ6FwEJvwCQHt4cdyn94BIRkewSElLo3v1jdu065Wnr0KEGb7zRmYiIEiYmk7zQ5Dbxa44svb1ObVEsIiIXUaZMkGeLYYfDxvPPt+fDD3uo6C1i1OMr/sswPMMcDIuV1Bq9TA4kIiKFlcVi4bXXOpGauoJJk26hfv1wsyPJFVDhK34r4OT32JIOAJBesR1GcAWTE4mISGGxatVeAgNtdOhQw9MWFhbMwoXqJCnKVPiK3wrav8BzO7WW1u4VERFITk5n4sQvmDdvB+HhIXzxxSDKlw8xO5b4iMb4in9yp+OIWQKAYQsireodJgcSERGzbd8ey623/pd583YAmWv1fvjhryanEl9Sj6/4pcCjG7A64wBwVonGCCxlciIRETGLy+VmxoxtvPjiFjIy3ACEhATw7LPtGDCgscnpxJdU+Ipf0moOIiICcORIIiNHrmTLlsOetqZNI5g1K5ratcuamEzygwpf8T/pyTgOfQ6AO7AMaZG3mRxIRETMsGzZbsaNW8eZM04gc+PO0aNbMn58awIDbSank/ygwlf8juPwCiwZmdtMOqt3B1uguYFERKTAxcWlMHbsWhIT0wCIjCzJjBldaNOmqsnJJD9pcpv4Hce+hZ7bzppazUFExB+FhQXz0ksdAejevS4bNw5U0esH1OMrfsWSGkfg0fUAuEIiSY9oY3IiEREpCBkZbtLSXISE2D1tvXrVp3LlkrRqFYnFYjExnRQU9fiKX3EcWILFyADAWfNusOgjICJS3MXEnKZbtwVMmLAh22OtW1dR0etH9K+++JWgLKs5pGo1BxGRYs0wDBYs2En79vPZtu0YH374G59++ofZscREGuogfsOadBD7iW8AyChdD1dZrc0oIlJcnT6dyvjx61i27EKhW716aSpXDjUxlZhNha/4Dcf+Tzy3nTV7Z65bIyIixc7mzYcYOXIlR48medr69m3I88+3JzRUK/n4MxW+4jeC9l9YzUHDHEREip+0NBdTpmxh+vStGEZmW5kyDl555Ta6dYsyN5wUCip8xS/YEn4j4PROANLL34C7ZA1zA4mIiE/Fx6fQp88iduw44Wlr27Yq06d3oXLlkiYmk8JEha/4haxr96q3V0Sk+ClTJohy5YIBsNutTJhwIyNGNMdq1bA2uUCrOkjxZ7hx/LWag2Gx4azR0+RAIiLia1arhTff7MwNN0SycmU/Ro1qoaJXslGPrxR/RzZjSz4MQFrlDhhB4SYHEhGRq7VxYwxBQQG0bl3F0xYREcry5feYmEoKO9N7fD/44AM6dOhA48aN6d27Nzt27Ljk8e+99x6dO3emSZMm3HLLLTz//PM4nc4CSitF0q4PPDe1RbGISNGWmprBv/+9iXvuWczw4Ss4fTrV7EhShJha+K5YsYIXXniBkSNHsmTJEurVq8eQIUOIi4vL8fjly5fz6quvMmrUKFasWMFzzz3HihUrmDp1agEnlyLDlQZ//DXMISAEZ9XbTQ4kIiJX6pdfYunc+X/Mnv0jAEePJjFv3qU7zESyMrXwnTt3Ln369KFXr17UqVOHSZMmERQUxKJFi3I8/qeffuK6667jzjvvpEqVKrRt25Y77rjjsr3E4r8Cj66H1HgAnFWiwa6Fy0VEihq322D27B9p0eIddu48BYDDYeP559vz8MMtTE4nRYlpY3zT0tL47bffGDp0qKfNarXSpk0bfvrppxyf06xZMz799FN27NhBkyZNOHToEF988QV33XVXns9vsWj/An/gyLJ2r7NWb13zYu789dV19g+63v7h+PEkRo9ezcaNBzxtDRqEM2tWNPXra85GcZVfn2vTCt+EhARcLhdhYWFe7WFhYezbty/H59x5550kJCRw7733YhgGGRkZ9O3bl2HDhuX5/OXKaU2/Yi8tEQ6tyLwdFEbpJj3AZjc3kxSIsDB9vv2JrnfxtWzZ7zz44HJOnTrnaRszphXPP9+RoCDNz5e8K1LfNd999x2zZ89m4sSJNGnShIMHD/Lcc88xY8YMRo4cmafXio9PxO3Op6BSKDj2fkTJjBQAUqt3JykhFdAkiOLMYsksguLiEj27NknxpetdvJ06dY57713MuXPpAERElGDevB5cf30FkpJSSEq6zAtIkWa15k8npWmFb9myZbHZbNkmssXFxREenvOfLt544w26detG796ZGxDUrVuXc+fO8fTTTzN8+HCs1twPWTYM9IOymPPetKKPrrcf0efbv+h6F09hYSFMntyOsWPX0qVLbV5/vRN161bg1Cn9ouMP8usamza5LTAwkIYNG/LNN9942txuN9988w3NmjXL8TmpqanZilubzQaAoU+BZGFJOYn92MbMOyWrkVHhBnMDiYjIJblcbpzODK+2/v0b8dFHPXj//W6EhQWblEyKE1NXdbj//vtZuHAhS5YsYe/evTzzzDOkpKTQs2fmzlqPP/44r776quf49u3b8+GHH/L5559z6NAhNm/ezBtvvEH79u09BbAIgOPAYiyGK/NO/XvBYvqS1SIichFHjiRy992f8MwzX3q1WywWOnSoiUUzGMVHTB3jGx0dTXx8PNOmTePkyZPUr1+fOXPmeIY6HDt2zKuHd/jw4VgsFl5//XViY2MpV64c7du3Z8yYMWZ9CVJIBf21RTEA9e41L4iIiFzSsmW7GTduHWfOONm8+TAdO9bg1ltrmR1LiimL4adjBOLiNLmtuLIm7idsSVMAMso2JOCBXzUmzE9YLBAeXlLX20/oehdtiYlOnnxyIwsW7PS0RUaWZObMrrRqVSXb8bre/sVqzZ8VW4rUqg4iuRG0/xPPbWfN3vomFxEpZLZuPcqIESs5cOCMp61797q89FJHypQJMjGZFHeqCaR4MQzvTStq3k0JE+OIiMgFGRluXnvtO6ZO/RaXK7PbNjQ0kBdf7EDv3vU1llfynQpfKVZsCb8QcGY3AOkVWuMOrWZyIhERAYiPT2HAgKVs23bM09aiRWXeeqsr1auXNjGZ+BMVvlKsBP1t7V4RESkcSpd2EBCQOWHdZrPw2GOtePTRGzxtIgVB321SfBhuHDGZ43sNSwDO6t3NzSMiIh42m5UZM7rSpEkFli+/h3HjWqvolQKnHl8pNuyxm7GdOwpAWuStGEFhaLSYiIg5tmw5RFBQANddV8nTVrVqKdau7a+xvGIa/aolxYYjy9q9zpq9TUwiIuK/0tJcTJ78FT16fMzQoStISkrzelxFr5hJha8UDy4njgNLATACSuCsEm1uHhERP7RnTzzR0R8ybdpWDAMOHDjD3LnbzY4l4qGhDlIsBB5ZhzXtNADOaneAXYuYiYgUFMMwmD//F/79702kpGQAYLdbmTDhRkaMaG5yOpELVPhKseC9dq+GOYiIFJRTp84xduxaVq3a62mrU6css2ZF06RJhInJRLJT4StFniXtLI7DKwFwB4WTVqm9yYlERPzDhg0xjB69mhMnkj1t993XhEmTbiEkxG5iMpGcqfCVIi/w0HIsrlQAnNV7gFU/bEVE8tuJE8kMHryM1FQXAGFhwbz+eic6d65tcjKRi9PkNinyvDatqKVNK0RECkKFCiX4179uAqB9++ps2jRIRa8UeurxlSLNkhKL/fgXALhCa5AR3tLkRCIixZPbbeByubHbbZ62Bx9sRqVKodx++zVYrVqmTAo/9fhKkRYUswiL4QYgtebdoPUhRUR8LjY2ib59F/PCC5u92q1WC3feGaWiV4oMFb5SpHlvWqFhDiIivrZy5R5uuWUemzYdYMaMbXz11UGzI4lcMQ11kCLLdnYP9lM/AJBetgmuMvVMTiQiUnwkJ6czceIXzJu3w9NWvrzWSJeiTYWvFFmO/Z94bmvtXhER39m+PZZhw1awd2+Cp61Ll9q89lonwsKCTUwmcnVU+ErRZBieTSsMLDhr3m1yIBGRos/lcjNjxjZefHELGRmZ8ydCQgJ49tl2DBjQGIvmUUgRp8JXiqSA+J8JOLsHgPSIG3GXiDQ5kYhI0RYXl8KDDy5n8+bDnramTSOYNSua2rXLmphMxHdU+EqR5NiXdYtiTWoTEblapUoFkpycDmQukDN6dEvGj29NYKDtMs8UKTq0qoMUPW4XjphFABhWO87q3UwOJCJS9NntNmbOjCYqqhxLlvTmqafaquiVYkc9vlLk2GO/wpZyHIC0yE4YjnImJxIRKXq2bj1KcLCdRo3Ke9pq1y7Ll1/ep3V5pdhSj68UOd5r92o1BxGRvMjIcPPyy9/QrdsChg37nHPn0r0eV9ErxZkKXylaXKk4DiwDwB0QirNKV5MDiYgUHTExp+nWbQEvv/wNLpfBH3/EM3fudrNjiRQYDXWQIiXw8Bqs6WcBSKt2JwRoPUkRkcsxDIOFC3cxYcIGkpLSALDZLIwb15qhQ68zOZ1IwVHhK0VK0P4Lqzmk1tJqDiIil3P6dCrjx69j2bI/PG01apTmrbe60rx5ZROTiRQ8Fb5SZFjSThN4eDUA7qDypFe8xeREIiKF2+bNhxg5ciVHjyZ52vr1a8hzz7UnNDTQxGQi5lDhK0WG48ByLG4nAKk1eoFV374iIhcTG5vEPfcsJi3NBUCZMg5eeeU2unWLMjmZiHk0uU2KDK3mICKSexERoYwb1wqAtm2rsmnTIBW94vfUZSZFgvXcMezHvwDAVbImGeHNTU4kIlK4GIaB221gs13o03r44RZUrlySu++ur2XKRFCPrxQRjphFWDAASK3ZJ3M/TRERAeDUqXPcd9+nTJ36nVe7zWalT58GKnpF/qIeXykSvIc5aDUHEZHzNmyIYfTo1Zw4kczatfto1646LVpotQaRnKjwlULPduZP7HE/AZAe1gxX6WtMTiQiYr7U1Ayee+5rZs/+0dNWpkyQZ51eEclOha8Ueo4sa/dqUpuICOzceZLhw1eya9cpT1v79tWZNq0LERElTEwmUrip8JXCzTA8m1YYWHDW6GVyIBER87jdBnPm/MSzz36F05m5TJnDYePpp29iyJBmGssrchkqfKVQC4j7AVvifgDSK96MO6SSyYlERMwRH5/C8OEr2LjxgKetfv1wZs2Kpn79cBOTiRQdKnylUHPsyzrMQZPaRMR/hYTYOX78wg5sQ4dex1NPtSUoSP+Ui+SWljOTwsudQVDMYgAMayDO6neaHEhExDxBQQHMnBlNtWqlWbCgJ88+205Fr0ge6RMjhZb9+BdYU08AkFalC0ZgGXMDiYgUoO3bYwkJsXPNNeU8bQ0alOfbb+8nIED9ViJXQp8cKbSCsqzdm6rVHETET7hcbqZN+56uXT9k6NDPcTozvB5X0Sty5fTpkcIpI4XAg8sBcNtLkVals8mBRETy35EjifTq9QmTJ39NRoabX389ydy5282OJVJsaKiDFEqBh1dhTU8EwFmtG9iCTE4kIpK/li3bzbhx6zhzxglk7sw+enRLHnjgWnODiRQjKnylUArKumlFLa3mICLFV2Kikyef3MiCBTs9bZGRJZkxowtt2lQ1MZlI8aPCVwodizOBwCNrAHAFVyQ94iaTE4mI5I+tW48yYsRKDhw442nr3r0uL73UkTJl9JcuEV9T4SuFjuPAMizudIDMndqsNpMTiYj43rFjifTo8TFpaZk7sIWGBvLiix3o3bs+Fot2YBPJD5rcJoWOI8tqDk6t5iAixVSlSiUZMeJ6AFq0qMzGjQPp06eBil6RfKQeXylUrMlHsMd+DUBGqTpkhDUzOZGIiG8YhgHgVdiOH9+ayMhS9O/fSMuUiRQAfcqkUHHELMJC5j8Ozpq9M6c1i4gUcadPp/LQQ5/z1ls/eLXb7Tbuu6+Jil6RAqIeXylUHPuyrOagYQ4iUgxs3nyIkSNXcvRoEitW7OHmm6vRuHEFs2OJ+CUVvlJo2E7/jj1hBwDpYdfhKlXH5EQiIlcuLc3FlClbmD59K3+NcqBECTsnTiSbG0zEj6nwlULDobV7RaSY2LMnnmHDVrBjxwlPW9u2VZk+vQuVK5c0MZmIf1PhK4WDYRC0/5PMmxYrqTV6mRxIRCTvDMNg3rxfePrpTaSkZABgt1uZMOFGRoxojtWqeQsiZrqqwtfpdOJwOHyVRfxYwKnvsSXFAJBe8RaM4AhzA4mI5FFCQgqPPLKGVav2etrq1CnLrFnRNGmin2kihUGep5G63W5mzJjBTTfdRLNmzTh06BAAr7/+Oh9//PFlni2Ss6B9F753UjXMQUSKoMDAAP78M95zf/DgpqxbN0BFr0ghkufC96233mLJkiWMHz8eu93uaY+KiuKTTz7xaTjxE+50HAcWA2DYgkireqfJgURE8q5ECTszZ3alYsUSzJ9/Fy+91JGQEPvlnygiBSbPhe+yZct49tln6datG1brhafXrVuXffv2+TSc+IfAYxuxpp4CwFmlK0ZgKZMTiYhc3s6dJ4mJOe3Vdu21Fdm6dQidO9c2J5SIXFKeC9/Y2FiqVauWrd0wDDIyMnwSSvyLtigWkaLE7TZ4++0f6dz5fwwfvpKMDLfX4w6H5o2LFFZ5Lnzr1KnDtm3bsrWvWrWK+vXr+ySU+JH0ZBwHPwPAHViGtMjbTA4kInJxsbFJ9O27mH/9axNOp4sffjjGe+9tNzuWiORSnn8tHTFiBE888QSxsbEYhsGaNWvYv38/S5cuZfbs2fmRUYoxx+GVWDIyF3N3VrsLbFolREQKp5Ur9zBmzBri41M9bUOHXseAAY1NTCUieZHnwvfWW29l1qxZzJgxg+DgYKZNm0aDBg2YNWsWN954Y35klGJMm1aISGGXnJzOxIlfMG/eDk9bREQJpk3rTPv2NcwLJiJ5dkUDkZo3b87cuXN9nUX8jCU1jsAj6wBwhVQmPUK/OIlI4bJ9eyzDhq1g794ET1vXrrWZOrUTYWHBJiYTkSuR5zG+HTt2JCEhIVv72bNn6dixo09CiX9wHFiKxcicEOmscTdY8vztKCKSb44cSeT22z/yFL0hIQFMnXob773XTUWvSBGV50rjyJEjuN3ubO1paWnExsb6JJT4B63mICKFWWRkSe6/vykATZtGsH79QAYMaIzFom2HRYqqXA91WL9+vef2V199RcmSJT333W4333zzDZGRkb5NJ8WWNekggSe2AJBRui4Z5ZqYnEhEJHNpzqyF7VNPtSUysiQPPHAtgYE2E5OJiC/kuvAdOXIkABaLhSeeeML7RQICiIyMzNYucjGOmEWe286avUE9KCJiosREJ08+uZFmzSrywAPXetqDggIYNux684KJiE/luvD9/fffAejQoQOffPIJ5cqVy7dQUvwF7buwmkOqhjmIiIm2bj3K8OErOXjwDMuW7aZt26pERYWZHUtE8kGex/hu2LBBRa9cFVvCbwSc/g2A9PAWuEvWNDmRiPijjAw3L720hW7dFnDw4BkAAgJsxMScMTmZiOSXK1rO7Ny5c2zdupWjR4+Snp7u9digQYN8EkyKr6Ask9pStXaviJggJuY0I0asZNu2Y562Fi0q89ZbXalevbSJyUQkP+W58N25cycPPfQQKSkppKSkULp0aRISEggODqZcuXIqfOXSDDeO/Z9k3rTYcFbvaXIgEfEnhmGwYMFOJkzYQHJyZseNzWbhscda8eijNxAQoGUVRYqzPH/CX3jhBdq3b8/WrVtxOBwsXLiQjRs30rBhQ/75z3/mR0YpRgJOfIct+SAA6ZXaYwSXNzmRiPiLM2dSeeihzxk9erWn6K1evTTLl9/DuHGtVfSK+IE8f8p37drF/fffj9VqxWazkZaWRqVKlRg/fjxTp07Nj4xSjATt16Q2ETGHxWLhxx+Pe+737duQjRsH0rx5ZRNTiUhBynPhGxAQgNWa+bSwsDCOHj0KQGhoKMePH7/UU8XfudNxHFgCgGELJq3aHSYHEhF/UqqUgxkzuhAWFsycOXcwbVpnQkMDzY4lIgUoz2N8GzRowC+//EKNGjVo0aIF06ZNIyEhgWXLlnHNNdfkR0YpJgKPrsfqjAfAWbUrhr3kZZ4hInLl9uyJJyTETuXKF37WtGpVhW3bHqRECbuJyUTELHnu8R0zZgzly5f33C5VqhTPPPMMCQkJ/Oc///F5QCk+HFnW7nXWvMfEJCJSnBmGwfvv76Bjx/8yatQq3G7D63EVvSL+K889vo0bN/bcDgsL49133/VpICmm0pNwHF4BgDuwLGmVO5ocSESKo1OnzjF27FpWrdoLwNdfH2LevB0MHtzU5GQiUhj4bArrb7/9xtChQ331clLMOA59jiXjHADOGj3ApnF1IuJbGzbE0K7dfE/RC3DffU3o06eBialEpDDJU+H71VdfMWXKFKZOncqhQ4cA2Lt3LyNGjODuu+/G7XbnOcAHH3xAhw4daNy4Mb1792bHjh2XPP7s2bNMmjSJtm3b0qhRIzp37swXX3yR5/NKwXJk2bTCWVObVoiI76SmZvDvf2+ib9/FnDiRDEBYWDDz59/Fyy/fSkiIhjaISKZcD3X4+OOP+fe//03p0qU5e/YsH3/8MU888QSTJ0+ma9eufPbZZ9SuXTtPJ1+xYgUvvPACkyZNomnTprz//vsMGTKEVatWERaWfZ/0tLQ07r//fsLCwnjjjTeIiIjg6NGjlCpVKk/nlYJlST1F4NH1ALhCqpBeoZXJiUSkuPjll1j69v2EnTtPedrat6/OtGldiIgoYWIyESmMcl34zps3j3HjxvHggw+yevVqHnnkET788EOWL19OxYoVr+jkc+fOpU+fPvTq1QuASZMmsWnTJhYtWsRDDz2U7fhFixZx5swZPvroI+z2zN/gq1SpckXnloLjiFmMxXAB4KzZGyxaJF5Ert6hQ2dp3XouTmfmzxeHw8bTT9/EkCHNsFotJqcTkcIo14XvoUOH6NKlCwCdOnUiICCA8ePHX3HRm5aWlm1csNVqpU2bNvz00085PmfDhg1ce+21/Oc//2H9+vWUK1eOO+64g3/84x/YbLY8nd9iyfxP8l9Q1mEOtXoX6Pt+/ly61v5B19u/VKtWikGDmvLOOz/SoEE4s2ZFU79+uNmxJJ/o8+1f8us657rwTU1NJTg4+K8wFux2OxUqVLjiEyckJOByubINaQgLC2Pfvn05PufQoUN8++233Hnnnbz99tscPHiQSZMmkZGRwahRo/J0/nLltIZsgTizH05+l3k7vBFlo1qbEiMsTNfbn+h6+4/XXutM9eqleeyxNgQF5XmhIimC9PmWq5GnnxIff/wxISEhALhcLhYvXkzZsmW9jhk0aJDv0v2NYRiEhYXx7LPPYrPZaNSoEbGxsbz77rt5Lnzj4xO5grl4kkfBO97j/Ci75Gq9SDmVWKDnt1gyf0jGxSViGJc/Xoo2Xe/iKzk5nYkTv+D66yvRr19D4ML1HjasGUlJKSQlmRxS8pU+3/7Fas2fTspcF76VK1dm4cILGxCEh4ezbNkyr2MsFkuuC9+yZctis9mIi4vzao+LiyM8POc/VZUvX56AgACvYQ21atXi5MmTpKWlERiY+yWyDAN9cPKbYXhtWpFa427T3nNdb/+i6128bN8ey/DhK9izJ4FPPtnFDTdEUrNmGc/jut7+RdfbP+TXNc514bthwwafnjgwMJCGDRvyzTffcOuttwLgdrv55ptvGDBgQI7Pue666/jss89wu91YrZkTpGJiYihfvnyeil4pGLaEXwk48zsA6eVb4Q6tbnIiESlKXC43M2Zs48UXt5CRkfknOsMw+P33U16Fr4hIbpk6vf7+++9n4cKFLFmyhL179/LMM8+QkpJCz549AXj88cd59dVXPcf369eP06dP89xzz7F//342bdrE7Nmz6d+/v1lfglxC0P4svb21tHaviOTekSOJ9Or1CZMnf+0peps2jWD9+oF07VrH5HQiUlSZOhMgOjqa+Ph4pk2bxsmTJ6lfvz5z5szxDHU4duyYp2cXoFKlSrz77ru88MILdOvWjYiICAYNGsQ//vEPs74EuRjDjWP/J5k3LQE4q/cwOZCIFBXLlu1m3Lh1nDnjBDLHdo4e3ZLx41sTGJi3FXxERLKyGIZ/jpSJi9PktvxkP/41ZdZEA+CM7MzZjh9f5hn5w2KB8PCSnDqlyRD+QNe7aEtKSmPChA0sWLDT0xYZWZIZM7rQpk3VbMfrevsXXW//YrXmzwoeWvtF8oX3FsW9TUwiIkWF0+li06YDnvvdu9flpZc6UqZMkImpRKQ40RZa4nuuNBwHlgBgBITgrHq7yYFEpCgICwvmzTe7ULJkINOnd2H27GgVvSLiU1fU43vw4EEWLVrEoUOHeOqppwgLC+OLL76gcuXKXHPNNb7OKEVM4NF1WNNOA2QWvfYSl36CiPilmJjThITYqVDhws+Idu2q8+OPD1K6tApeEfG9PPf4fv/999x5553s2LGDNWvWcO7cOQB2797Nm2++6fOAUvRkXbvXWVOrOYiIN8Mw+Oij32jffj6PPrqGv081UdErIvklz4Xvq6++yqOPPsrcuXOx2+2e9latWvHzzz/7MpsUQZb0RByHVwDgdoSRVrmDyYlEpDA5fTqVhx76nNGjV5OcnM66dfv58MPfzI4lIn4iz4XvH3/84dlwIqty5cqRkJDgk1BSdAUeXI7FlQqAs0YPsNov8wwR8RebNx+iXbt5LFv2h6etb9+GdOsWZWIqEfEneR7jW7JkSU6ePEnVqt5Ly+zatYuIiAifBZOiKSjLag6pGuYgIkBamospU7YwffpWzzJUZco4eOWV21T0ikiBynOP7+23384rr7zCyZMnsVgsuN1ufvjhB6ZMmUL37t3zIaIUFZaUE9iPbQTAFVqdjPI3mJxIRMz255/xREd/yJtvXih627atyqZNg1T0ikiBy3OP75gxY/jPf/5Du3btcLlc3H777bhcLu644w6GDx+eHxmliHDELMZiZO4K4qxxd+Zq4yLit2JiTnPrrf8lJSUDALvdyoQJNzJiRHOsVv18EJGCl+fCNzAwkMmTJzNixAj+/PNPkpOTadCgATVq1MiHeFKUBO2/sJpDai0NcxDxdzVqlCE6ug6LFv1OnTplmTUrmiZNNCRORMyT58J327ZtNG/enMqVK1O5cuX8yCRFkDVxH/ZT2wDIKNsYV5n6JicSkcJgypSOVK1aikcfvYGQEE12FRFz5XmM7+DBg+nQoQNTp05lz549+ZFJiiDvSW3aoljE36SmZvDvf2/i00//8GovVcrBk0+2VdErIoVCngvfL7/8kgceeIDvv/+eO+64g7vuuos5c+Zw/Pjx/MgnRYFh/G3TirtNDCMiBW3nzpN07vw/Zs/+kcceW8uRI4lmRxIRyVGeC99y5coxYMAAPvroI9auXUuXLl1YunQpHTp0YNCgQfmRUQq5gPjtBJz9E4C0iBtxl6hiciIRKQhut8Hbb/9I587/Y9euU0Bmz+/PP6sjREQKpzyP8c2qatWqPPTQQ9SrV4833niDrVu3+iqXFCGO/dqiWMTfxMYmMXr0ajZuPOBpq18/nFmzoqlfP9zEZCIiF3fFhe8PP/zA8uXLWb16NU6nk44dOzJ27FhfZpOiwO3CsX8RAIbVjrP6XSYHEpH8tnLlHsaOXUtcXIqnbejQ63jqqbYEBV1Vf4qISL7K80+oV199lc8//5wTJ05w44038tRTT9GxY0eCg4PzI58UcvbYr7GlHAMgrfJtGI5yJicSkfySnJzOxIlfMG/eDk9bREQJpk3rTPv2NcwLJiKSS3kufLdu3cqQIUPo2rUr5cqpyPF3jiyrOTi1moNIsZaU5OTzz//03O/atTZTp3YiLEwdHyJSNOS58P3oo4/yI4cURa5UHAeWAeAOCMVZtavJgUQkP0VEhDJ16m0MH76CyZPb079/IyzaoVFEipBcFb7r16/n5ptvxm63s379+kse27FjR58Ek8Iv8MharOlnAEirdgcEhJicSER86ciRREJCAihb9kKPbteuddi69UHKl9fnXUSKnlwVviNHjmTz5s2EhYUxcuTIix5nsVjYtWuXz8JJ4RaUZe3eVK3mIFKsLFu2m3Hj1nHzzdWYM+cOr55dFb0iUlTlqvD9/fffc7wt/suSdobAw6sAcAeVJ71SO3MDiYhPJCY6efLJjSxYsBOA5cv/ZNGi37n7bm1DLiJFX543sFi6dClpaWnZ2tPS0li6dKkvMkkREHhwORa3E4DUGj3BqiWMRIq6rVuP0r79fz1FL0D37nW59daaJqYSEfGdPBe+EyZMIDEx+3aUycnJTJgwwSehpPAL0moOIsVGRoabl1/+hm7dFnDwYOa4/dDQQKZP78Ls2dGUKRNkckIREd/IczedYRg5zuKNjY2lZMmSPgklhZv13HHsx78AwBVag4zwFiYnEpErFRNzmhEjVrJt2zFPW4sWlXnrra5Ur17axGQiIr6X68K3e/fuWCwWLBYL9913HwEBF57qcrk4fPgwN910U76ElMLFEbMIi+EGILVmb9ByRiJF0r59Cdx66wckJWUOX7PZLDz2WCseffQGAgLy/AdBEZFCL9eF76233grArl27aNu2LSVKlPA8ZrfbiYyMpFOnTr5PKIWOY/+F1RycWs1BpMiqWbMMN91UlZUr91K9emlmzuxK8+aVzY4lIpJvcl34jho1CoDIyEiio6NxOBz5FkoKL9vZP7HH/QRAermmuMrUNTmRiFwpi8XC1KmdqFr1W5544kZCQwPNjiQikq/y/LesHj16qOj1Y459WSe1qbdXpKhIS3Px7LNfsXbtPq/2sLBgJk9ur6JXRPxCrnp8W7ZsyapVqyhXrhwtWrS45BaV33//vc/CSSFjGDj+Ws3BwIKzZi+TA4lIbuzZE8+wYSvYseMEH374G5s2DaRChRKXf6KISDGTq8J3woQJhIaGem5rb3b/FBD3IwGJewFIr3gT7hCNBRQpzAzDYN68X3j66U2kpGQAcOZMKt9/f5Q77rjG5HQiIgUvV4Vvjx49PLd79uyZb2GkcHNo7V6RIuPUqXOMHbuWVav2etrq1CnLrFnRNGkSYWIyERHz5Hkd399++42AgADq1s2c1LRu3ToWL15MnTp1GDVqFIGBGidWLLldOGIWAWBYA3FWv8vkQCJyMRs2xDB69GpOnEj2tA0e3JRnnrmZkBC7iclERMyV58ltTz/9NDExMQAcOnSIMWPGEBwczKpVq3j55Zd9nU8KCfvxL7GlxAKQVqUzRmAZcwOJSDapqRn8+9+b6Nt3safoDQsLZv78u3jppY4qekXE7+W58I2JiaF+/foArFy5kpYtW/Lqq6/ywgsvsGbNGp8HlMIhKMvavaka5iBSKJ06dY4PP/zNc79Dhxps2jSIzp1rm5hKRKTwyHPhaxgGbnfmrl3ffPMNN998MwCVKlUiISHBt+mkcMhIIfDgpwC47aVIi+xsciARyUmVKqV46aWOOBw2nn++PR9+2IOICK3eICJyXp7H+DZq1IiZM2fSunVrtm7dyjPPPAPA4cOHCQ8P93U+KQQCj6zGmp4IQFq1OyEg2OREIgIQG5tESIidkiUvrK3es2c9brghksjIkiYmExEpnPLc4/vkk0+yc+dOnn32WYYNG0b16tUBWL16Nc2aNfN5QDFf0L6swxy0aYVIYbBy5R7atZvPk09uzPaYil4RkZxZDMMwfPFCTqcTq9WK3V40Jk/ExSXy14gNuQSLM4Gwj6/B4k7DFRxBfK/fwWozO1auWSwQHl6SU6cS8c13uhRm/nC9k5PTmTjxC+bN2+Fpe/fdO7jzzigTU5nDH663XKDr7V+sVggL8/0v8Xke6nDer7/+yt69metD1qlTh4YNG/oslBQejoOfYnGnAeCs0atIFb0ixc327bEMG7aCvXsvzKfo2rU2bdpUNTGViEjRkefCNy4ujkcffZStW7dSqlQpAM6ePcsNN9zAa6+9Rrly5XweUsyjTStEzOdyuZkxYxsvvriFjIzMP1WFhAQweXJ7+vdvpN00RURyKc9jfJ999lnOnTvH559/zvfff8/333/PZ599RlJSEpMnT86PjGIS67mj2I9/BUBGydpkhF1nciIR/3PkSCK9en3C5Mlfe4repk0jWL9+IAMGNFbRKyKSB3nu8f3qq6+YO3cutWtfWBeyTp06TJw4kQceeMCn4cRcjv2LsJA5kMpZs3fmACsRKTB79ybQpcv/OHPGCWR+BEePbsn48a0JDNSwIxGRvMpzj6/b7c5xAltAQIBnfV8pHhxZNq1w1tIwB5GCVrNmGa67riKQuVLDkiW9eeqptip6RUSuUJ4L31atWvHcc88RGxvraYuNjeWFF16gdevWPg0n5rGd3o09fjsA6WHNcJW6xuREIv7HarUwbVpnBg5szMaNAzWJTUTkKuV5qMPTTz/N8OHD6dixIxUrZvZEHD9+nGuuuYaXX37Z5wHFHF69vVq7VyTfZWS4ee2172jVKpKbbqrmaY+ICOXVV28zMZmISPGR58K3UqVKLFmyhG+++caznFnt2rVp06aNz8OJSQyDoL9WczAs1sxlzEQk38TEnGbEiJVs23aMSpVC2bRpIGXLaodEERFfy1Phu2LFCtavX096ejqtW7dm4MCB+ZVLTBRwaiu2pBgA0ivegjukormBRIopwzBYuHAXEyZsICkpc73sEyeS+frrQ365IYWISH7LdeH7v//9j//85z9Ur16doKAg1q5dy8GDB/nnP/+Zn/nEBFnX7k3V2r0i+eL06VTGj1/HsmV/eNqqVy/NzJldad68sonJRESKr1xPbvvggw8YNWoUq1evZtmyZbz44ot8+OGH+ZlNzODOIChmMQCG1UFatTtNDiRS/GzefIh27eZ5Fb19+zZk48aBKnpFRPJRrgvfQ4cO0b17d8/9O++8k4yMDE6cOJEfucQk9mObsKaeBCCtSheMwNImJxIpPtLSXEye/BU9e37M0aNJAJQu7WDOnDuYNq0zoaGBJicUESnecj3UIS0tjZCQEM99q9WK3W7H6XTmSzAxR1CW1RxSa2k1BxFfOno0kTlzfsbI3BeGG2+swvTpXYmMLGluMBERP5GnyW2vv/46wcEXZhqnp6czc+ZMSpa88EN7woQJvksnBSvjHIEHPwPAbS9NWqSWUBLxpRo1yvDcc+14/PH1TJhwIyNGNMdq1Y6IIiIFJdeFb4sWLdi/f79XW7NmzTh06JDnvvaML9och1Zizcj886uz+l1gCzI5kUjRFheXQnBwACEhF3a7vPfeRrRuXYVatcqamExExD/luvCdP39+fuaQQiDrag5OreYgclU2bIhh9OjV3H57HaZM6ehpt1gsKnpFREyS5y2LpXiyOOMJPLoWAFdwJdIj2pqcSKRoSk3N4N//3kTfvos5cSKZuXO3s3btPrNjiYgIV7BzmxRPjgPLsLjTAXDWvBusNpMTiRQ9O3eeZPjwlezadcrT1qFDDZo0iTAxlYiInKfCVwBwZFnNQcMcRPLG7TaYM+cnnn32K5xOFwAOh42JE29myJBrNf9BRKSQUOErWJMOERi7GYCM0lFklGtqciKRoiM2NonRo1ezceMBT1v9+uHMmhVN/frhJiYTEZG/U+ErOGIWeW47a/YG9U6J5MqePfHceecC4uJSPG1Dh17HU0+1JShIP15FRAqbK5rctm3bNsaNG8c999xDbGwsAEuXLmXbtm0+DScFw2vTCg1zEMm1mjXLEBVVDoCIiBIsWNCTZ59tp6JXRKSQynPhu3r1aoYMGUJQUBA7d+4kLS0NgKSkJGbPnu3zgJK/bAk7CUj4FYD08Oa4S9YyOZFI0WGzWZkxoyu9e9dn06ZBtG9fw+xIIiJyCXkufGfOnMmkSZOYPHkyAQEXejWuu+46du7c6dNwkv+Csqzdm1pTWxSLXIzL5WbatO/5/vujXu1VqpRixoyuhIUFX+SZIiJSWOT573H79++nefPm2dpLlizJ2bNnfRJKCohheDatMCw2nDV6mhxIpHA6ciSRkSNXsmXLYapVK83GjQMoWdJhdiwREcmjPPf4hoeHc/DgwWztP/zwA1WrVvVJKCkYASe/w5aceS3TK7XDCK5gciKRwmfZst20azePLVsOA3Do0Bk2bTpwmWeJiEhhlOfCt0+fPjz33HNs374di8VCbGwsn376KVOmTKFfv375kVHyiSa1iVxcYqKThx9exT/+8TlnzjgBiIwsyZIlvbnzziiT04mIyJXI81CHhx56CLfbzeDBg0lJSWHAgAEEBgbywAMPMHDgwPzIKPnBnY4jZgkAhi2ItGp3mhxIpPDYuvUoI0as5MCBM5627t3r8tJLHSlTJsjEZCIicjXyXPhaLBaGDx/OkCFDOHjwIOfOnaN27dqUKFEiP/JJPgk8ugGrMw4AZ5VoDHtJkxOJmC8jw81rr33H1Knf4nIZAISGBvLiix3o3bu+dmATESnirnixycDAQOrUqePLLFKAvLYorqXVHEQAYmJOM23a956it0WLyrz1VleqVy9tcjIREfGFPBe+AwcOvGSvx7x5864qkBSA9GQchz4HwB1YhrTKt5ocSKRwqFOnHE8/fRNPP/0Fjz3WikcfvYGAgCva50dERAqhPBe+9evX97qfkZHBrl27+PPPP+nevbuvckk+chz6HEvGOQCc1XuALdDkRCLmOH06leDgAByOCz8KH3ywGW3bVqN+/XATk4mISH7Ic+H75JNP5tj+5ptvcu7cuasOJPnPkWXTCqdWcxA/tXnzIUaOXEn37nV55plbPO0Wi0VFr4hIMeWzv+F169aNRYsW+erlJJ9YUuMIPLoeAFdIJOkRbUxOJFKw0tJcTJ78FT17fszRo0m89dYPfPll9rXJRUSk+LniyW1/99NPPxEYqD+ZF3aOA0uwGBkAOGveDRaNXxT/sWdPPMOGrWDHjhOetrZtq1KnTlkTU4mISEHJc+E7atQor/uGYXDy5El+/fVXRowY4bNgkj+C9mXdtEKrOYh/MAyDefN+4emnN5GSkvmLn91uZcKEGxkxojlWq5YpExHxB3kufEuW9F7v1WKxULNmTUaPHk3btm19Fkx8z5p0APvJbwHIKF0PV9lGJicSyX+nTp1j7Ni1rFq119NWp05ZZs2KpkmTCBOTiYhIQctT4etyuejZsydRUVGULq11LYsax/5PPLedtfqAFuOXYm7Pnni6d/+YEyeSPW2DBzflmWduJiTEbmIyERExQ54GeNpsNh544AHOnj3r0xAffPABHTp0oHHjxvTu3ZsdO3bk6nmff/45devW1RCLXArKsppDao27TUwiUjCqVy9NZGQoAGFhwcyffxcvvdRRRa+IiJ/K88yma665hsOHD/sswIoVK3jhhRcYOXIkS5YsoV69egwZMoS4uLhLPu/w4cNMmTKF5s2b+yxLcWZL+JWA0zsBSC9/A+6SNcwNJFIA7HYbM2dGc/vtddi0aRCdO9c2O5KIiJgoz4Xvo48+ypQpU9i4cSMnTpwgKSnJ67+8mjt3Ln369KFXr17UqVOHSZMmERQUdMml0VwuF+PGjePhhx+matWqeT6nPwral6W3V5PapBhyuw3efvtHfvrpmFd7rVplmTu3GxERJUxKJiIihUWux/hOnz6dBx54gIceegiA4cOHe21dbBgGFouFXbt25frkaWlp/PbbbwwdOtTTZrVaadOmDT/99NNFnzdjxgzCwsLo3bs3P/zwQ67Pl5XF4kdDXA03jpjMwtew2Eir2cNvvvbzX6e/fL3+6vjxJEaPXs3GjQeYP/9X1qzpR3CwhjMUd/p8+xddb/+SX9c514XvjBkz6NevH/PmzfPZyRMSEnC5XISFhXm1h4WFsW/fvhyfs23bNj755BOWLl16VecuV67k5Q8qLg5/CcmZw1MsNToTVqWmyYEKXliYH11vP7Ns2e88+OByTp3K3Dny999P8f33x+nVq4HJyaSg6PPtX3S95WrkuvA1DAOAli1b5luYy0lKSuLxxx/n2WefpVy5clf1WvHxibjdPgpWyJX46X2C/7qdWKUHzlOJpuYpSBZL5g/JuLhE/voWlmIiOTmdiRO/4P33L0yGjYgowbx5Pbj++gqc8qPvc3+lz7d/0fX2L1Zr/nRS5mk5M4uP+53Lli2LzWbLNpEtLi6O8PDwbMcfOnSII0eOMHz4cE+b+6/qtUGDBqxatYpq1arl6tyGgX98cFxpOGKWAGAEhJBa5Xbwh6/7b/zmevuJ7dtjGTZsBXv3JnjaunatzWuvdaJu3cyiV9fbf+jz7V90vf1Dfl3jPBW+nTt3vmzx+/333+f69QIDA2nYsCHffPMNt956K5BZyH7zzTcMGDAg2/G1atVi+fLlXm2vv/46ycnJPPXUU1SsWDHX5/YXgUfXY03LLA6cVaLBHmpyIpEr53K5mTFjGy++uIWMjMxfekNCAnj22XYMGNBYO7CJiMgl5anwffjhh7Pt3Ha17r//fv75z3/SqFEjmjRpwvvvv09KSgo9e/YE4PHHHyciIoLHHnsMh8NBVFSU1/NLlSoFkK1dMjn2L/DcdtbSag5StP35Z7xX0du0aQSzZkVTu3ZZk5OJiEhRkKfC9/bbb882Ee1qRUdHEx8fz7Rp0zh58iT169dnzpw5nqEOx44dw2rN86prAljSE3EcWgmA21GOtModTU4kcnXq1QvniSfa8NxzXzN6dEvGj29NYKDN7FgiIlJEWAwjd6Mo6tevz9dff+3zwtcscXHFf3KbY++HlNqcuVRcStQQklq9ZnKigmexQHh4SY35LKKSktIICgogIODCL78ul5tffjnBtddmH9qk6+1fdL39i663f7Fa82cFj1x3peayPpZCxGuLYm1aIUXM1q1Had9+PlOnfuvVbrNZcyx6RURELifXhe/vv/9ebHp7/YEl5ST2YxsBcJWoRkaFG0xOJJI7GRluXn75G7p1W8CBA2eYOvU7vv/+qNmxRESkGMjTGF8pOhwHFmMxXAA4a94NFo2TlsIvJuY0I0asZNu2C9sOX399JW03LCIiPqHCt5gK2rfQc1vDHKSwMwyDhQt3MWHCBpKS0gCw2Sw89lgrHn30Bq8xviIiIldKhW8xZE3cj/3UVgAyyjTEVVZbt0rhdfp0Ko8/vp6lS3d72qpXL83MmV1p3ryyiclERKS4UeFbDHlNatPavVKI7dkTT+/eizhy5ML2wn37NuT559sTGhpoYjIRESmOVPgWN4aBY/+FYQ7OGr1MDCNyaVWqlKJUKQdHjiRSpoyDV165jW7dtBmNiIjkDw2cK2YC4ncQcOYPANIqtMEdWs3kRCIXFxQUwKxZ0dx6a002bRqkoldERPKVCt9ixpFlmIOzZm8Tk4h4MwyDefN2sHt3nFd7/frh/O9/Pahc2fcLlYuIiGSloQ7FiduFI+YTAAxLAM7q3c3NI/KXU6fOMXbsWlat2kvDhuVZtaofDod+/IiISMFSj28xYj+xBdu5zIX+0yJvxQjShiNivg0bYmjXbj6rVu0F4LffTrJmzT6TU4mIiD9Sl0sx4siydq9Ta/eKyVJTM5g8+SvefvsnT1tYWDCvv96Jzp1rm5hMRET8lQrf4sLlxHFwGQBGQAmcVaNNDiT+bOfOkwwfvoJduy6M523fvjrTpnXRLmwiImIaFb7FROCRtVjTTgPgrHYHBISYG0j8ktttMGfOTzz77Fc4nZlbZjscNp5++iaGDGmG1WoxOaGIiPgzFb7FRNbVHLRFsZhl585TPP30F7jdBpC5YsOsWdHUrx9ucjIRERFNbisWLGlncRxeCYA7KJz0Su1NTiT+qlGj8jz6aEsAhg69jtWr71XRKyIihYZ6fIuBwIPLsbhSAXBW7wlWXVYpGOfOpRMUFOA1hOGxx1rRrl11WrWqYmIyERGR7NTjWwwEZdmiOLWWNq2QgrF9eywdO/6Xt97a5tVut9tU9IqISKGkwreIs6TEYj/+BQCu0BpkhLc0OZEUdy6Xm2nTvqdr1w/ZuzeBF17YzI4dsWbHEhERuSz9TbyIC4pZhMVwA5Ba826waNa85J8jRxIZOXIlW7Yc9rQ1aFCeEiUCTUwlIiKSOyp8izjvTSvuMTGJFHfLlu1m3Lh1nDnjBDJ/xxo9uiXjx7cmMNBmcjoREZHLU+FbhNnO7sEe9yMA6WWb4CpT1+REUhwlJjp58smNLFiw09MWGVmSGTO60KZNVROTiYiI5I0K3yIs69q9zlpau1d8b8+eePr1W8KBA2c8bd271+XllztSunSQiclERETyToVvUWUYnsLXwIKzRi+TA0lxVKlSSQICMufAhoYG8uKLHejduz4WjSUXEZEiSKs6FFEBcT8RcHYPAOkRbXGXiDQ5kRRHJUrYmTUrmhtvrMLGjQPp06eBil4RESmyVPgWUV7DHGpq7V65eoZhsGDBTvbvP+3V3rRpBIsX96Z69dLmBBMREfERFb5FkduFI2YRAIbVjrP6XSYHkqLu9OlUHnrocx5+eBUjRqwgPd3l9bh6eUVEpDhQ4VsE2WO/wpZyHIC0yE4YjrImJ5KibPPmQ7RrN49ly/4A4IcfjrNmzT6TU4mIiPieJrcVQVnX7k2tqdUc5MqkpbmYMmUL06dvxTAy28qUcfDqq7dx++3XmBtOREQkH6jwLWpcqTgOfgqA216StCpdTA4kRdGePfEMG7aCHTtOeNratq3K9OldqFy5pInJRERE8o8K3yIm8PBqrOlnAUirdicEBJucSIoSwzCYN+8Xnn56EykpGQDY7VYmTLiRESOaY7VqLK+IiBRfKnyLmKAsqzmkajUHyaNffjnB+PHrPPfr1CnLrFnRNGkSYWIqERGRgqHJbUWIJe00gYdXAeAOqkB6xVtMTiRFTZMmEQwbdj0Agwc3Zd26ASp6RUTEb6jHtwhxHFiOxZ0GQGqNnmDV5ZNLczozCAy0eS1H9tRTN9KhQw3atatuYjIREZGCpx7fIsSx/8JqDs5aWs1BLm3nzpN06vQBc+du92p3OAJU9IqIiF9S4VtEWM8dw378SwAyStYiI+x6kxNJYeV2G7z99o907vw/du2K45lnvmD37jizY4mIiJhOfysvIhwxi7CQudiqs2Zv0E5akoPY2CRGj17Nxo0HPG01a2qDExEREVDhW2Q4sqzm4NSmFZKDlSv3MHbsWuLiUjxtQ4dex1NPtSUoSB91ERER/WtYBNjO/Ik97icA0sOa4SqtXbXkguTkdCZO/IJ583Z42iIiSjBtWmfat69hXjAREZFCRoVvEeDYv8Bz26m1eyWLvXsTGDBgKXv3JnjaunatzdSpnQgL0+YmIiIiWanwLewMw7NphYEFZ41eJgeSwqR8+RDS010AhIQEMHlye/r3b+S1fJmIiIhk0qoOhVzAqW3YEvcDkF7xFtwhlUxOJIVJqVIOZszoyvXXV2T9+oEMGNBYRa+IiMhFqPAt5LwntWmYg7/79NM/OHIk0avthhsiWbGiH7Vra/UGERGRS1HhW5i5MwiKWQSAYXXgrN7N5EBilsREJw8/vIoHH/yMUaNW4nK5vR5XL6+IiMjlqfAtxOzHv8CaehKAtCqdMQJLm5xIzLB161E6dPgvCxbsBGDz5sOsWbPP5FQiIiJFjya3FWJB+y5sUZyqtXv9TkaGm9de+46pU7/F5crcvCQ0NJAXX+xAly61TU4nIiJS9KjwLawyUgg8uBwAt700aVU6mRxIClJMzGlGjFjJtm3HPG0tWlTmrbe6Ur26ev5FRESuhArfQspxeCXWjCSAzLG9tiCTE0lBMAyDhQt3MWHCBpKS0gCw2Sw89lgrHn30BgICNDpJRETkSqnwLaS0moN/+vnnWB5+eJXnfvXqpZk5syvNm1c2MZWIiEjxoO6jQsjijCfwyBoAXMEVSY+4yeREUlCaNavIoEFNAOjbtyEbNw5U0SsiIuIj6vEthBwHPsXiTgfI3KnNajM5keSX9HQXAQFWr+XIJk26hVtvrakJbCIiIj6mHt9CyLH/wmoOzlpazaG42rMnnq5dP/QsU3ZeiRJ2Fb0iIiL5QIVvIWNNPow9djMAGaXqkFHuWnMDic8ZhsH77++gY8f/smPHCSZM2MC+fQlmxxIRESn2NNShkHHsX4SFzDVbnTX7gHbkKlZOnTrH2LFrWbVqr6etUqVQUlMzTEwlIiLiH1T4FjJZV3NI1WoOxcqGDTGMHr2aEyeSPW333deESZNuISTEbmIyERER/6DCtxCxnf4de8IOANLDr8ddSuM8i4PU1Ayee+5rZs/+0dMWFhbM6693onNnXWMREZGCosK3EPGa1Kbe3mJh374E7r9/Obt2nfK0dehQgzfe6ExERAkTk4mIiPgfFb6FhWEQtP+TzJsWK6k1epkcSHyhTJkgEhJSAHA4bEyceDNDhlzrtXyZiIiIFAyt6lBIBJz6HltSDADpFdthBEeYG0h8oly5YKZN60LDhuVZs6Y/Dz7YTEWviIiISVT4FhJB+y4Mc0itpWEORdXq1XuJjU32amvXrjrr1vWnfv1wk1KJiIgIqPAtHNzpOA4sAcCwBZFW9U6TA0leJSenM27cOgYOXMajj67GMAyvx202fdRERETMpn+NC4HAYxuxpmZOfnJW6YoRWMrkRJIX27fHcuut/2XevMwVOdavj2HNmn0mpxIREZG/0+S2QsCxL+tqDtqiuKhwudzMmLGNF1/cQkaGG4CQkAAmT25Pp061TE4nIiIif6fC12zpyTgOfQ6AO7AMaZG3mhxIcuPIkURGjlzJli2HPW1Nm0Ywa1Y0tWuXNTGZiIiIXIwKX5M5Dq/AkpE5GcpZvTvYHOYGkstaunQ348ev48wZJ5C5q/To0S0ZP741gYE2k9OJiIjIxajwNVnWLYq1aUXht23bUR566HPP/cjIksyY0YU2baqamEpERERyQ5PbTGRJjSPwyDoAXCGVSY+40eREcjnNm1emd+/6AHTvXpeNGweq6BURESki1ONrIseBpViMDACcNe4Gi34PKWzcbgOr1XvDiRdf7MBtt9XirruitBmFiIhIEaJKy0RB+7NuWqHVHAqbmJjT3HHHRyxbtturvWRJB92711XRKyIiUsSox9ck1qSD2E98A0BG6bq4yjY2OZGcZxgGCxfuYsKEDSQlpfHnn+to3rwykZElzY4mIiIiV0GFr0kc+z/x3HbW7JO5NICY7vTpVMaPX8eyZX942sqUCSI+PkWFr4iISBGnwtckQVlWc0itebeJSeS8zZsPMXLkSo4eTfK09e3bkOefb09oaKCJyURERMQXVPiawJbwGwGnfwMgvXxL3CVrmpzIv6WluZgyZQvTp2/FMDLbSpd28Oqrt9GtW5S54URERMRnVPiawLu3V2v3mikm5jQPPvgZO3ac8LTdeGMVpk/vqqENIiIixYwK34JmuD2bVhgWG87qPU0O5N+CgwM4ciQRALvdyoQJNzJiRPNsS5iJiIhI0aflzApYwInvsCUfAiC9UnuM4PImJ/JvERGhvPZaJ665phwrV/Zj1KgWKnpFRESKKfX4FjCt3WuuL744QOPGFShXLtjT1qVLbTp2rIHdbjMxmYiIiOS3QtHj+8EHH9ChQwcaN25M79692bFjx0WPXbhwIffeey8tWrSgRYsWDB48+JLHFyquNBwxiwEwbMGkVb3d5ED+IzU1g3//exO9ey9i3Lh1GOdnsf1FRa+IiEjxZ3rhu2LFCl544QVGjhzJkiVLqFevHkOGDCEuLi7H47/77jtuv/125s2bx0cffUSlSpV44IEHiI2NLeDkeRd4bD3WtAQAnFWjMeyaPFUQfvklls6d/8fs2T8C8Nlnf7JhQ4y5oURERKTAmV74zp07lz59+tCrVy/q1KnDpEmTCAoKYtGiRTke/+qrr9K/f3/q169P7dq1mTx5Mm63m2+++aaAk+edY9+F1RycGuaQ79xug9mzf6RFi3fYufMUAA6Hjeefb0+HDjXMDSciIiIFztQxvmlpafz2228MHTrU02a1WmnTpg0//fRTrl4jJSWFjIwMSpcunadzWywFvFlaehKOwysAcDvKkl65ozZry0fHjycxevRqNm484Glr0CCcWbOiqV8/3MRkkp/Of6b02fIPut7+Rdfbv+TXdTa18E1ISMDlchEWFubVHhYWxr59+3L1Gq+88goVKlSgTZs2eTp3uXIFPMxg16eQcQ4Aa717CI8Iu8wT5Ep9+uluhgz5lFOnznnaxoxpxfPPdyQoSPM5/UFYmIYR+RNdb/+i6y1Xo0hXAW+//TYrVqxg3rx5OByOPD03Pj4RtzufguWg1Pb3Ob/p7elK3ck4lVhwJ/cj3313hLvuWuC5X6FCCebP78H111cgKSmFpKRLPFmKPIsl8x/FuLhE/jZ/UYohXW//ouvtX6zW/OmkNLXwLVu2LDabLdtEtri4OMLDL/3n6HfffZe3336buXPnUq9evTyf2zAosA+OJfUU9qMbAHCVqEp6+VagD22+aNGiMtHRdVixYg9dutTm9dc7UbduBU6d0g9Kf1KQn28xn663f9H19g/5dY1NndwWGBhIw4YNvSamnZ+o1qxZs4s+75133uGtt95izpw5NG7cuCCiXhVHzGIshgsAZ427wWL6nMJi4+/LklksFqZOvY1p0zrz/vvdCAsLvsgzRURExN+YXoHdf//9LFy4kCVLlrB3716eeeYZUlJS6Nkzcyvfxx9/nFdffdVz/Ntvv80bb7zB888/T2RkJCdPnuTkyZMkJyeb9SVcljatyB9HjiTSs+fHrFnjPR68XLlg+vZtiEUzIERERCQL08f4RkdHEx8fz7Rp0zh58iT169dnzpw5nqEOx44dw2q9UJ9/9NFHpKenM3r0aK/XGTVqFA8//HCBZs8Na+J+7Ce/ByCjTANcZRuanKh4WLZsN+PGrePMGSe7d8exceMgIiJKmB1LRERECjHTC1+AAQMGMGDAgBwfmz9/vtf9DRs2FEQknwna/4nndmpN9fZercREJ08+uZEFC3Z62hyOAGJjk1T4ioiIyCUVisK32DIMHFmGOThr3m1imKJv69ajDB++koMHz3jaunevy0svdaRMmSATk4mIiEhRoMI3H9kSfiHgzG4A0iu0xh1azeRERVNGhpupU7/ltde+w+XKnMwWGhrIiy92oHfv+hrLKyIiIrmiwjcfBe2/sEVxas3eJiYpug4ePMOwYSvYtu2Yp61Fi8q89VZXqlfP2259IiIi4t9U+OYXw43jr/G9hiUAZ/UeJgcqmqxWC3/8EQ+AzWbhscda8eijNxAQYPqCJCIiIlLEqHrIJ/bYLdjOHQEgrXJHjCBtUXwlqlQpxcsvd6R69dIsX34P48a1VtErIiIiV0Q9vvnEa1Kb1u7NtW+/PUzDhuUpWfLCFtQ9etSja9c6BAXp21VERESunLrO8oPLiePAUgCMgBI4q0Sbm6cISEtz8eyzX3HXXQuZMGFjtsdV9IqIiMjVUuGbDwKPrMOadhoAZ9Xbwa71ZS9lz554oqM/5M03t2IYsHDhTjZujDE7loiIiBQz6kbLB44sqzk4tZrDRRmGwbx5v/D005tISckAwG63MmHCjdxyS3WT04mIiEhxo8LXxyxpZ3EcXgGA2xFGWuUOJicqnE6dOsfYsWtZtWqvp61OnbLMmhVNkyYRJiYTERGR4kqFr48FHvoMiysVAGeNHmC1m5yo8NmwIYbRo1dz4kSyp23w4KY888zNhITo/RIREZH8ocLXx4L2XVjNIbXmPSYmKZy+/fYwffsu9twPCwvm9dc70blzbRNTiYiIiD/Q5DYfsqScwH58EwCu0OpklG9pbqBC6IYbIunQoQYAHTrUYNOmQSp6RUREpECox9eHgmIWYTHcwF9bFFssJicqfCwWC2+80ZkVK/YweHATLHqPREREpICox9eHvFdz0KYVsbHJ3HvvEr788qBXe0RECe6/v6mKXhERESlQ6vH1EevZvdhPbQMgo2xjXGXqmZzIXKtW7WXMmDXExaXw228n2bhxIOXKBZsdS0RERPyYCl8fCYr5xHM71Y97e5OT05k48QvmzdvhaXO7DQ4dOqvCV0REREylwtcXDAPHX6s5GFhw1uxlciBzbN8ey/DhK9izJ8HT1rVrbaZO7URYmIpeERERMZcKXx8IiN9OwNk/AUiPuBF3iSomJypYLpebGTO28eKLW8jIyJzcFxISwOTJ7enfv5HG8oqIiEihoMLXBxz7L6zd629bFB89msjIkSvZvPmwp61p0whmzYqmdu2yJiYTERER8abC92q5XTj2Z47vNax2nNXvMjlQwUpNzeCnn2KBzNXbRo9uyfjxrQkMtJmcTERERMSbljO7SvbYr7GlHAcgrfJtGI5yJicqWLVqleX559sTGVmSJUt689RTbVX0ioiISKGkHt+r5DXMoVbxX83hxx+PUa9eOCEhdk9bv34N6dYtitDQQBOTiYiIiFyaenyvhisVx4FPAXAHhOKs0sXkQPknI8PNyy9/w+23f8Qzz3zp9ZjFYlHRKyIiIoWeCt+rEHh4Ddb0MwCkVbsTAkJMTpQ/YmJO063bAl5++RtcLoP33tvO118fvPwTRURERAoRDXW4CkFZtihOLYarORiGwcKFu5gwYQNJSWkA2GwWHnusFa1a+deSbSIiIlL0qfC9Qpa0MwQeXgWAO6g86ZXamRvIx06fTuXxx9ezdOluT1v16qWZObMrzZtXNjGZiIiIyJVR4XuFAg8ux+J2ApBaoydYi89buWXLIUaOXMWRI4metr59G/L88+01lldERESKrOJTrRWwoH1ZN60oPqs5bNlyiB49PsYwMu+XKePglVduo1u3KHODiYiIiFwlTW67AtZzx7Ef/wIAV8maZIQ3NzmR79xwQyStW2eO323btiqbNg1S0SsiIiLFgnp8r4Aj5hMsZHaJptbsnbllWTFhs1mZMaMrn376B0OHXofVWny+NhEREfFv6vG9Ao4sqzkU5WEOp06d4/77P+W77454tUdGlmT48OtV9IqIiEixoh7fPLKd/RN73E8ApJe7FlfpojkMYMOGGEaPXs2JE8n88ssJNm4cSMmSDrNjiYiIiOQb9fjmkWNf1t7eord2b2pqBv/610b69l3MiRPJACQnp7N3b4LJyURERETyl3p888IwcOzPXM3BwIKzZi+TA+XNzp0nGT58Bbt2xXnaOnSowRtvdCYiooSJyURERETynwrfPAiI+5GAxH0ApFe8CXdI0djIwe02mDPnJ5599iucThcADoeNiRNvZsiQa7EUo8l5IiIiIhejwjcPzvf2QtGZ1BYbm8To0avZuPGAp61+/XBmzYqmfv1wE5OJiIiIFCwVvrnldhG0fxEAhjUQZ/VuJgfKnYSEVLZsOey5P3TodTz1VFuCgnTpRURExL9oclsu2Y9/gTX1BABpVTpjBJYxN1Au1asXzsSJN1OhQgkWLOjJs8+2U9ErIiIifkkVUC4FZVm7N7UQD3P49deTXHNNWRyOC5d2yJBrufvu+pQpE2RiMhERERFzqcc3NzJSCDz4KQBueynSqnQ2OVB2LpebadO+p1OnD3j++c1ej1ksFhW9IiIi4vdU+OZC4JHVWNMTAXBW6wa2wlVEHjmSSK9enzB58tdkZLiZOfMHvv32yOWfKCIiIuJHNNQhF4L2ZV3NoXBtWrFs2W7GjVvHmTNOACwWGD26JdddV9HkZCIiIiKFiwrfy7A4Ewg8sgYAV3AE6RVvNjlRpsREJ08+uZEFC3Z62iIjSzJjRhfatKlqYjIRERGRwkmF72U4Dn6KxZ0GgLNGL7DaTE4EW7ceZcSIlRw4cMbT1r17XV56qaPG8oqIiIhchArfy3DsK1ybVmzefIi77/4El8sAIDQ0kBdf7EDv3vW1A5uIiIjIJWhy2yVYk49gj/0agIyStckIa2ZyImjZsjJNm0YA0KJFZTZuHEifPg1U9IqIiIhchnp8L8ERswgLmT2rzlp9MmeOmcxut/HWW11ZtuwPHn64BQEB+t1FREREJDdU+F6CI8umFWas5nD6dCpPPLGB4cOv9/TyAtSqVZYxY24o8DwiIv7AMAzcbhdut9vsKJKFxQKpqamkp6dhGGanEV+w2QKwWgu2A0+F70XYTu/GHr8dgPSw63CVqlOg59+8+RAjR67k6NEkduyIZd26AYSE2As0g4iIv8nISOfMmXjS01PNjiI5iI+36heSYsVC2bLlcTiCC+yMKnwvwrHfnLV709JcTJmyhenTt3p+oz116hy7d8fRrJnW5hURyS+GYRAXdxyr1Urp0uHYbAGaP1HI2GwWz+RuKdoMwyAp6QwJCSepUKFKgfX8qvDNiWEQ9NcwB8NizVzGrADs2RPPsGEr2LHjhKetbduqTJ/ehcqVSxZIBhERf5WRkY5huCldujyBgVoasjAKCLCSkaEe3+IiNLQ08fEpuFwZWK2BBXJOFb45CDi1FVtSDADpFW/BHZK/Pa2GYTBv3i88/fQmUlIyALDbrUyYcCMjRjTHalWPg4hIQbFYNGlYpCCY8RcVFb45yLpFcWo+r9176tQ5xo5dy6pVez1tdeqUZdasaJo0ibjEM0VEREQkL/Rr7d+5M3AcWAyAYXWQVu2OfD3d0aOJrFu333N/8OCmrFs3QEWviIiIiI+p8P0b+7GNWFNPAZBWtStGYOl8PV+TJhE88UQbwsKCmT//Ll56qaNWbxARESkgBw/G0K1bZ86dSzY7SrGSnp7O3Xffye+/7zQ7ihcNdfiboCxr96bmw2oOf/4ZT40apbHbbZ62kSOb069fI8qXD/H5+UREpPh77rlnWLnyMwBsNhsVKkTQvn1HhgwZhsPh8Dp28+av+PDD+eze/Ttut4uaNWvTs2dvoqPvzPa6mzat55NPFvDnn7txu91UrhxJu3Yd6dWrD6VK5W/HUEGZNWsGvXr1ISSkhNlR8s2iRQv58MP5xMfHUbv2NYwZM54GDRpd8jkLF/6PJUs+ITY2ljJlytCuXQeGDh2V7fsJYP7895g9ezq9e/fjkUceA8But9Ov3wBmznyTN96YmS9f15VQj29WGecIPJj5g8NtL01aZCefvbTbbfD22z/SocN8pk79zusxm82qoldERK7KDTe0YdmyVSxcuIyHHx7LsmWLeffd2V7HfPLJR0yY8BiNGzfl7bff4/33P6Jjx0688soLTJ/+utexs2fPYOLEJ6lfvyGvvDKNefMWMGrUo+zZ8werVq0osK8rPT093177+PHjbNnyVY5Ff17kZ8artX79GqZPf4377/8H7777X+rUiWLs2IdJSIi/6HPWrFnFrFnTuf/+h/jgg4954ol/s379Wt5+e0a2Y3ft+o1PP11M7drXZHvsttu6smPHz+zbtzfbY2ZRj28WjkMrsWYkAeCsfhfYsv9WcyViY5MYPXo1GzceAOC1177jtttqct11lXzy+iIiIoGBdsLCwgGIiKjI6tUt2bbtQkdLbOxxpk9/nd69+zF06EhPe79+A7DbA3j99Vdo3/5WGjZsxM6dvzJ//lxGj36MPn36eY6tVKkyLVq0IjEx8aI5TpyIZcaMN/j++29JT0+jevWajB37Txo2bMRzzz1DUlIiL7zwquf4N954lT//3M306W8DMGrUQ9SqVRubLYA1a1ZQq1YdwsLCcbvdPP/8FM/zMjIyuOuuzowaNYauXe/A7XbzwQfv8+mnS4iLi6Nq1WoMHjyE9u1vvWjWDRvWUqdOFOXLV/C0nTlzmqlTX2L79p9ITDxLZGQVBg68n9tu6+I5JqeMb745m3379jBjxjR27PiJoKBgWra8gYcffowyZcoA8O23W3j//XfZv38vVquNRo0a88gj44iMrHLRjFfro48+4M47u3P77d0AGD9+At988zWfffYpAwcOzvE5v/66ncaNm9KpU+bXXKlSZW69tTM7d/7qddy5c+eYNOnfPP74U7z//rvZXqdUqVI0btyU9evXUKvWcN9+YVdIhW8WXptW1PLNag4rV+5h7Ni1xMWleNr+8Y9mNGhQ3ievLyIi+SswZgkltj+HJT2pwM5p2ENJvvZfpFXvfkXP37dvD7/+uoOIiAsdLJs2rScjI4N+/QZmO/6uu3oxe/ZbrFu3moYNG7FmzSqCg0Po2TPnIX8lS+a8tvy5c+cYNeohypevwIsvTiUsLIzdu3/HMPK29u7KlZ/To0cvZs7MLKYOHz7Mv//9T86dO+dZY/m7774hNTWVW25pD8D8+XNZs2Yl48ZNoEqVqmzf/hPPPvs0ZcqUpVmz63M8z44dP1GvXn2vtrS0NOrWrc+AAfcRElKCb775msmTJxIZWcVreMDfMyYmJjJ69HDuvLM7o0ePxelMZebMN3n66SeYNm0WAKmpKfTt25/ata8hJeUcc+bM4sknxzF37v8uuoHDvHn/x/z5cy/5fs2f/zEVK2ZfejU9PZ0//vidgQPv97RZrVaaN2/Jb7/tuOjrNWrUlDVrVrJz5680aNCII0cO8+23m+ncOdrruKlTp9CmzY20aHFDjoUvQP36Ddm+/adL5i9IKnz/YkmNI/DIWgBcIZVJr3DjVb1ecnI6Eyd+wbx5F76xKlQowZtvdqZ9+xpX9doiIlJwQn57g4Azf5hy3rwUvlu2fM1tt92Ey+UiLS0Nq9XKmDGPex4/dOggoaGhhIeHZ3uu3W6ncuVIDh3K/Mvk4cMHqVw5koCAvJUJa9eu4vTp08yZM88zBrhKlap5eg2AqlWrMmLEI577lStXITg4mC++2MBtt0V7ztW27c2EhJQgLS2N+fPn8vrrb9GoURMAIiOrsGPHzyxbtviihe/x48epV6+BV1v58hW4994LvxzcfXdfvv/+WzZsWOdV+P4943vvzSEqqq5Xb/qECU/Ts+ftHDx4gGrVqtOuXUevc02YMJE77riVmJh91KpVJ8eM3bv3okOH2y75fuV0TSGz99rlclGuXDmv9nLl/r+9e4/L+fwfOP66746EUJFtlrCKymTOKxaTlmVjWHNIznKMfMXY5GxzSnLObDVjNpVTbF/8GEMbjWEOWw4VZoWQzt337w9f99yrcKfTut/Px6PHo/vzuT6fz/vqcnu87+u+DrW5evVKkffz8PDk7t00Ro0ailqtJj8/n3fffQ9f38GaMnv3fsfFi+dZty7iKbFZcfPmn08sU5Yk8f0fk8RtKNQPN4/IbvAeKA2eckXRTp26yciRsSQk3NEc8/RsxNKlHlhYlN1+1EIIIZ5fhlMAZifnlHmPb4bj+KcXfIyLy2tMmjSVzMxMtmz5CgMDgwKJ1jM/v5i7Av/++0Xs7Oyfe+Kbvb12L6yhoSHu7l347rvddOniRWZmJocPHyQ4eB4AyclJZGVlMWHCaK3rcnNzeeUV+yKfk52dhbGx9o5h+fn5REZuYP/+/5KSkkJeXi45OTmYmGjv5vfPGP/443fi44/TpYtbgedcu5bMyy/bkJSUSHj4an777Sx376ZpesJv3vyzyMS3Rg3zMp9IGB9/nMjIDQQGTqFpUyeSk5NYtmwRn38ejp/fUG7e/JNlyxazdOmKQie7Pc7ExISsrKwyivzpJPH9H5PHVnPIfo5NKw4dSuT996M0WypWrWrI7Nlv0L+/s+z5LoQQ/0I5Nu8We8hBWapSpYqmd3Xq1I/x8/uAnTtjePvtdwGoX/9l0tPTSU1NwdJSe7hdbm4u168n06JFS03ZX389SV5enk69vk9LghQKBep/ZNV5eXkFypmaFuwk8vDwZMyYEdy5c5uff47DxMSEtm3bA5CZ+XA44aefhmiN14WHvdlFqVmzZoHxyl99Fck332xi3LhAGjZsTJUqVQgNXUxenvYEtn/GmJmZyeuvu+HvP67Acx6NvQ4KmoC1dT2CgqZhaWmFSqXC1/d9cnML/g0eeZ6hDubmNTEwMOD2be2JbLdv38bCwqLI+4WHr6ZrVy+8vd8FoFGjxmRlZfLpp3Px9R3MhQvnuXPnNkOG9Ndck5+fz6lTvxAVtYX9+49gYPCwA/HevbuaMc4VgSS+gDI9CeObPwKQZ25HXu1mxb5X69YvYGdXm99+S+XVV+uyerUXjRrVKqlQhRBCiKdSKpUMGDCIsLCldOniiYmJKR07dmbVquVs2vQlY8dO0CofE7OVzMxM3nyzKwBdunjy7bebiYr6Rmty2yP3798vdJxv48avsHNnDPfu3S20l7JmzVpcvqw9w/+PPy5gYPD0dMTZ+VXq1q3Lvn3fc+zYEdzd39Qk5ba2thgbG3Pz5p9FDmsozCuv2HPlyiWtY6dPn8LVtaNmPKtKpSIxMRFbW9sn3svOzp6DB/djbV2v0A8Ld++mkZh4laCg6bz6qgsAp06dfGqMzzPUwcjICDs7B06c+IkOHd7Q1OfEiZ/p2bPoTr6srKwCnXWPxiCr1WpatmxFRMRmrfPz5s3CxsaGfv0GapJegMuXE7CzK7rXvaxJ4guYXNmq+T3btg88R8+siYkhq1d7ER19gcDAthgbF3/IhBBCCFFc7u5vsnJlKFu3fkPfvgOwtrZm1KhxhIWFYGxsjKdnNwwNDTl06ABr167Ex6c/jo4Px7A6OjrRt68vK1aEkJr6Fx06uGNpaUVychIxMVtp1qx5oQnxm292JSLiM6ZOncSIEaOxsLDk998vYGlphZNTM157rRWbNkWye/dOnJya8f33u7l0KeGJwxEe5+HhSUxMFElJVwkN/XuptqpVzfDx6c/y5UtQq9U0a9ac9PR0Tp8+iZlZNd56q/BdWFu3bscnn8whPz9fk6zVr1+f//u/fZw+fYrq1Wvw9dcbuXPn1lMT3/fe68OOHTEEB0+jXz9fatQwJzk5iX37vicoaDrVq9fA3Nyc7dujsLCw5ObNP1m9evlT6/y8Qx18fPoxd24wDg5NadLEkS1bviIzM5Nu3f5ewm327I+xsqrDyJFjAHj9dTe+/vor7Ozs/ze5LYnw8NW8/noHDAwMqFrVrMDQDFNTU2rUqFng+KlTJxk6dGSx4y9pkvgCpo+t5pBl2+uZr7t/P5sZMw4yfHgLHBz+/rTl4GDJ1KmFf/oSQgghyoKhoSE9e/bhq68i6NGjF1WqVKFPn7688MKLbNr0Jd9+u5n8fBW2tg0JDJyiWe7qkVGjxmFv34To6G+IiYlCrVbxwgsv4e7euchE0sjIiKVLVxAWtpT//Gc8+fn5NGjQkIkTH06ya9OmHX5+Q1m1ajk5Odl069YdT89uJCT88Ux16tr1LT7/fD3W1vVo1uxVrXPDhvlTs2YtIiM3cP36NapVq46dnQO+voOKuBu0bdseAwMDjh//iTZt2gEwcOAQrl+/xsSJYzE1NaV79x64ub3BgwdPHuNtaWnFqlXrWbVqORMmjCE3Nwdr63q0adMOpVKJQqEgOHgey5Ytwtf3ferXtyEgYBJjx454proXV+fOHqSl3SE8fDW3b9+icWM7Fi9eTu3afw91uHnzT61VJQYOHIJCoWDdulWkpKRQs2ZNXn+9A8OHj9Lp2WfO/Ep6ejru7sUba14aFOp/DrbRE7du3UelAoM7v1F7R1sAci1bkea175mu//nn64watZurV+/StKkl333XFxMT+RxR0SgUYGlZndTU+8WerCH+PaS99UtJt3dubg63bt3AwqIeRkbGT79AlDlDQ6VmDk1J2bp1Cz/++ANLloSV6H0FfPzxVBo3fkVrNYjHPek9p1SChUXhy+Y9D73fuU3XLYrz8lQsXHiU7t2/5urVuwAkJt7jt99SSy1GIYQQQpSOd97pyauvupCR8aC8Q6lUcnNzadiwEe+/37e8Q9Gi312UapVmNQe1woDsBj2fWPzKlTRGjdrN8eM3NMdatXqBlSvfwsamcuxZLoQQQugTQ0NDBg4cUt5hVDpGRkb4+Q0t7zAK0OvE1zDlJwweJAKQW+8N1FXqFFpOrVazZcs5pk7dT3p6DgAGBgoCA9sSENAGQ0O97zgXQgghhKjw9DrxNb30teb3rCLW7k1Ly2Ly5H3ExFzQHLOxMWfVqrdo2fKFUo9RCCGEEEKUDP1NfFW5mFyNBkBtUIWclwufoXrx4m22b/97q0ofH0fmzXOnWjWZ+CCEEJWRns75FqLMlcd7TW+/oze8cRBl9sOdTLLrv4XaqPCZg61bv0BAQGvMzU0ID3+b0NCukvQKIUQl9Ggd15yc7HKORAj9kJ//cMe6x5dSK2162+NrciVG8/vjWxRfvXqXl16qjoHB340QGNiWgQObUa9eyS+rIYQQomJQKg2oUqUa6el3ADA2NpGt5isYlUpBfr70yFcGarWK+/fTMDY2Raksu82+9DfxvfYdACrjmuS88CZqtZqIiNN8/PEBAgPbMm5ca01ZIyMDSXqFEEIP1KhRG0CT/IqKRalUolKV7Dq+ovwoFEpq1Khdph8w9TbxVeRlAJBt04PUO3lMnLibPXse7h++YMER3N0b4Oxc+CoPQgghKieFQoG5uQXVq9fSfA0rKgaFAmrVMuPOnQeyQU0lYWhoVObfquht4vtI7A0PRg2L5K+//l64ul8/Jxo1qlWOUQkhhChPSqUSpVLmc1QkCgWYmppiZJQria8otgoxuW3jxo106tQJZ2dnevfuza+//vrE8rt378bT0xNnZ2e8vb05ePCgzs/MyjVk/K5e9Bp5QZP0WlhUITLyHRYufJOqVY2KVRchhBBCCFExlXviGxsby/z58xk9ejTR0dE4ODgwZMgQbt26VWj5+Ph4AgMD6dWrFzExMXTu3JnRo0dz8eLFQssX5Y1VfoT+n5PmdadODThwwJeuXRs9V32EEEIIIUTFVO6J74YNG+jTpw/vvfcejRs3ZubMmZiamrJ169ZCy0dERODm5sbQoUNp1KgRAQEBNG3alC+//FKn5/520woAExMD5s1zZ9OmHtSta/bc9RFCCCGEEBVTuY7xzcnJ4ezZs4wYMUJzTKlU0r59e3755ZdCrzl58iR+fn5ax1xdXdm7d69Oz65e3RgHewtClnlgb2+hc+zi3+HRmHmlEhkTpgekvfWLtLd+kfbWL6U1561cE987d+6Qn5+PhYV24mlhYcGlS5cKvSY1NRVLS8sC5VNTU3V69rVrgboFK/7VateW5ej0ibS3fpH21i/S3uJ5lPtQByGEEEIIIcpCuSa+tWrVwsDAoMBEtlu3bhXo1X3E0tKyQO/uk8oLIYQQQggB5Zz4Ghsb4+joyNGjRzXHVCoVR48excXFpdBrmjdvzrFjx7SOHTlyhObNm5dmqEIIIYQQ4l+u3Ic6DBo0iC1bthAdHU1CQgLBwcFkZmbSs2dPACZPnszixYs15X19fTl06BCfffYZCQkJLF++nDNnztC/f//yqoIQQgghhPgXKPed27y8vLh9+zahoaGkpKTQpEkTwsPDNUMXbty4gVL5d37eokULFi1aREhICEuWLKFBgwasWLECOzu78qqCEEIIIYT4F1Co1bIoiBBCCCGEqPzKfaiDEEIIIYQQZUESXyGEEEIIoRck8RVCCCGEEHpBEl8hhBBCCKEXKmXiu3HjRjp16oSzszO9e/fm119/fWL53bt34+npibOzM97e3hw8eLCMIhUlQZf23rJlC3379qVVq1a0atUKPz+/p/77EBWLru/vR3bt2oW9vT2jRo0q5QhFSdK1ve/du8fMmTNxdXXFycmJrl27yv/p/yK6tvfnn39O165dadasGR07dmTevHlkZ2eXUbTiefz888+MHDkSV1dX7O3t2bt371OviYuLo0ePHjg5OdGlSxeioqJ0fm6lS3xjY2OZP38+o0ePJjo6GgcHB4YMGVJgd7hH4uPjCQwMpFevXsTExNC5c2dGjx7NxYsXyzhyURy6tndcXBzdunUjIiKCzZs3U69ePQYPHszNmzfLOHJRHLq29yPJycl88skntGzZsowiFSVB1/bOyclh0KBBXLt2jWXLlrFnzx5mz55N3bp1yzhyURy6tveOHTtYvHgxY8aMITY2lrlz5xIbG8uSJUvKOHJRHBkZGdjb2zNjxoxnKp+UlMSIESNo06YN27ZtY+DAgUyfPp1Dhw7p9mB1JdOrVy/1zJkzNa/z8/PVrq6u6jVr1hRafvz48erhw4drHevdu7f6o48+KtU4RcnQtb3/KS8vT+3i4qKOjo4upQhFSSpOe+fl5anff/999ZYtW9RBQUFqf3//sghVlABd2/urr75Sd+7cWZ2Tk1NWIYoSpGt7z5w5U+3r66t1bP78+WofH59SjVOUPDs7O/V///vfJ5b59NNP1d26ddM6FhAQoB48eLBOz6pUPb45OTmcPXuW9u3ba44plUrat2/PL7/8Uug1J0+epF27dlrHXF1dOXnyZGmGKkpAcdr7nzIzM8nLy8Pc3Ly0whQlpLjtvWLFCiwsLOjdu3dZhClKSHHae//+/TRv3pxZs2bRvn173n77bVavXk1+fn5ZhS2KqTjt7eLiwtmzZzXDIZKSkjh48CAdO3Ysk5hF2SqpfK3cd24rSXfu3CE/Px8LCwut4xYWFly6dKnQa1JTUzW7xD1ePjU1tdTiFCWjOO39T4sWLaJOnTpa/9mKiqk47X38+HG+/fZbYmJiyiBCUZKK095JSUkcO3YMb29v1q5dS2JiIjNnziQvL48xY8aURdiimIrT3t7e3ty5c4e+ffuiVqvJy8vDx8eHkSNHlkXIoowVlq9ZWlqSnp5OVlYWpqamz3SfStXjK4Qu1q5dS2xsLGFhYZiYmJR3OKKEpaenM3nyZGbPnk3t2rXLOxxRBtRqNRYWFsyePRsnJye8vLwYOXIkmzdvLu/QRCmIi4tjzZo1zJgxg6ioKMLCwjh48CArVqwo79BEBVapenxr1aqFgYFBgYHwt27dKvAp4RFLS8sCvbtPKi8qjuK09yPr169n7dq1bNiwAQcHh9IMU5QQXds7KSmJa9eu4e/vrzmmUqkAaNq0KXv27OHll18u3aBFsRXn/W1lZYWhoSEGBgaaYw0bNiQlJYWcnByMjY1LNWZRfMVp72XLltG9e3fNMCZ7e3syMjL4+OOP8ff3R6mUvr3KpLB8LTU1lWrVqj1zby9Ush5fY2NjHB0dOXr0qOaYSqXi6NGjuLi4FHpN8+bNOXbsmNaxI0eO0Lx589IMVZSA4rQ3wLp161i5ciXh4eE4OzuXRaiiBOja3g0bNmTHjh3ExMRofjp16kSbNm2IiYnB2tq6LMMXOirO+7tFixYkJiZqPuAAXLlyBSsrK0l6K7jitHdWVlaB5PbRhx61Wl16wYpyUVL5WqVKfAEGDRrEli1biI6OJiEhgeDgYDIzM+nZsycAkydPZvHixZryvr6+HDp0iM8++4yEhASWL1/OmTNn6N+/f3lVQehA1/Zeu3Yty5YtY968ebz44oukpKSQkpLCgwcPyqsKQge6tLeJiQl2dnZaPzVq1MDMzAw7OztJhP4FdH1/f/DBB6SlpTF37lwuX77MgQMHWLNmDf369SuvKggd6Nre7u7ubNq0iV27dpGUlMSPP/7IsmXLcHd31+r1FxXTgwcPOHfuHOfOnQMeLjt57tw5rl+/DsDixYuZPHmypryPjw9JSUl8+umnJCQksHHjRnbv3o2fn59Oz61UQx0AvLy8uH37NqGhoaSkpNCkSRPCw8M1X5XcuHFD6xNiixYtWLRoESEhISxZsoQGDRqwYsUK7OzsyqsKQge6tvfmzZvJzc1l3LhxWvcZM2YMY8eOLdPYhe50bW/x76Zre9erV4/169czf/58unfvTt26dfH19WXYsGHlVQWhA13b29/fH4VCQUhICDdv3qR27dq4u7szYcKE8qqC0MGZM2fw9fXVvJ4/fz4APXr0YMGCBaSkpHDjxg3N+fr167NmzRrmz59PREQE1tbWzJkzBzc3N52eq1DL9wFCCCGEEEIPSNeIEEIIIYTQC5L4CiGEEEIIvSCJrxBCCCGE0AuS+AohhBBCCL0gia8QQgghhNALkvgKIYQQQgi9IImvEEIIIYTQC5L4CiGEEEIIvSCJrxBCAFFRUbRs2bK8wyg2e3t79u7d+8QyU6ZMYdSoUWUUkRBCVDyVbstiIYT+mjJlCtHR0QWOf//999jY2JRDRH+Liopi6tSpACgUCurUqcPrr7/OpEmTsLCweO77Hz58GHNzc+DhnvedO3cmJiaGJk2aaMpMmzaN0t6sc/ny5YSFhQGgVCqpU6cOHTp0IDAwkJo1az7zfaZMmcK9e/dYuXJlKUUqhNBHkvgKISoVNzc3zZ7vj9SuXbucotFWrVo19uzZg0ql4vz583z44Yf89ddfrF+//rnvbWVl9dQy1atXf+7nPItXXnmFDRs2oFKpSEhI4MMPP+T+/fuEhISUyfOFEKIoMtRBCFGpGBsbY2VlpfVjYGDAhg0b8Pb2pnnz5nTs2JHg4GAePHhQ5H3Onz/PgAEDcHFxoUWLFvTs2ZPTp09rzh8/fpy+ffvSrFkzOnbsyJw5c8jIyHhibAqFAisrK+rWrUvHjh0ZMGAAR44cISsrC5VKRVhYGB06dMDJyYl33nmHH374QXNtTk4Os2bNwtXVFWdnZ9zd3VmzZo3m/ONDHTp37gzAu+++i729PQMGDAC0hzp8/fXXuLq6olKptGL09/fX9EwD7N27lx49euDs7Eznzp0JCwsjLy/vifU0MDDQ1LN9+/Z4enpy5MgRzfn8/Hw+/PBDOnXqRLNmzejatStffPGF5vzy5cuJjo5m37592NvbY29vT1xcHAA3btxg/PjxtGzZktatW+Pv709ycvIT4xFCiEck8RVC6AWFQsG0adPYuXMnCxYs4NixYyxcuLDI8pMmTcLa2ppvv/2WqKgohg0bhpGREQCJiYkMGzYMDw8Ptm/fztKlSzlx4gSzZ8/WKSZTU1NUKhV5eXlERESwYcMGgoKC2L59O66urowaNYorV64AEBkZyf79+wkJCWHPnj0sXLiQF198sdD7fvPNNwB8/vnnHD58mOXLlxco4+npSVpamiahBEhLS+PQoUN0794deJjcBwUF4evrS2xsLLNmzSIqKorVq1c/cx2Tk5M5fPiw5m8HoFKpsLa2ZtmyZezatYvRo0ezdOlSYmNjARg8eDBvvfUWbm5uHD58mMOHD+Pi4kJubi5DhgzBzMyMjRs3smnTJqpWrcrQoUPJycl55piEEPpLhjoIISqVAwcO4OLionnt5uZGaGgofn5+mmMvvfQSAQEBzJgxg+Dg4ELvc/36dYYMGUKjRo0AaNCggebcmjVr8Pb21tyzQYMGTJs2jQEDBhAcHIyJiclT47xy5QqbNm3CycmJatWqsX79eoYNG0a3bt0A+M9//kNcXBxffPEFM2bM4MaNG9jY2PDaa6+hUCiKTHrh76EdNWvWLHIIhLm5OR06dGDHjh20a9cOgO+++45atWrRpk0bAMLCwhg+fDg9evQAoH79+owfP56FCxcyZsyYIp9/8eJFXFxcyM/PJzs7G0CrF9nIyIhx48ZpXtevX5+TJ0+yZ88evLy8MDMzw9TUlJycHK34t23bhkqlYu7cuSgUCgDmz59Pq1at+Omnn3B1dS0yJiGEAEl8hRCVTJs2bbSS2SpVqgBw5MgR1qxZw6VLl0hPT9ckZZmZmZoyjxs0aBDTp09n27Ztmq/rX375ZeDhMIgLFy6wY8cOTXm1Wo1KpSI5OVmTLP/T/fv3cXFxQaVSkZ2dzWuvvcacOXNIT0/nr7/+okWLFlrlW7Rowfnz5wHo0aMHgwcPxtPTEzc3N954443nTvS8vb356KOPCA4OxtjYmB07dtCtWzeUSqWmnvHx8Vo9vE/7uwHY2tqyatUqsrOz2b59O+fOnaN///5aZTZu3MjWrVu5fv062dnZ5Obm4uDg8MR4z58/T2JiYoG/U3Z2NomJicX5Ewgh9IwkvkKISqVKlSoFVnBITk5mxIgRfPDBB0yYMAFzc3NOnDjBtGnTyM3NLTSBGzt2LG+//TYHDx7khx9+IDQ0lKVLl9KlSxcyMjLw8fHRjJ19XL169YqMzczMjOjoaJRKJVZWVpiamgKQnp7+1Ho5Ojqyb98+fvjhB44cOUJAQADt27cnNDT0qdcWpVOnTkyfPp0DBw7g7OzM8ePHtXpmMzIyGDt2LB4eHgWufVKvtpGRkaYNJk2axPDhwwkLCyMgIACAXbt28cknnxAUFISLiwtmZmasX7+eU6dOPTHejIwMHB0dWbRoUYFzFWUCoxCiYpPEVwhR6Z09exa1Ws2UKVM0vZm7d+9+6nW2trbY2tri5+fHxIkT2bp1K126dKFp06b88ccfOi+RplQqC72mWrVq1KlTh/j4eFq3bq05Hh8fT7NmzbTKeXl54eXlRdeuXRk6dChpaWkFlgl7NJ42Pz//ifGYmJjg4eHBjh07uHr1Kra2tjg6OmrON23alMuXLz/3UnD+/v4MHDiQDz74gLp16xIfH4+Liwv9+vXTlPlnj62RkVGBiXeOjo7s3r0bCwsLqlWr9lwxCSH0k0xuE0JUejY2NuTm5hIZGUlSUhIxMTFs3ry5yPJZWVnMmjWLuLg4rl27xokTJzh9+rRmCMOwYcP45ZdfmDVrFufOnePKlSvs3buXWbNmFTvGIUOGsG7dOmJjY7l06RKLFi3i/Pnz+Pr6ArBhwwZ27txJQkICly9fZs+ePVhZWVGjRo0C97KwsMDU1JRDhw6RmprK/fv3i3yut7c3Bw4cYOvWrXh7e2udGz16NNu2bSMsLIzff/+dhIQEdu3axdKlS3Wqm4uLC/b29ppVKGxsbDhz5gyHDh3i8uXLhISEaK2YAfDiiy9y4cIFLl26xO3bt8nNzcXb25tatWrh7+/P8ePHSUpKIi4ujjlz5vDnn3/qFJMQQj9Jj68QotJzcHBg6tSprFu3jiVLltCyZUsmTpxIUFBQoeWVSiVpaWkEBQWRmppKrVq18PDw0EzIcnBwIDIykpCQEPr27Qs8nKDl5eVV7Bh9fX1JT09nwYIF3L59m0aNGrFy5UrNpDozMzPCw8O5evUqSqUSZ2dn1q5dq+nBfpyhoSHTp09nxYoVhIaG0rJlSyIjIwt9btu2bTE3N+fy5csFEl83NzdWr17NihUrWLduHYaGhjRs2JDevXvrXD8/Pz+mTJnCsGHD8PHx4dy5c0yYMAGFQkG3bt3o27ev1vJtffr04aeffuK9994jIyODiIgI2rRpw5dffsmiRYsYM2YMDx48oG7durRr1056gIUQz0ShLu1tfIQQQgghhKgAZKiDEEIIIYTQC5L4CiGEEEIIvSCJrxBCCCGE0AuS+AohhBBCCL0gia8QQgghhNALkvgKIYQQQgi9IImvEEIIIYTQC5L4CiGEEEIIvSCJrxBCCCGE0AuS+AohhBBCCL0gia8QQgghhNAL/w/4I05jQ85pUgAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 LogisticRegression 0.84 0.84 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" LogisticRegression | \n",
" 0.84 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 29
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = LogisticRegression\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"lr_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"lr_result_df"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"id": "Qv9PoxPGhXlm"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "4J5YRDashXln",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"outputId": "65b5396d-ad7a-446b-cada-072b9c78730d"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqSUlEQVR4nOzdd3hTZfsH8O/J6qClk5a2LCkUyhRkg0AHo0URQRBkiOIrS1GWigsRZKkgyFT8ofD6KihLlAItLUM2iIAyBLSMtrR00p11fn8ETokN0ECbkzbfz3VxXcmTJ8ndnIbeeXKf+xFEURRBRERERFTFKeQOgIiIiIjIFpj4EhEREZFDYOJLRERERA6BiS8REREROQQmvkRERETkEJj4EhEREZFDYOJLRERERA6BiS8REREROQQmvkRERETkEJj4ElVB4eHheOutt+QOw+EMHz4cw4cPlzuM+/r888/RqFEjZGZmyh2K3WnUqBE+//zzcnmsa9euoVGjRti4cWO5PB4AnDp1Cs2aNUNSUlK5PWZ5mzhxIl577TW5wyCySCV3AESVzcaNGzFt2jTpulKphI+PDzp37oyJEyfC399fxujsW0FBAVavXo3t27fjypUrUKlUaNSoEQYNGoSnnnoKgiDIHeJ9Xbx4ETExMXj66adRq1YtucMxYzAYsHnzZmzevBnnz59HQUEB/Pz80L59ezz33HNo3ry53CE+tK1btyIjIwMjR46UOxSJLWNauHAh+vTpg6CgIGls+PDhOHLkiHTdyckJdevWxYABAzBixAgoFKXXuLKysvDFF18gPj4eycnJcHFxQfPmzTFs2DCEhYVZfO68vDx8/fXX2LlzJ65evQqDwYA6deqgW7duGDFihPR/33/+8x8MGDAA586dQ+PGjcv5FSB6OEx8iR7QhAkTUKtWLWi1Wvz+++/YtGkTjh8/jp9//hlOTk6yxrZ9+3a7SyLT09MxcuRIXLp0CdHR0Rg2bBiKi4uxc+dOvPnmm9izZw8++eQTKJVKuUO9p4sXL2LJkiVo165dqcT3q6++kikqoKioCK+88gr27duHtm3bYvTo0fDw8EBSUhJiYmKwadMm7N69GzVr1pQtxvLw888/48KFCxWWZJ46dcrq38G7xRQUFIRTp05BpSqfP7Vnz57FgQMH8P3335e6rWbNmpg0aRIAU1L7888/Y86cOcjKysLEiRPN5v79998YOXIkMjMz0b9/fzRv3hw3b97E1q1bMWbMGLz44ot48803ze5z9epVjBw5EikpKejduzeeffZZqNVqnD9/Hj/++CPi4uKwY8cOAECTJk3QrFkz/N///R/mz59fLj87UXlh4kv0gLp27SqtoA0cOBBeXl748ssvsWvXLkRHR8sam0ajsflzFhcXQ61WW1xdAoA333wTly5dwpIlSxARESGNjxgxAvPmzcP//d//ITQ0FC+//LKtQgZgWoV2dXUtl8eS43W/bf78+di3bx+mTZtWKgF75ZVX8PXXX9s0HlEUUVxcDGdnZ5s+74MwGo3Q6XRwcnIq1w+tgiCU6+Nt2LABgYGBePTRR0vd5u7ujqeeekq6PmTIEERFRWHt2rWYMGGClMzrdDq89tpruHnzJr799lu0bNlSus/IkSMxZcoU/N///R+aN28u/T+m1+vxyiuvICMjA2vWrEGbNm3MnnvixIn48ssvzcaioqLw+eefIz8/H9WqVSuvl4DoobHGl6ic3P5jcPXqVbPxS5cuYcKECWjXrh2aN2+O/v37Y9euXaXuf/PmTcyePRvh4eFo1qwZunbtijfeeMOsDlOr1WLx4sXo0aMHmjVrhm7dumH+/PnQarVmj3Vnje/p06fRqFEjbNq0qdRz7tu3D40aNUJCQoI0lpqaimnTpqFTp05o1qwZ+vTpgx9//NHsfocPH0ajRo3wyy+/YOHChXj88cfRsmVL5OXlWXxtfv/9d/z66694+umnzZLe2yZPnox69eph1apVKCoqAlBSH/nVV1/h66+/RlhYGFq0aIFhw4bhr7/+KvUYZXmdN27ciEaNGuHIkSP44IMP0LFjR3Tr1g0AkJSUhA8++AC9evVCixYt0L59e0yYMAHXrl0zu//t2sURI0agUaNGaNSoEQ4fPgygdI3v7ddp27ZtWL58ufRh6fnnn8fly5dL/QzffvstIiIi0KJFCzzzzDM4duxYmeqGr1+/jnXr1qFz584WV0KVSiVGjRpVarU3NzcXb731Ftq0aYPHHnsM06ZNQ2FhodmcDRs2YMSIEejYsSOaNWuG6Oho/O9//yv1HOHh4Rg9ejT27duH/v37o0WLFtLKZFkfAwD27NmDYcOGoVWrVmjdujUGDBiArVu3Sq/v7t27kZSUJL324eHh0n3L+v5o1KgRPvzwQ/z000/o06cPmjdvjn379km33Vnjm5eXh48++kh6X3bs2BEvvPAC/vzzz/vGdLca30uXLuG1115Dhw4d0KJFC/Tq1QsLFy60+HrcadeuXejQoUOZvs1xcnJCs2bNkJ+fj4yMDGl8586d+Ouvv/Cf//zHLOkFTL8nH374IapXr272GuzcuRPnzp3DmDFjSiW9AODm5lZqVblTp04oKCjAgQMH7hsrkS1xxZeonNw+2aR69erS2IULFzBkyBD4+/vjP//5D1xdXRETE4Px48fj888/R48ePQAA+fn5GDp0KC5duoQBAwagSZMmyMrKQnx8PFJTU+Ht7Q2j0YixY8fi+PHjGDRoEIKDg/HXX3/hm2++QWJiIpYtW2YxrubNm6N27dpSXeqdtm3bBg8PD3Tp0gWAqRxh0KBBEAQBQ4cOhbe3N/bu3Yt33nkHeXl5pZKqZcuWQa1WY9SoUdBqtVCr1RZjuJ1Y9+vXz+LtKpUKTzzxBJYsWYLffvsNnTp1km7bvHkz8vPz8dxzz6G4uBhr167F888/j61bt8LX19eq1/m2GTNmwNvbG+PHj0dBQQEA0weEEydOoE+fPqhZsyaSkpLw3XffYcSIEfjll1/g4uKCtm3bYvjw4Vi7di3GjBmD+vXrAwCCg4Mt/ly3ffnllxAEAS+++CLy8vKwatUqTJkyBT/88IM053//+x8+/PBDtGnTBiNHjkRSUhLGjx+P6tWr37c8Ye/evdDr9ejbt+895/3b66+/jlq1amHSpEk4c+YMfvjhB3h7e2Pq1KnSnO+++w4NGzZEeHg4VCoVEhISMGPGDIiiiKFDh5o93j///IPJkyfj2WefxaBBg/DII49Y9RgbN27E22+/jYYNG2L06NFwd3fH2bNnsW/fPjz55JMYM2YMcnNzcf36danO/vZqorXvj0OHDiEmJgZDhw6Fl5eXWc3snaZPn44dO3Zg2LBhCA4ORnZ2No4fP45Lly6hadOm94zJknPnzmHo0KFQqVR49tlnERQUhCtXriA+Pr5U8nin1NRUJCcno0mTJned829JSUkQBMHs/6T4+HgAd38vuru7IyIiAps2bcLly5dRt25d6QPknSvK99OgQQM4Ozvjt99+K/X+I5KVSERW2bBhgxgSEiIeOHBAzMjIEFNSUsTt27eLHTp0EJs1ayampKRIc59//nnxiSeeEIuLi6Uxo9EoPvvss2LPnj2lsUWLFokhISHizp07Sz2f0WgURVEUN2/eLDZu3Fg8evSo2e3fffedGBISIh4/flwaCwsLE998803p+qeffio2bdpUzM7OlsaKi4vFNm3aiNOmTZPG3n77bbFz585iZmam2XNMnDhRfOyxx8TCwkJRFEXx0KFDYkhIiBgRESGN3cu4cePEkJAQMScn565zdu7cKYaEhIhr1qwRRVEUr169KoaEhIgtWrQQr1+/Ls07efKkGBISIs6ePVsaK+vrfPvYDRkyRNTr9WbPb+nnOHHihBgSEiJu2rRJGouJiRFDQkLEQ4cOlZo/bNgwcdiwYdL1269TVFSUWWzffPONGBISIp4/f14URdOxaNeunThgwABRp9NJ8zZu3CiGhISYPaYls2fPFkNCQsQzZ87cc95tixcvFkNCQsyOvSiK4vjx48V27dqZjVl6XV588UUxIiLCbCwsLEwMCQkR9+7dW2p+WR7j5s2bYqtWrcSBAweKRUVFZnNvvwdEURRffvllMSwsrNTjWfP+CAkJERs3bixeuHCh1OOEhISIixcvlq4/9thj4owZM0rNu9PdYrr9O7xhwwZpbOjQoWKrVq3EpKSku/6Mlhw4cEAMCQkR4+PjS902bNgwsXfv3mJGRoaYkZEhXrp0SZw3b54YEhIivvzyy2Zzn3rqKfGxxx6753OtXr1aDAkJEXft2iWKoij269fvvvexpGfPnuJLL71k9f2IKhJLHYge0MiRI6WvyidMmAAXFxcsX75cWp3Lzs7GoUOHEBUVhby8PGRmZiIzMxNZWVno0qULEhMTkZqaCsD0VWLjxo0trozc/lpz+/btCA4ORv369aXHyszMRIcOHQBA+rrdkujoaOh0OuzcuVMa279/P27evCnV8YmiiJ07dyI8PByiKJo9R5cuXZCbmyt9vXtbv379ylTDmZ+fD+DeK2G3b/t3uURkZKRZp4wWLVqgZcuW2LNnDwDrXufbBg0aVOoEpjt/Dp1Oh6ysLNSpUwfVq1fHmTNn7vsz3kv//v3N6n//XRbzxx9/IDs7G4MGDTI7EerJJ5+Eh4fHfR//9mtmbS3l4MGDza63adMG2dnZZsfgztclNzcXmZmZaNeuHa5evYrc3Fyz+9eqVQuPP/54qecpy2Ps378f+fn5ePnll0vVxZblq31r3x9t27ZFgwYN7vu41atXx8mTJ0v9Dj2IzMxMHD16FAMGDEBgYKDZbff7GbOysqR4LPn777/RsWNHdOzYEVFRUfjqq68QHh6OOXPmmM0rS83tv9+LeXl5D1Sn6+HhIcVNZC9Y6kD0gN5//3088sgjyM3NxYYNG3D06FGz5ObKlSsQRRGLFi3CokWLLD5GRkYG/P39ceXKFfTs2fOez3f58mVcunQJHTt2vOtj3U3jxo1Rv359xMTEYODAgQBMZQ5eXl5SYpCZmYmbN29i3bp1WLduncXH+Xff17K287r9RzM/P/+uf7jvlhzXrVu31Nx69eohJiYGgHWv873iLioqwsqVK7Fx40akpqZCFEXptn8neNb6d5Jz+zW4efMmACA5ORkAUKdOHbN5KpXqrl/B38nNzQ1AyWv4sHHl5ORIj3n8+HF8/vnn+P3330vV/+bm5sLd3V26frffh7I8xpUrVwAADRs2tOpnuM3a90dZf3enTJmCt956C927d0fTpk3RrVs39OvXD7Vr17Y6xtsfdEJCQqy+7213/l7eKSgoCLNmzYLRaMSVK1ewYsUKZGVllfoQUa1atfsmo/9+L7q5uZU6d6GssdpbdxkiJr5ED6hFixZSV4fIyEg899xzmDx5MrZv345q1arBaDQCAF588UWLq2BA6UTnXoxGI0JCQsx6CN/pfnWg0dHRWLFiBTIzM+Hm5ob4+Hj06dNHWmG8HW/fvn1L1QLf1qhRI7PrZT1jPzg4GHFxcTh//jzatm1rcc758+cBoEyrcHd6kNfZ0pn2M2fOxMaNG/H888/j0Ucfhbu7OwRBwMSJE++abJTV3TpdPOzj3na71vj8+fMIDQ0tt7iuXLmCkSNHon79+njrrbcQEBAAtVqNPXv24Ouvv5Ze+9ss/T5Y+xgPytr3R1l/d6Ojo9GmTRvExsZi//79+Oqrr/Dll1/i888/l06MtAUvLy8AJR+W/s3V1dWsNr5169bo378/Fi5ciHfffVcaDw4OxtmzZ5GcnFzqg89t/34v1q9fH2fOnEFKSgoCAgLKHPPNmzctfnAlkhMTX6JyoFQqMWnSJIwYMQLffvstXn75ZWlFSK1Wm/1BsqROnTq4cOHCfeecO3cOHTt2fKBVlOjoaCxZsgQ7d+6Er68v8vLy0KdPH+l2b29vKWG/X7zW6t69O1auXInNmzdbTHwNBgO2bt0KDw8PtG7d2uw2S90PEhMTpZVQa17ne9mxYwf69etntuNdcXFxqdXeiljBup2AXLlyRVqBB0xtpG53C7iXrl27QqlUYuvWrXc9aelBxMfHQ6vVYvny5WZJ0r3Kah70MW5/OLlw4cI9k6W7vf4P+/64Fz8/PwwdOhRDhw5FRkYGnn76aaxYsUJKfMv6fLd/Vy11Jbmf2x9u7uwyci+NGzdG37598f333+PFF1+UXvvu3bvj559/xubNmzFu3LhS98vLy8OuXbtQv3596TiEhYXh559/xk8//YTRo0eX6fn1ej1SUlLMum4Q2QPW+BKVk/bt26NFixb45ptvUFxcDB8fH7Rr1w7r1q1DWlpaqfl3lg307NkT586dQ2xsbKl5t1ffoqKikJqaivXr15eaU1RUJHUnuJvg4GCEhIRg27Zt2LZtG2rUqGGWhCqVSvTq1Qs7duyw+If5Yba3bd26NTp16oSNGzeatU67beHChUhMTMRLL71UaiUuLi7OrL7y1KlTOHnyJLp27QoAVr3O92Jp04K1a9fCYDCYjbm4uAB4+PKHOzVr1gyenp5Yv3499Hq9NL5161bk5OTc9/4BAQEYOHAgfv31V6xdu7bU7UajEf/3f/+H69evWxXX7dfk32UfGzZsKPfH6NKlC6pVq4aVK1eiuLjY7LY77+vi4mLxtX/Y94clBoOh1HP5+PjAz8/PrEXa3WL6N29vb7Rt2xYbNmyQyltuu9/qv7+/PwICAvDHH3+UOf6XXnoJer0eq1evlsZ69eqFBg0a4Msvv8Tp06fN5huNRkyfPh05OTl45ZVXzO4TEhKCFStW4MSJE6WeJy8vr1Q7tosXL6K4uBitWrUqc7xEtsAVX6JyNGrUKLz22mvYuHEjhgwZgunTp+O5557Dk08+iUGDBqF27dpIT0/H77//juvXr+Onn36S7rdjxw689tprGDBgAJo2bYqcnBzEx8djxowZaNy4MZ566inExMRg+vTpOHz4MFq3bg2DwYC///4b27dvx6pVq+67JW10dDQWL14MJycnPPPMM6W+6p48eTIOHz6MQYMGYeDAgWjQoAFycnLw559/4uDBg2bbolpr3rx5GDlyJMaNG4cnnngCbdq0gVarxc6dO3HkyBFER0dj1KhRpe5Xp04dDBkyBEOGDIFWq8WaNWvg6emJl156SZpT1tf5Xrp3744tW7bAzc0NDRo0wO+//44DBw7A09PTbF5oaCiUSiW+/PJL5ObmQqPRoEOHDvDx8Xng10aj0eDVV1/FzJkz8fzzzyMqKgpJSUnYuHFjmcth3nrrLVy9ehWzZs3Czp07ERYWhurVqyMlJQXbt2/H33//bbbCXxadO3eGWq3GmDFjMHjwYOTn5+OHH36Aj48Pbty4Ua6P4ebmhmnTpuHdd9/FM888gyeeeALVq1fHuXPnUFRUhHnz5gEAmjZtim3btmHOnDlo3rw5XF1dER4eXi7vj3/Lz89Ht27d0KtXLzRu3Biurq44cOAATp8+bfbNwN1isuTdd9/FkCFD8PTTT+PZZ59FrVq1kJSUhN27d2PLli33jCciIgKxsbFlrp1t0KABunXrhh9//BHjxo2Dl5cXNBoNFi9ejOeffx7PPfcc+vfvj2bNmiE3Nxc///wz/vzzT7z44otmvytqtRpLlizBCy+8gGHDhqF3795o3bo11Go1Lly4gJ9//hnVq1c3a8d24MABuLi4lPu3R0QPi4kvUTnq2bMn6tSpg//7v//DoEGD0KBBA2zYsAFLlizBpk2bkJ2dDW9vbzRp0gTjx4+X7letWjV8++23+PzzzxEbG4tNmzbBx8cHHTt2lE7KUigUWLp0Kb7++mts2bIFsbGxcHFxQa1atTB8+HCpZ+q9REdH47PPPkNhYSGioqJK3e7r64sffvgBS5cuRWxsLL777jt4enqiQYMGmDJlykO9Nn5+fvjhhx+wevVqbN++HTt37oRSqUSjRo0wd+5c9OvXz+If8379+kGhUOCbb75BRkYGWrRogffeew9+fn7SnLK+zvfyzjvvQKFQYOvWrSguLkbr1q2xevVqswQbAGrUqIEZM2Zg5cqVeOedd2AwGLBmzZqHSnwBYNiwYRBFEatXr8a8efPQuHFjLF++HLNmzSrT7l8uLi748ssvsXHjRmzevBnLli1DUVER/Pz80L59e3zyySdmJ/iVRf369bF48WJ89tlnmDdvHnx9fTFkyBB4e3vj7bffLvfHGDhwIHx8fPDFF19g2bJlUKlUqF+/vln/6Oeeew5nz57Fxo0b8fXXXyMoKAjh4eHl8v74N2dnZwwZMgT79+/Hzp07IYoi6tSpI33Qul9MljRu3Bjr16/HokWL8N1336G4uBiBgYEW34//NmDAAPz3v//F8ePHLW4kYcmoUaOwe/du/Pe//8Wrr74KwPTtz08//YQvvvgC8fHx2LhxI5ydndGsWTMsX77cYux169bF5s2b8fXXXyM2Nha7du2C0WhE3bp1MXDgwFKbrGzfvh09evSQTpIksheCWF5nVxARlaNr164hIiICb7zxhsWVYEdgNBrRsWNH9OjRA7NmzZI7HLIDzz//PPz8/PDxxx/LHcpdnT17Fk8//TQ2bdpk1cmWRLbAGl8iIjtQXFxcqs5z8+bNyM7ORrt27WSKiuzNpEmTEBMTI+0UaY+++OIL9OrVi0kv2SWWOhAR2YHff/8dc+bMQe/eveHp6YkzZ87gxx9/REhICHr37i13eGQnWrZsadUJbnL494luRPaEiS8RkR0ICgpCzZo1sXbtWuTk5MDDwwNPPfUUpkyZYrYxChERPTjW+BIRERGRQ2CNLxERERE5BCa+REREROQQmPgSERERkUNg4ktEREREDsFhuzpkZubCaJQ7CqpoggD4+LgjIyMXPI2z6uPxdiw83o6Fx9uxKBSAt7d7uT+uwya+ogi+cRwIj7dj4fF2LDzejoXH2zFU1DFmqQMREREROQQmvkRERETkEJj4EhEREZFDYOJLRERERA6BiS8REREROQQmvkRERETkEJj4EhEREZFDYOJLRERERA6BiS8REREROQQmvkRERETkEJj4EhEREZFDYOJLRERERA6BiS8REREROQQmvkRERETkEJj4EhEREZFDkDXxPXr0KMaMGYMuXbqgUaNGiIuLu+99Dh8+jKeffhrNmjVDjx49sHHjRhtESkRERESVnayJb0FBARo1aoTp06eXaf7Vq1cxevRotG/fHlu2bMHzzz+Pd999F/v27avgSImIiIioslPJ+eTdunVDt27dyjz/+++/R61atfDWW28BAIKDg3H8+HF8/fXXePzxxysqTCIiIiKyBaMBihvH8M+x/fAZWbaFUWvImvha6/fff0fHjh3Nxrp06YLZs2db/ViCYPpHVdvtY8xj7Rh4vB0Lj7dj4fGuuoTCVGiS4qBJikX62UMY9d9wnLgRgtSR5f9clSrxTU9Ph6+vr9mYr68v8vLyUFRUBGdn5zI/lre3e3mHR3bMx4fH25HweDsWHm/HwuNdBRh0QMoh4J8YIHE7kHYCALDlj0Z46YehSM+vBnf3iklRK1XiW54yM3NhNModBVU0QTD9J5mRkQtRlDsaqmg83o6Fx9ux8HhXbor8JKiT4qBJjoM6OQEK3U3ptvxiNSZv7YWVh9pIY37eFbO0X6kSX19fX6Snp5uNpaenw83NzarVXgAQRfCN40B4vB0Lj7dj4fF2LDzelYShGOq0Q9AkxUKTHAdV9hmL045fC8Bz3z+Hv66XrORHRQVj0aJeFRJWpUp8H330Uezdu9ds7MCBA3j00UflCYiIiIiIAACKvMumRDcpDprreyDo8y3OM2q8UOgfgU/2dMCsL/Kh15s+ybi6qjBzZncMG9YcSmUVXPHNz8/HlStXpOvXrl3D2bNn4eHhgcDAQHz66adITU3F/PnzAQCDBw/Gt99+i/nz52PAgAE4dOgQYmJisHLlSrl+BCIiIiLHpC+EOnU/NMmmZFd184LFaSIE6H0fgzYwEtqgHtD7tEZ+oRHfvLVWSnpbtvTHihXRCA72qtCQZU18//jjD4wYMUK6PmfOHADA008/jblz5+LGjRtISUmRbq9duzZWrlyJOXPmYM2aNahZsyZmzZrFVmZEREREFU0Uocy9BE1SLNTJcdBc/xWCodDiVKNzDWgDI6AN6gFtQDhEZx+z26tVU2LFimg8+eQ6jB37GKZO7QiNRlnhP4Igio5ZKZORwZPbHIEgAL6+7khP58kQjoDH27HweDsWHm+Z6PKhSd0rtRtT5iVanCYKSuhrtCtZ1fVuAQgl+6Tl5WmRm1uMgADzrhwpKbmlxgBAoaiYDh6VqsaXiIiIiCqQKEKZc146KU2duh+CUWtxqsElANogU6Krq9kNopPlMoWjR5MxblwM/PyqYcuWQVCpShJiS0lvRWLiS0REROTABO1NqK/vMa3qJsdBmX/V4jxRoYbOr+OtVd1IGDyb3nNHEb3eiIULD2PBgkMwGERcvpyDzz8/iokT21fUj3JfTHyJiIiIHIkoQpn1R8mqbtohCKLe4lRDtdqmOt3AHtAFdIWoLtsKbWJiNsaNi8GxYyXnarVtG4j+/RuXy4/woJj4EhEREVVxQnEWNCkJ0iYSysLrFueJCg10/p2lZNfgEWLVPtGiKGL9+rOYNi0eeXmmEgmlUsCUKR3x2mvtzMoc5MDEl4iIiKiqEY1QZfwOTbLppDRV+lEIouWz+g3uj0Ab2MNUr+v/OKCu9kBPmZ1dhKlT47Bly1/SWN26Hli+PApt2gQ+0GOWNya+RERERFWAUJRhSnST46BJ3gVFUbrFeaLSBdqaj99a1Y2EsXrwQz93bm4xwsPX4tq1XGls8OCmmD07DG5umod+/PLCxJeIiIioMjIaoMo4JrUaU2WcgADLvd70HiHSqq7OvzOgdC7XUNzdnRAd3QBffHECnp5O+OSTHujbN6Rcn6M8MPElIiIiqiSEwlSpfEGTHA+FNtviPKPKDbqAblIHBqNb3QqP7d13H0dRkQETJ7ZHUJBt25SVFRNfIiIiIntl1EF94wg0SXFQJ8VCnXXqrlP1nk1N5QtBkdDV6AAoK6bEQBRFrF17GkqlgKFDm0vjzs4qfPJJZIU8Z3lh4ktERERkRxT5SdKqrjplNxS6mxbnGdUe0AWGlazqulb8CWTp6QWYNCkW27dfgouLCm3bBiIkxOf+d7QTTHyJiIiI5GQohjrtkNRXV5V95q5Tdd6PmrovBPaAvkZbQGG7VC4hIRGvvroDaWn5AIDCQj127vybiS8RERER3Z0iN7GkVvf6Xgj6fIvzjBovaAMjbiW7kRBd/GwcKVBUpMdHH/2KlSt/k8Z8fFzw2Wc90avXw3eEsCUmvkREREQVTV8Idep+aJJjoUmKg+rmBYvTRAjQ+z52q3yhB/Q+rQGF0sbBljhz5gbGjo3B2bMlrdHCw+th0aJe8Pd/sH6/cmLiS0RERFTeRBHK3ItSqzF16q8QDEUWpxqda0h1utqAcIjO8pcOiKKIVatO4MMP96G42AAAcHJSYvr0rhg16lEIVuzmZk+Y+BIRERGVB10+NKl7TeULSXFQ5iVanCYKSuhrtCtZ1fVuAQjybuX7b/n5OixfflxKeps08cXy5dEIDfWVObKHw8SXiIiI6EGIIpQ556WT0tSp+yEYtRanGlwCSlqNBXSHqPG0baxWcnPTYNmyKDz99A946aVWeOedLnB2rvxpY+X/CYiIiIhsRNDehPr6HlMJQ3IclPlXLc4TFWro/DpKq7oGzyaAHZcH5OfrUFCgQ40artJYhw61cPDgC6hXz1O+wMoZE18iIiKiuxFFKLP+KFnVTTsEQdRbnGqoVtu0qhvYA7qArhDV9rl72b+dPJmKsWO3ISDADT/88AwUipIEvSolvQATXyIiIiIzQnEWNCkJUN9e1S28bnGeqHCCzr+z6aS0oJ4wVG9o16u6/2YwGLF06THMnXsAer0RFy9mYcWK4xg3ro3coVUYJr5ERETk2EQjVBm/l7QaSz8KQTRanKp3rw/drfIFrX8XQF35WnoBQFJSLl55JQb791+Txlq29K90fXmtxcSXiIiIHI5QlA5N8i7TJhLJu6AoSrc4T1S6QFuzq7SBhLF65U8Mt2w5jylT4pCTUwzAtEg9YUI7TJ3aERqNfD2DbYGJLxEREVV9RgNUGcekvrqqjBMQIFqcqvdoJJ2UpvPvBCidbRxsxcjNLcbbbydg3bqSLZGDgtyxdGlvdOpUW8bIbIeJLxEREVVJQmHqre4LsdAkx0OhzbY4z6hygy6g260T0yJgdKtr20Bt4ObNYkRE/BeXL+dIY/36NcL8+RHw9KwaiX1ZMPElIiKiqsGog/rGEWiS4qBOioU669Rdp+o9m5b01a3RAVBqbBio7VWv7oTHH6+Ny5dz4Oamwdy54Rg4MLTS7sD2oJj4EhERUaWlyL8m9dRVp+yGQnfT4jyj2gO6wDBoA3tAGxQBo2ugjSOV34cfdkdhoR5vvtmpyrUpKysmvkRERFR5GIqhTj0olTCoss/edarO+9FbJ6X1gL5GW0DhGGmPKIpYv/4s1GoF+vdvLI27uWmwfHm0jJHJzzF+A4iIiKjSUuQmwik5DriRAJ8r8RD0+RbnGTVe0AZGSLW6ooufjSOVX3Z2EaZOjcOWLX+hWjU1WrWqiUce8ZQ7LLvBxJeIiIjsi74Q6tRfTa3GkmKhunlRuunOilQRAvS+j91KdCOh92kNKKp2O6572b//KsaPj0Fych4A0zbEW7f+hQkT2skcmf1g4ktERETyEkUocy9KrcbUqb9CMBRZnGp0rnGr1VgktAHhEJ19bBys/dFqDZg37wCWLDkK8VaHNg8PJ3z6aQ/07Rsib3B2hokvERER2Z4uH5rre6Xd0pR5iRaniYIS+hrtoA3qgWpNn0KmIhgiFLaN1Y5dvJiJMWO24dSpNGmsc+daWLIkCkFB7jJGZp+Y+BIREVHFE0Uoc86VrOqmHYBg1FqcanANlFZ1dQHdIWo8IQhANV93ID0Xd9l3wqGIoog1a07j/fd3o7BQDwBQqxWYNq0zxo1rA4XCsdqUlRUTXyIiIqoQgvYm1Nf3QJN0a1W34JrFeaJCDZ1fR2m3NINnE9M+unRXN28W4+OPD0pJb4MGXlixIhotWvjLHJl9Y+JLRERE5UMUocz6w5ToJsdBnXYIgqi3ONVQrY50UpouoCtENb+Wt4aHhzMWL+6FwYM34vnnW2DGjG5wdVXLHZbdY+JLRERED0wozoImJcFUvpC8C8rC6xbniQon6Pw7m05KC+oJQ/WGXNW1QlGRHoWFOnh5uUhj4eH1sHfvCDRu7CtjZJULE18iIiIqO9EIVcbv0klpqvSjEESjxal69/rQ3Spf0Pp3AdTVbBxs1XDmzA2MHbsNtWpVx3//289sm2EmvdZh4ktERET3JBSlQ5O8y9RXN3kXFEXpFueJShdoa3a9tVtaJIzVg20cadViNIpYteoEZs7ch+JiA86ezcDXX5/CCy+0lDu0SouJLxEREZkzGqDKOCadlKbKOAHhLq0U9B6NpJPSdP6dAKWzjYOtmlJT8zBhwg4kJFyWxpo08UWHDkEyRlX5MfElIiIiCIWpplZjybHQJMdDoc22OM+ocoMuoPutVd0IGN3q2jZQBxATcxGTJsUiI6NQGhs9ujXeeacLnJ2Zuj0MvnpERESOyKiD+sYR00lpSXFQZ52661S9V7OSVd0a7QGlxoaBOo78fB2mT9+DNWtKjoW/fzV8/nlvdO/ODxjlgYkvERGRg1DkX7u1qhsHdcpuKHQ3Lc4zqj2gCwyDNrAHtEERMLoG2jhSx5OdXYTo6O9w8WKWNBYVFYwFC3rCx8flHvckazDxJSIiqqoMxVCnHZRKGFTZZ+86VefTCtrACGgDe0Bfoy2gYIpgS56ezmjRwh8XL2bB1VWFWbPCMHRoM7MODvTw+FtNRERUhShyE6UNJDTX90LQ51ucZ3TyhjYg/NYmEhEQXfxsHCn927x54Sgq0uO99x5HcLCX3OFUSUx8iYiIKjN9IdSpv5oS3aRYqG5etDhNhAC9bxup1ZjepzWgUNo4WLpty5bz0GiUiIpqII15eDjj66/7yhhV1cfEl4iIqDIRRShzL5rKF5JioU79FYKhyOJUo3MN6aQ0bUAYRGcfGwdL/5abW4y3307AunVn4OnphJYt/REYyO2abYWJLxERkb3T5UNzfa+0W5oyL9HiNFFQQl+j3a3yhUjovVsAgsK2sdJdHT2ajLFjY3DlSg4AIDu7GD/+eBYTJrSTOTLHwcSXiIjI3ogilDnnSlZ10w5AMGotTjW4Bt5a1Y2ELqA7RI2nbWOl+9LrjViw4BAWLjwMg8G0EYibmwZz54Zj4MBQmaNzLEx8iYiI7ICgvQn19T3SbmnKgmsW54kKNXR+HW+1GouEwbMJwDP/7VZiYjbGjYvBsWMp0ljbtoFYtiwKdet6yBiZY2LiS0REJAdRhDLrdElf3bRDEES9xamGanWk8gVdQFeIataE2jtRFLFu3RlMmxaP/HwdAECpFDB5cge8/np7qFQsQZEDE18iIiIbEYozoUnZbSpfSI6DsjDV4jxR4QSdf2dTB4agnjBUb8hV3UomO7sIH3ywR0p669b1wPLlUWjThpuByImJLxERUUURjVBlnChpNZZ+DIJotDhV717ftCVwYCS0NR8HVK42DpbKk5eXCxYs6ImRI3/C4MFNMXt2GNzcuNWz3Jj4EhERlSOhKB2a5F23NpHYBUVxhsV5otIF2ppdpb66xurBNo6UypNWa4BWazBLbqOjGyA2dihatvSXMTK6ExNfIiKih2E0QJVxTDopTZVxAgJEi1P1Ho1KanX9OwFKZxsHSxXh4sVMjBmzDY884okvvuhjts0wk177wsSXiIjISoqC61An7zL11U2Oh0KbbXGeUeUGXUD3klVdtzq2DZQqlCiKWLPmNN5/fzcKC/U4dSoNkZH18eyzTeQOje6CiS8REdH9GHVQ3zhiOiktKQ7qrFN3nar3aibtlqar0R5Qsq6zKkpPL8CkSbHYvv2SNNaggRdCQ7k7nj1j4ktERGSBIv9aSauxlN1Q6G5anGdUe0AbGG46KS0oAkZXnrVf1cXHJ2LChB1IS8uXxp5/vgVmzOgGV1e1jJHR/TDxJSIiAgBDMdRpB2+dlBYHVfbZu07V+bSCNjAC2qCe0Pu2ART8c+oIior0+OijX7Fy5W/SmI+PCz77rCd69eLJiZUB36lEROSwFLmJUqKrub4Xgj7f4jyjk7cp0Q2MhDYwAqKLn40jJbllZRWiX78fcPZsujQWHl4Pixb1gr9/NRkjI2sw8SUiIsehL4Q69deSvro3L1qcJkKA3rfNrQ0kekDv3QpQKG0cLNkTT09n1K3rgbNn0+HkpMT06V0xatSjZh0cyP4x8SUioqpLFKHMvSi1GlOn/grBUGRxqtG5hnRSmjYgDKIzT1KiEoIgYOHCnigq2oYZM7ohNNRX7pDoATDxJSKiqkWXB831faZWY0lxUOYlWpwmCkroarSHLigS2sAe0Hs3BwSFbWMlu7V9+yVoNEqEh9eTxnx8XLB+/QD5gqKHxsSXiIgqN1GEMvtcyapu2gEIRq3FqQbXwJJWYwHdIGo8bRsr2b38fB2mT9+DNWtOwdfXFXv2jECNGtw+uqpg4ktERJWOoL0JzfXdwG974PV3DJT51yzOExVq6Pw6QhvYA9qgSBg8mwCsyaS7OHkyFWPGbMOlS1kATL16v/vuD0yY0E7myKi8MPElIiL7J4pQZp2+1Vc3Fuq0wxBEPQDg36ecGarVMdXpBvWArubjENXuto+XKhWDwYilS49h7twD0OuNAABXVxVmzuyOYcOayxwdlScmvkREZJeE4kxokhNMG0gkx0FZmGpxnqhwgs6/s5TsGqo35KoulVlSUi7Gj4/BgQMl3xq0bOmPFSuiERzsJWNkVBGY+BIRkX0QjVBlnChpNZZ+DIJotDhV714fuqAecAntiwzXxyAqWYNJ1tuy5TymTIlDTk4xANPnpQkT2mHq1I7QaNi+ripi4ktERLIRitJvJbpx0CTvgqI4w+I8UekCbc2uplXdwAgYqwdDEAAXX3cgPRcQbRw4VXoZGYWYNCkWubmmEyGDgtyxdGlvdOpUW+bIqCIx8SUiItsxGqBKP3ar1VgsVBm/Q7hL1qr3aHQr0Y2Ezr8ToHS2cbBUlfn4uGD+/AiMHRuDfv0aYf78CHh68nesqmPiS0REFUpRcB3q5F2mdmMp8VBosy3OM6rcoAvobtotLTASRrc6tg2UqjS93git1gBXV7U0NmBAKAID3dGhQxB3YHMQTHyJiKh8GXVQ3zgCTVIs1ElxUGeduutUvVczqdWYrkZ7QKmxYaDkKBITszFuXAwaNvTGokW9zG7r2LGWTFGRHJj4EhHRQ1PkXytpNZayGwpdrsV5RrUHtIHh0AVGQhsUCaNrgI0jJUciiiLWrz+Lt97ahfx8HY4dS0FExCPo2zdE7tBIJkx8iYjIeoZiqNMOmsoXkuOgyj5716k6n1bQBkZAG9QTet82gIJ/eqjiZWcXYerUOGzZ8pc0VreuBwID3WSMiuTG/32IiKhMFLn/SKu6mut7IegLLM4zOnmbEt1AU62u6FLDxpGSo9u//yrGj49BcnKeNDZ4cFPMnh0GNzeW0zgyJr5ERGSZvhDq1F9LVnVvXrQ4TYQAvW8b00lpQT2g924FKNgDlWxPqzVg3rwDWLLkKMRbzUI8PZ3wySc9WN5AAJj4EhHRbaIIZe5FU6KbFAd16q8QDEUWpxqd/aTuC9qAMIjOPjYOlshcZmYhBg3agFOn0qSxLl1qY8mS3ggM5LbVZMLEl4jIkenyoLm+71Zf3Tgo8xItThMFJXQ12kMXFAltYA/ovZsDgsK2sRLdg6enM7y9XQAAarUC06Z1xrhxbaBQsE0ZlWDiS0TkSEQRypxzJau6aQcgGLUWpxpcA00rukE9oAvoBlHjadtYiaygUAj4/PNeeOmlX/DRR93RooW/3CGRHWLiS0RUxQnam1Cn7Ja2BlYWXLM4T1SoofPrJCW7Bs9QgE39yU4lJCTC2Vll1ofX398NW7c+K2NUZO9kT3y//fZbfPXVV7hx4wYaN26M9957Dy1atLjr/K+//hrfffcdUlJS4OXlhV69emHy5MlwcnKyYdRERHZMFKHMOi2dlKZOOwxB1FucaqhWx7QtcFAP6Go+DlHNWkiyb0VFesya9StWrvwNgYFu2L17BLcapjKTNfHdtm0b5syZgxkzZqBly5b45ptvMGrUKGzfvh0+PqVPlNi6dSs+/fRTzJ49G61atUJiYiLeeustCIKAadOmyfATEBHZB6E4E5rkBFOimxwHZWGqxXmiwgm6ml1KVnWrN+SqLlUap0+nYvDgH3HmTDoAIDk5D2vWnMKECe1kjowqC1kT39WrV2PQoEEYMGAAAGDGjBnYvXs3NmzYgJdffrnU/BMnTqB169Z48sknAQC1atXCE088gZMnT9o0biIi2YlGqDJO3CpfiIUq/RgE0Whxqt492LQlcFAPaP27ACpXGwdL9HCMRhGrVp3AzJn7UFxsAAA4OSkxfXpXjBr1qLzBUaUiW+Kr1Wrx559/YvTo0dKYQqFAp06dcOLECYv3adWqFX766SecOnUKLVq0wNWrV7Fnzx489dRTVj+/IHCRwxHcPsY81o6hqh9voSjddEJachw0SbugKM6wOE9UuUJX83FTCUNgJIzV65c8hq2CtYGqfrzJ5Pr1PEyYsAMJCZelsSZNfLFiRTRCQ31ljIwqUkW9r2VLfLOysmAwGEqVNPj4+ODvv/+2eJ8nn3wSWVlZeO655yCKIvR6PQYPHowxY8ZY/fze3qxjcyQ+PjzejqTKHG+jHkg5AiRuB/6JAVKPAxAtz/UOBR6JAur1hlDrcWhUznCU/amqzPGmUrZsOYeXXtqK9PSSXQInTuyA2bMj4Ows+2lKVAlVqt+aw4cPY+XKlZg+fTpatGiBK1eu4KOPPsLSpUsxfvx4qx4rMzMXRsvfClIVIgimP4oZGbnSLj5UdVWF4y0UXL+1LXAc1MnxUGizLc4zqtygC+gOba0e0AVGwOhWp+TGbB0AnU3ilVNVON50d+npBXjuuY0oKDD9Lvv7V8OaNU/jscf8kJdXiLy8+zwAVWoKRcUsUsqW+Hp5eUGpVCIjw/yruoyMDPj6Wv7qYtGiRejbty8GDhwIAGjUqBEKCgrw/vvvY+zYsVAoyt5MXRTB/ygdCI+3Y6lUx9uogzrtcEmtbtbpu07VezW/dVJaJHQ12gPKO9Z0K8vPWwEq1fGmMvPxccWsWd0xaVIsevcOxmef9USjRn5IT+cHHUdQUcdYtsRXo9GgadOmOHjwICIjIwEARqMRBw8exLBhwyzep6ioqFRyq1Sa9oMX+S4gokpCkX/t1qpuLNQpu6HQ5VqcZ9R4QhsQZmo1FhgBo2uAjSMlsh2DwQi93ggnp5LUZOjQZggMdENYWD3uwEblQtZShxdeeAFvvvkmmjVrhhYtWuCbb75BYWEh+vfvDwB444034O/vj8mTJwMAwsLCsHr1ajRp0kQqdVi0aBHCwsKkBJiIyO4YiqFOPVCyqptz7q5TdT6tpFZjet82gKJSVaQRPZCkpFy88koMGjf2xZw54dK4IAgID39ExsioqpH1f9To6GhkZmZi8eLFuHHjBkJDQ7Fq1Sqp1CElJcVshXfs2LEQBAGfffYZUlNT4e3tjbCwMEycOFGuH4GIyCJF7j/Sqq7m+l4I+gKL84xO3tAGRpiS3cBIiC41bBwpkby2bDmPKVPikJNTjP37ryEioh4iI+vf/45ED0AQHbRGICODJ7c5AkEAfH3dWRPmIGQ93vpCaFL3QX3rxDTVzYsWp4kQoPdtc2u3tEjovVsBCn5j9SD4/q7ccnOL8fbbCVi37ow0FhTkjuXLo9ChQ61S83m8HYtCUTEdW/gdGhHRgxBFKG9eNK3oJsVCnbofgqHI4lSjsx+0QaYVXW1AGETn0jtTEjmSo0eTMW5cDC5fzpHG+vVrhPnzI7j9MFUoJr5ERGWly4Pm+j5oknZCk7wLyrxEi9NEQQldjfbQBUVCG9gDeu/mgFD2rjNEVZVeb8TChYexYMEhGAymZVs3Nw3mzg3HwIGhELgbCVUwJr5ERHcjilBmn711Uloc1GkHIBi1FqcaXAOhDTSVL+gCukPUeNg4WCL7lplZiGHDNuPYsRRprG3bQCxbFoW6dfl+Idtg4ktEdAdBmwN1yh5okmKhSY6DsiDJ4jxRoYbOr5PUgcHgGcq9c4nuwcPDCSqV6ZsPpVLA5Mkd8Prr7aUxIltg4ktEjk0Uocw6LSW66rTDEES9xakGt7pSoqur+ThENbfKJSorpVKBpUuj8MILP2Hu3HC0aRMod0jkgJj4EpHDEYozoUlOuLUtcByUhakW54kKJ+hqdrmV7PaEoXoDruoSldGBA1fh7KxC69YlG6/Url0dsbFDWctLsmHiS0RVn2iEKuOEtKqrSj8GQbTcz1DvHmyq0w3qAa1/F0DlauNgiSo3rdaA+fMP4PPPj6JOHQ8kJAyHm1vJ9tpMeklOTHyJqEoSitKlk9I0ybugKM6wOE9UuUJbs+utVd1IGN3ZOJ/oQV28mIkxY7bh1Kk0AMDlyzlYvfokXn21rcyREZkw8SWiqsGohyrjOHB+Dzwu/AJVxu8QYLnLvd6j8a2+uj2g8+8IKNk3lOhhiKKItWtP4733dqOw0FQjr1YrMG1aZ4wb10bm6IhKMPElokpLUXAd6turuinxUGizAQDqf80zqtygC+hu2i0tMAJGtzo2j5WoqkpPL8CkSbHYvv2SNNaggRdWrIhGixb+MkZGVBoTXyKqPIw6qNMO3yphiIUq6/Rdp+q9mpd0YKjRDlBq7jqXiB5MfHwiJkzYgbS0fGns+edbYMaMbnB1/fdHUCL5MfElIrumyLtqSnST46BO2Q2FLtfiPKPGE7qAMDg1fhKZ1TvD4BJgcR4RlY+0tHyMHLkFRUUGAICPjws++6wnevUKljkyortj4ktE9sVQDHXqgZJV3Zxzd52q82klrerqfdtAUKrg5OsOY3ou7lLeS0TlxM+vGt5993G8++5uhIXVxeLFveHvX03usIjuiYkvEclOkfuP1GpMc30vBH2BxXlGJ29oAyNMtboBERBdatg4UiLHZTSKMBiMUKuV0thLL7VCQIAb+vRpCIWCbcrI/jHxJSLb0xdCk7oP6qRbq7q5lyxOEwUF9D6PmRLdoEjovVsBCqXFuURUcVJT8/DqqzvQrFkNvP9+V2lcoRDw5JMhMkZGZB0mvkRU8UQRypsXoUmOhSYpFurU/RAMRRanGp39brUai4Q2IAyis4+NgyWiO8XEXMTEiTuRmVmEPXsuIyysHh5/nJ1RqHJi4ktEFUOXB831fdAk7YQmeReUeYkWp4mCEroa7U3dFwIjofduDggK28ZKRKXk5+swffoerFlzShqrUYM1vFS5MfElovIhilBmn5VOSlOnHYBg1FmcanANhDbQVL6gC+gOUeNh42CJ6F5OnkzFmDHbcOlSljTWu3cwFi7sCR8fFxkjI3o4THyJ6IEJ2hyoU/ZIJ6YpC5IszhMVauj8OkkdGAyeoYDAE2GI7I3BYMTSpccwd+4B6PVGAICrqwozZ3bHsGHNIfB9S5UcE18iKjtRhCrz1K3d0mKhvnEYgmiwONXgVldKdLU1uwJqNxsHS0TWyMgoxEsvbcX+/deksZYt/bFiRTSCg71kjIyo/DDxJaJ7EoozoUlOgCY5FurkXVAWplqcJyqcoKvZ5Vay2xOG6g24qktUiVSvrkF+vqk8SRCACRPaYerUjtBo2EmFqg4mvkRkTjRClXFCKl9QpR+DIBotTtW7B5tOSguKhNa/C6BytXGwRFRe1Golli+PxvPPb8H8+RHo1Km23CERlTsmvkQEofAGNCm7oEmKgyZ5FxTFGRbniSpXaGt2vbWqGwmje30bR0pE5eXo0WS4uKjRrFnJRjDBwV7Yu/d5bkZBVRYTXyJHZNRDlX78VquxOKgyfodwlz1+9R6Nb/XV7QGdf0dA6WzjYImoPOn1RixceBgLFhxCcLAXdu4cCldXtXQ7k16qypj4EjkIRUEK1Mm7TCUMKQlQaLMtzjOq3aEL6G5a1Q2MhNGNX3cSVRWJidkYNy4Gx46lAAD++isTq1efxPjxbWSOjMg2mPgSVVVGHdRph0tqdbNO33Wq3qu51IFBV6MdoNTYMFAiqmiiKGL9+rOYNi0eeXlaAIBSKWDKlI4YPbq1zNER2Q4TX6IqRJF31bSBRHIc1Cm7odDlWpxn1HhCGxBu2kAiMAJG1wAbR0pEtpKdXYSpU+OwZctf0li9eh5YtiwKbdoEyhgZke0x8SWqzAzFUKcekHZLU+Wcu+tUnU8rqdWY3vcxQMG3P1FVt3//VYwfH4Pk5DxpbMiQpvjoozC4ufGbHXI8/MtHVMkocv+Ryhc01/dC0BdYnGd08oY2MMK0gURABESXGhbnEVHVlJqah2ef3Qit1rTJjKenEz75pAf69g2ROTIi+TDxJbJ3+kJoUvdBnXRrVTf3ksVpoqCA3ucxU6IbFAm9dytAwcbzRI7K398NU6Z0wOzZ+9GlS20sWdIbgYHucodFJCsmvkT2RhShvHlRajWmTt0PwVBkcarR2U9qNaYN6A7R2cfGwRKRvRBFEUajCKVSIY29+mpbBAa645lnQtmmjAhMfInsgy4Pmut7pRIGZd5li9NEQQmdXwdoAyOhC4yE3rs5ICgsziUix5GeXoBJk2LRvLkfpk7tKI0rlQoMGtRExsiI7AsTXyI5iCKU2Welk9LUaQcgGHUWpxpcA00rukE9oAvoBlHjYeNgiciexccnYsKEHUhLy0ds7N/o3r0u2rZltwYiS5j4EtmIoM2BOmX3rW2B46AsSLI4T1SoofPrZKrVDYyEwTMUEPgVJRGZKyrS46OPfsXKlb9JY56ezlKfXiIqjYkvUUURRagyT0F9e1X3xmEIosHiVINbXWkDCW3NroDazcbBElFlcubMDYwdG4OzZ9OlsbCwuli8uDf8/avJGBmRfWPiS1SOhOJMaJLjTSelJe+CsjDV4jxR4QRdzS63VnV7wFC9AVd1iei+jEYRq1adwMyZ+1BcbPog7eSkxPvvP45Ro1rxBDai+2DiS/QwRCNUGb+ZyheSYqHKOA5BNFqcqncPNtXpBkVC698FULnaOFgiqswyMwsxduw2JCSUnPwaGuqLFSuiERrqK2NkRJUHE18iKwmFN6BJ2XWrA0M8FMUZFueJKldoa3a9VcIQCaN7fRtHSkRViaurGtevl+zANnp0a7zzThc4O/NPOVFZ8d1CdD9GPVTpx6RWY+qME3edqvdoLJ2UpvPvBCidbBgoEVVlzs4qLF8ejREjfsLHH0cgLKye3CERVTpMfIksUBSkQJ18a1U3JQEKbbbFeUa1O3QB3U2ruoGRMLrVtm2gRFRlnTyZCldXNRo29JbGmjSpgUOHXoBKxf7dRA+CiS8RABh1UKcdklqNqbJO33Wq3qt5yapujXaAUmPDQImoqjMYjFi69Bjmzj2Axo19EBMzBE5OJX+umfQSPTgmvuSwFHlXSzaQuL4HCl2uxXlGjSe0AeHQBkVCFxgBo2uAjSMlIkeRlJSL8eNjcODANQDAH3/cwOrVJzFmzGMyR0ZUNTDxJcdhKIY69QA0ybHQJMVBlXPurlN1Pq1unZTWE3rfxwAF3ypEVLG2bDmPKVPikJNTDMDU4XDChHZ48cVH5Q2MqArhX3Oq0hS5/wBX96H6Xz9DfX0vBH2BxXlGJx9oAyOgDYqENiACoksNG0dKRI4qN7cYb7+dgHXrzkhjQUHuWLq0Nzp14nkDROWJiS9VLfoCaFJ/hTrp1qpu7iUAwL+rcEVBAb1vG2m3NL33o4BCafNwicixHT2ajHHjYnD5co401q9fI8yfHwFPT2cZIyOqmpj4UuUmilDevAhN0k5Tq7HU/RAMRRanGp39TCu6gT2gDegO0dnHxsESEZVIScnF00//AK3WtAObm5sGc+eGY+DAUAjcyZGoQjDxpcpHlwfN9b1SX11l3mWL00RBCb1fB6gb9kGWV1foPZsBAs+GJiL7EBDgjnHjHsNnnx1B27aBWLYsCnXresgdFlGVxsSX7J8oQpl9tmQDibQDEIw6i1MNrkFS+YIuoBvg5AFfX3cY0nMB0cZxExHdQRRN/wnduZo7dWpHBAVVx9ChzdimjMgGmPiSXRK0OVCn7Jb66ioLkizOExVq6Pw63yphiITBM9R0KvTtx7FVwERE95CdXYSpU+Pw6KM1MX58G2lcrVbi+edbyBgZkWNh4kv2QTRClXka6tt9dW8chiAaLE41uNWVWo1paz4OqN1sHCwRUdnt338V48fHIDk5D9u2XUTXrnXQvLmf3GEROSQmviQboTgTmuT4W5tIxEFRlGZxnqhwgq5ml1u7pfWAoXoDs1VdIiJ7pNUaMG/eASxZchS3qhxQrZoaaWn58gZG5MCY+JLtiEaoMn4zlS8kxUKVcRyCaLQ4Ve8ebKrTDYqE1r8LoHK1cbBERA/u4sVMjBmzDadOlXyg79KlNpYs6Y3AQHcZIyNybEx8qUIJhTdMK7rJcdAkx0NRnGFxnqhyhbZmV1OrsaAIGN3r2zhSIqKHJ4oi1qw5jfff343CQj0AQK1WYNq0zhg3rg0UCn5bRSSnh0p8i4uL4eTkVF6xUFVg1EOVfqykA0PGibtO1XuGmmp1AyOh8+8EKPm7RESVV1ZWIV57bSe2b78kjTVo4IUVK6LRooW/jJER0W1WJ75GoxHLly/H999/j4yMDOzYsQO1a9fGZ599hqCgIAwcOLAi4iQ7pihIgTp5lynZTUmAQpttcZ5R7Q5dQHfTqm5gBIxu3IqTiKoOjUaFCxcypesjR7bEBx90haurWsaoiOhOVie+y5Ytw+bNmzF16lS899570nhISAi++eYbJr6ORDTCfe8LcL686a5T9F7Nb52UFgmdX3tAwT8ARFQ1VaumxvLlURgxYgs+/jgSvXoFyx0SEf2L1Ynvli1bMHPmTHTs2BHTp0+Xxhs1aoS///67XIMj+6a6caRU0mvUeEIbEA5tUCR0gREwugbIFB0RUcU6c+YGXF3VqFfPUxp79NGaOHp0FJyceAoNkT2y+p2ZmpqKOnXqlBoXRRF6vb5cgqLKwenaDulyUfBzKGz4AvS+jwEK/odPRFWX0Shi1aoTmDlzH5o188PWrc+a7brGpJfIflm9P2KDBg1w7NixUuPbt29HaGhouQRFlYMmqSTxzWv9IfR+7Zn0ElGVlpqah8GDN+Ldd3ejuNiA48dT8PXXJ+UOi4jKyOosZdy4cXjrrbeQmpoKURSxc+dO/PPPP9i8eTNWrlxZETGSHVLkJ0GV9QcAQOfTGqILdyEioqotJuYiJk7ciczMImls9OjWGDasuYxREZE1rE58IyMjsWLFCixduhQuLi5YvHgxmjRpghUrVqBz584VESPZIU3STumyNqinjJEQEVWs/Hwdpk/fgzVrTklj/v7VsHhxL4SF1ZMvMCKy2gN9L92mTRusXr26vGOhSsQs8a3VS8ZIiIgqzsmTqRgzZhsuXcqSxqKigrFgQU/4+LjIGBkRPQira3wjIiKQlZVVavzmzZuIiIgol6DIzhmKoUnZDQAwOteA3qeVvPEQEVWApKRc9OnzvZT0urqqsGBBD3z9dV8mvUSVlNWJb1JSEoxGY6lxrVaL1NTUcgmK7Js6dT8EfT4AQBvUAxCs/jUiIrJ7QUHueOGFlgCAli39sWvXcAwb1hyCwG2HiSqrMpc67Nq1S7q8b98+uLu7S9eNRiMOHjyIoKCg8o2O7NKd3RxY30tEVYkoimaJ7TvvdEFQkDtefPFRaDRKGSMjovJQ5sR3/PjxAABBEPDWW2+ZP4hKhaCgoFLjVDVprpnqe0VBCW1guMzREBE9vNzcYrz9dgJataqJF198VBp3dlZhzJjH5AuMiMpVmRPfc+fOAQDCw8Px448/wtvbu8KCIvulvHkRqtxLAACdXweIGk95AyIiekhHjyZj7NgYXLmSgy1bzqNLl9oICfGROywiqgBWF2fGx8cz6XVgmmt3ljmwmwMRVV56vRHz5x9A377rcOVKDgBApVIiMTFH5siIqKI8UDuzgoICHD16FMnJydDpdGa3jRgxolwCI/vENmZEVBUkJmZj3LgYHDuWIo21bRuIZcuiULeuh4yREVFFsjrxPXPmDF5++WUUFhaisLAQHh4eyMrKgouLC7y9vZn4VmW6PKhT9wMADNVqw+DRWOaAiIisI4oi1q07g2nT4pGfb1q4USoFTJ7cAa+/3h4qFbvUEFVlVr/D58yZg7CwMBw9ehROTk5Yv349EhIS0LRpU7z55psVESPZCU3KHghGLYBb3RzY0oeIKpGcnCK8/PIvmDBhh5T01q3rga1bn8WUKR2Z9BI5AKvf5WfPnsULL7wAhUIBpVIJrVaLgIAATJ06FQsWLKiIGMlOmLUxq8U2ZkRUuQiCgN9+uy5dHzy4KRIShqNNm0AZoyIiW7I68VWpVFAoTHfz8fFBcnIyAMDNzQ3Xr1+/112pMhNFqb5XVDhBW7ObzAEREVmnenUnLF3aGz4+Lli16gksXtwLbm4aucMiIhuyusa3SZMmOH36NOrVq4e2bdti8eLFyMrKwpYtW9CwYcOKiJHsgDLrDygLTB9ydDUfB1SuMkdERHRvFy9mwtVVjcDAkg2XOnSohWPHXkK1amoZIyMiuVi94jtx4kTUqFFDuly9enV88MEHyMrKwocffljuAZJ9uLObQzG7ORCRHRNFEd98cwoREf/FK69sh9Eomt3OpJfIcVm94tu8eXPpso+PD7766qtyDYjsk9M1blNMRPYvPb0AkybFYvt200Y7v/56FWvWnMLIkS1ljoyI7EG5ncL6559/YvTo0eX1cGRHhKIMqNKPAAD0HiEwuj8ic0RERKXFxyeie/e1UtILAM8/3wKDBjWRMSoisidWJb779u3DvHnzsGDBAly9ehUAcOnSJYwbNw7PPPMMjEaj1QF8++23CA8PR/PmzTFw4ECcOnXqnvNv3ryJGTNmoEuXLmjWrBl69eqFPXv2WP28VHaalHgIounYcrc2IrI3RUV6vPfebgwevBFpafkAAB8fF6xd+xQ+/jgSrq4sbSAikzKXOvzwww9477334OHhgZs3b+KHH37AW2+9hVmzZiEqKgo///wzgoODrXrybdu2Yc6cOZgxYwZatmyJb775BqNGjcL27dvh41N6n3StVosXXngBPj4+WLRoEfz9/ZGcnIzq1atb9bxkHQ3LHIjITp0+nYrBg3/EmTPp0lhYWF0sXtwb/v7VZIyMiOxRmRPfNWvWYMqUKXjppZewY8cOvPbaa/juu++wdetW1KxZ84GefPXq1Rg0aBAGDBgAAJgxYwZ2796NDRs24OWXXy41f8OGDcjJycH3338Ptdr0Cb5WrVoP9NxURkYDNMlxpotqd+j8OsocEBGRydWrN9Gx42oUFxsAAE5OSrz//uMYNaoVFApusENEpZU58b169Sp69+4NAOjZsydUKhWmTp36wEmvVqstVResUCjQqVMnnDhxwuJ94uPj8eijj+LDDz/Erl274O3tjSeeeAL/+c9/oFQqrXp+QeDGY2WhyjgGRXEmAEAXEAZBVbl6Xt4+xjzWjoHH27HUqVMdI0a0xJdf/oYmTXyxYkU0QkN95Q6LKgjf346loo5zmRPfoqIiuLi43ApGgFqthp+f3wM/cVZWFgwGQ6mSBh8fH/z9998W73P16lUcOnQITz75JL744gtcuXIFM2bMgF6vxyuvvGLV83t7u99/EgHnS+qnnRo/BSffyvm6+fhUzrjpwfB4O46FC3uhbl0PTJ7cCc7OVjcqokqI7296GFb9L/HDDz/A1dW0cYHBYMDGjRvh5eVlNmfEiBHlF92/iKIIHx8fzJw5E0qlEs2aNUNqaiq++uorqxPfzMxcPMC5eA7H86+t0i9JhsfjENNzZY3HWoJg+k8yIyMXonj/+VS58XhXXfn5OkyfvgePPRaAIUOaAig53mPGtEJeXiHy8mQOkioU39+ORaGomEXKMie+gYGBWL9+vXTd19cXW7ZsMZsjCEKZE18vLy8olUpkZGSYjWdkZMDX1/JXVTVq1IBKpTIra6hfvz5u3LgBrVYLjabsX8OLIvjGuQ9FQQpUmScBADrvR2F0qQlU0teMx9ux8HhXLSdPpmLs2G24eDELP/54Fu3bB+GRRzyl23m8HQuPt2OoqGNc5sQ3Pj6+XJ9Yo9GgadOmOHjwICIjIwEARqMRBw8exLBhwyzep3Xr1vj5559hNBqhUJg6sSUmJqJGjRpWJb1UNpqkWOmyNqiHjJEQkSMyGIxYuvQY5s49AL3e9BWdKIo4dy7dLPElIiqrctvA4kG88MILWL9+PTZt2oRLly7hgw8+QGFhIfr37w8AeOONN/Dpp59K84cMGYLs7Gx89NFH+Oeff7B7926sXLkSQ4cOletHqNI0SXe0MeM2xURkQ0lJuRgw4EfMmvWrlPS2bOmPXbuGIyqqgczREVFlJeuZANHR0cjMzMTixYtx48YNhIaGYtWqVVKpQ0pKirSyCwABAQH46quvMGfOHPTt2xf+/v4YMWIE/vOf/8j1I1RdBi3UyQkAAKOTD/Q+j8kcEBE5ii1bzmPKlDjk5BQDMNV2TpjQDlOndoRGY10HHyKiOwmi6JiVMhkZPLntXtQpu+EZ2xcAUFT/WeR2+VLmiB6MIAC+vu5IT+fJEI6Ax7tyy8vTYtq0eKxbd0YaCwpyx9KlvdGpU+1S83m8HQuPt2NRKCqmgwd7v5BFmqSd0mVuU0xEtlBcbMDu3Zel6/36NcL8+RHw9HSWMSoiqkpkrfEl+3V7m2JRUEAbGC5zNETkCHx8XPD5573h7q7BkiW9sXJlNJNeIipXD7Tie+XKFWzYsAFXr17FO++8Ax8fH+zZsweBgYFo2LBhecdINqbI/RuqmxcAAPoa7SE6ecscERFVRYmJ2XB1VcPPr5o01r17Xfz220vw8GDCS0Tlz+oV3yNHjuDJJ5/EqVOnsHPnThQUFAAAzp8/j88//7zcAyTb01wrKXMoDuopYyREVBWJoojvv/8TYWFr8frrO/HvU02Y9BJRRbE68f3000/x+uuvY/Xq1VCr1dJ4hw4d8Pvvv5dnbCQTpzvre9nGjIjKUXZ2EV5++RdMmLAD+fk6xMX9g++++1PusIjIQVid+P7111/ShhN38vb2RlZWVrkERTLS5UN9fR8AwOAaBINnU5kDIqKqYv/+q+jefQ22bPlLGhs8uCn69g2RMSoiciRW1/i6u7vjxo0bqF3bvLXM2bNn4e/vX26BkTw01/dCMJp6Z2qDepr6xxARPQSt1oB58w5gyZKjUhsqT08nfPJJDya9RGRTVq/49unTB5988glu3LgBQRBgNBpx/PhxzJs3D/369auAEMmWNCxzIKJydOFCJqKjv8Pnn5ckvV261Mbu3SOY9BKRzVm94jtx4kR8+OGH6N69OwwGA/r06QODwYAnnngCY8eOrYgYyVZEsaSNmUIDbc2uMgdERJVZYmI2IiP/i8JCPQBArVZg2rTOGDeuDRQKfptERLZndeKr0Wgwa9YsjBs3DhcuXEB+fj6aNGmCevXqVUB4ZEvK7LNQFlwDAOj8uwBqN5kjIqLKrF49T0RHN8CGDefQoIEXVqyIRosWLIkjIvlYnfgeO3YMbdq0QWBgIAIDAysiJpKJJmmHdFlbi23MiOjhzZsXgdq1q+P119vD1VV9/zsQEVUgq2t8R44cifDwcCxYsAAXL16siJhIJnfW9xZzm2IiskJRkR7vvbcbP/30l9l49epOePvtLkx6icguWJ347t27Fy+++CKOHDmCJ554Ak899RRWrVqF69evV0R8ZCNCcRbUaYcAAHr3YBirB8scERFVFmfO3ECvXv/DypW/YfLkWCQl5codEhGRRVYnvt7e3hg2bBi+//57xMbGonfv3ti8eTPCw8MxYsSIioiRbECTkgBBNABgNwciKhujUcQXX/yGXr3+h7Nn0wGYVn5//50LIURkn6yu8b1T7dq18fLLL6Nx48ZYtGgRjh49Wl5xkY3d7uYA3OrfS0R0D6mpeZgwYQcSEi5LY6GhvlixIhqhob4yRkZEdHcPnPgeP34cW7duxY4dO1BcXIyIiAhMmjSpPGMjWxGN0CTHmi6qqkHn31nmgIjInsXEXMSkSbHIyCiUxkaPbo133ukCZ+eHWk8hIqpQVv8P9emnn+KXX35BWloaOnfujHfeeQcRERFwcXGpiPjIBlQZv0FRZPqaUhsQBiidZI6IiOxRfr4O06fvwZo1p6Qxf/9qWLy4F8LC6skXGBFRGVmd+B49ehSjRo1CVFQUvL29KyImsjGWORBRWeTlFeOXXy5I16OigrFgQU/4+HDhg4gqB6sT3++//74i4iAZmW9TzMSXiCzz93fDggU9MHbsNsyaFYahQ5tBELgDGxFVHmVKfHft2oWuXbtCrVZj165d95wbERFRLoGRbQiFqVBnnAAA6L2aw+jKTUmIyCQpKReurip4eZWs6EZFNcDRoy+hRg1XGSMjInowZUp8x48fj/3798PHxwfjx4+/6zxBEHD27NlyC44qniYpTrpczDZmRHTLli3nMWVKHLp2rYNVq54wW9ll0ktElVWZEt9z585ZvEyVn1MS63uJqERubjHefjsB69adAQBs3XoBGzacwzPPhMocGRHRw7N6A4vNmzdDq9WWGtdqtdi8eXN5xES2YtRBnRxvuqjxgt63rcwBEZGcjh5NRljYf6WkFwD69WuEyMhHZIyKiKj8WJ34Tps2Dbm5pbejzM/Px7Rp08olKLINddohKHQ3AQDawAhAoZQ5IiKSg15vxMcfH0Tfvutw5UoOAMDNTYMlS3pj5cpoeHo6yxwhEVH5sLqrgyiKFs/iTU1Nhbu7e7kERbZh1saM9b1EDikxMRvjxsXg2LEUaaxt20AsWxaFunU9ZIyMiKj8lTnx7devHwRBgCAIeP7556FSldzVYDDg2rVrePzxxyskSKoYt9uYiRCgDYyUORoisrW//85CZOS3yMszla8plQImT+6A119vD5XK6i8EiYjsXpkT38hIU2J09uxZdOnSBdWqVZNuU6vVCAoKQs+ePDmqslDkXYYqx3Sior5GW4jOPjJHRES29sgjnnj88dqIibmEunU9sHx5FNq0YUtDIqq6ypz4vvLKKwCAoKAgREdHw8mJ29pWZpprd2xaEcQyByJHJAgCFizoidq1D+GttzrDzU0jd0hERBXK6u+ynn76aSa9VYCGbcyIHIpWa8DMmfsQG/u32biPjwtmzQpj0ktEDqFMK77t2rXD9u3b4e3tjbZt295zi8ojR46UW3BUQfSF0FzfCwAwuNSE3ruFzAERUUW6eDETY8Zsw6lTafjuuz+xe/dw+PlVu/8diYiqmDIlvtOmTYObm5t0mXuzV26a63shGIoA3Frt5fEkqpJEUcSaNafx/vu7UVioBwDk5BThyJFkPPFEQ5mjIyKyvTIlvk8//bR0uX///hUWDNnG7W4OANuYEVVV6ekFmDQpFtu3X5LGGjTwwooV0WjRwl/GyIiI5GN1H98///wTKpUKjRo1AgDExcVh48aNaNCgAV555RVoNKwTs2uiWNLGTKGGLqC7vPEQUbmLj0/EhAk7kJaWL42NHNkSH3zQFa6uahkjIyKSl9Unt73//vtITEwEAFy9ehUTJ06Ei4sLtm/fjo8//ri846Nypsw5D2XeZQCAzq8zRDU3HSGqKoqK9Hjvvd0YPHijlPT6+Lhg7dqnMH9+BJNeInJ4Vie+iYmJCA0NBQDExMSgXbt2+PTTTzFnzhzs3LnzPvcmuZmXObCbA1FVkp5egO+++1O6Hh5eD7t3j0CvXsEyRkVEZD+sTnxFUYTRaAQAHDx4EF27dgUABAQEICsrq3yjo3Jntk0x+/cSVSm1alXH/PkRcHJSYvbsMHz33dPw92f3BiKi26yu8W3WrBmWL1+Ojh074ujRo/jggw8AANeuXYOvr295x0flSNDmQJ12EABgcH8EhuoNZI6IiB5GamoeXF3VcHcv6a3ev39jtG8fhKAgljEREf2b1Su+b7/9Ns6cOYOZM2dizJgxqFu3LgBgx44daNWqVbkHSOVHnZIAQTS1NCpmGzOiSi0m5iK6d1+Lt99OKHUbk14iIsusXvFt3Lgxtm7dWmr8jTfegEJhdR5NNsRtiokqv/x8HaZP34M1a04BANatO4OePevjySdDZI6MiMj+WZ343vbHH3/g0iVTf8gGDRqgadOm5RYUVQDRCKfbbcxUrtDV7CJzQERkrZMnUzFmzDZculRyPkVUVDA6daotY1RERJWH1YlvRkYGXn/9dRw9ehTVq1cHANy8eRPt27fHwoUL4e3tXe5B0sNTZZ6EoigNAKCt2Q1QOsscERGVlcFgxNKlxzB37gHo9aaTi11dVZg1KwxDhzbjbppERGVkdW3CzJkzUVBQgF9++QVHjhzBkSNH8PPPPyMvLw+zZs2qiBipHJh3c2AbM6LKIikpFwMG/IhZs36Vkt6WLf2xa9dwDBvWnEkvEZEVrF7x3bdvH1avXo3g4JK+kA0aNMD06dPx4osvlmtwVH40SUx8iSqbS5ey0Lv3/5CTUwzAdD7qhAntMHVqR2g0SpmjIyKqfKxe8TUajVCrS+/+o1KppP6+ZF+EwhtQpf8GANB7NoXRjfWARJXBI494onXrmgBMnRo2bRqId97pwqSXiOgBWZ34dujQAR999BFSU1OlsdTUVMyZMwcdO3Ys1+CofGiSYyFABMDVXqLKRKEQsHhxLwwf3hwJCcN5EhsR0UOyutTh/fffx9ixYxEREYGaNU0rEdevX0fDhg3x8ccfl3uA9PDMtylmGzMie6TXG7Fw4WF06BCExx+vI437+7vh0097yBgZEVHVYXXiGxAQgE2bNuHgwYNSO7Pg4GB06tSp3IOjcmDUQ5Mcb7qo8YSuRjuZAyKif0tMzMa4cTE4diwFAQFu2L17OLy8XOQOi4ioyrEq8d22bRt27doFnU6Hjh07Yvjw4RUVF5UT9Y0jUGizAQDawHBA8cCtm4monImiiPXrz2LatHjk5WkBAGlp+fj116vckIKIqAKUOQv63//+hw8//BB169aFs7MzYmNjceXKFbz55psVGR89JLYxI7JP2dlFmDo1Dlu2/CWN1a3rgeXLo9CmTaCMkRERVV1lPrnt22+/xSuvvIIdO3Zgy5YtmDt3Lr777ruKjI3Kwe36XhECtIGsEySyB/v3X0X37mvMkt7Bg5siIWE4k14iogpU5sT36tWr6Nevn3T9ySefhF6vR1paWkXEReVAkXcVquw/AQB639YQXWrIHBGRY9NqDZg1ax/69/8Bycl5AAAPDyesWvUEFi/uBTc3jcwREhFVbWUuddBqtXB1dZWuKxQKqNVqFBcXV0hg9PDMujkEsZsDkdySk3OxatXvEE3dBdG5cy0sWRKFoCB3eQMjInIQVp3p9Nlnn8HFpeRMY51Oh+XLl8PdveQ/7WnTppVfdPRQ2MaMyL7Uq+eJjz7qjjfe2IVp0zpj3Lg2UCi45TARka2UOfFt27Yt/vnnH7OxVq1a4erVq9J17hlvRwxF0FzfAwAwOvtB791S5oCIHE9GRiFcXFRwdS3Z7fK555qhY8daqF/fS8bIiIgcU5kT37Vr11ZkHFTO1Nd/haAvAAAUB/UEBKs36SOihxAfn4gJE3agT58GmDcvQhoXBIFJLxGRTJgNVVGapDvamNViGzMiWykq0uO993Zj8OCNSEvLx+rVJxEb+7fcYRERER5g5zaqBEQRTrf694qCCrqAMJkDInIMZ87cwNixMTh7Nl0aCw+vhxYt/GWMioiIbmPiWwUpb16EMi8RAKDz6whR4yFvQERVnNEoYtWqE5g5cx+Kiw0AACcnJaZP74pRox7l+Q9ERHaCiW8VZF7mwG4ORBUpNTUPEybsQELCZWksNNQXK1ZEIzTUV8bIiIjo35j4VkGaa3f272V9L1FFuXgxE08+uQ4ZGYXS2OjRrfHOO13g7Mz/XomI7M0Dndx27NgxTJkyBc8++yxSU1MBAJs3b8axY8fKNTiynqDLhTptPwDA4FYXBo9GMkdEVHU98ognQkK8AQD+/tWwbl1/zJzZnUkvEZGdsjrx3bFjB0aNGgVnZ2ecOXMGWq0WAJCXl4eVK1eWe4BkHXXKbghGHYBbq72sLSSqMEqlAkuXRmHgwFDs3j0CYWH15A6JiIjuwerEd/ny5ZgxYwZmzZoFlapkVaN169Y4c+ZMuQZH1tNcu6O+l2UOROXGYDBi8eIjOHIk2Wy8Vq3qWLo0Cj4+Lne5JxER2Qurv4/7559/0KZNm1Lj7u7uuHnzZrkERQ9IFKVtikWlM7Q1u8ocEFHVkJSUi/HjY3DgwDXUqeOBhIRhcHd3kjssIiKyktUrvr6+vrhy5Uqp8ePHj6N27drlEhQ9GFXmKSgLrwOAKelVcQWK6GFt2XIe3buvwYED1wAAV6/mYPfuy/e5FxER2SOrE99Bgwbho48+wsmTJyEIAlJTU/HTTz9h3rx5GDJkSEXESGV0e7UXALRBbGNG9DByc4vx6qvb8Z///IKcnGIAQFCQOzZtGognnwyROToiInoQVpc6vPzyyzAajRg5ciQKCwsxbNgwaDQavPjiixg+fHhFxEhlxG2KicrH0aPJGDcuBpcv50hj/fo1wvz5EfD0dJYxMiIiehhWJ76CIGDs2LEYNWoUrly5goKCAgQHB6NatWoVER+VkVCUAdWNowAAvUdjGN3qyhwRUeWj1xuxcOFhLFhwCAaDCABwc9Ng7txwDBwYyh3YiIgquQduNqnRaNCgQYPyjIUegiY5DgJMf6jZzYHowSQmZmPx4iNS0tu2bSCWLYtC3brc9puIqCqwOvEdPnz4PVc91qxZ81AB0YMxa2PGbYqJHkiDBt54//3H8f77ezB5cge8/np7qFQPtM8PERHZIasT39DQULPrer0eZ8+exYULF9CvX7/yiousYTRAkxxnuqiuDp1fB5kDIqocsrOL4OKigpNTyX+FL73UCl261EFoqK+MkRERUUWwOvF9++23LY5//vnnKCgoeOiAyHqq9KNQaLMBALrAcEChljcgokpg//6rGD8+Bv36NcIHH3STxgVBYNJLRFRFldt3eH379sWGDRvK6+HICne2MStmGzOie9JqDZg1ax/69/8Bycl5WLbsOPbuLd2bnIiIqp4HPrnt306cOAGNRlNeD0dWcDLbpjhSxkiI7NvFi5kYM2YbTp1Kk8a6dKmNBg28ZIyKiIhsxerE95VXXjG7Looibty4gT/++APjxo0rt8CobBQFyVBlnQYA6HxaQXTxlzkiIvsjiiLWrDmN99/fjcJCPQBArVZg2rTOGDeuDRQKtikjInIEVie+7u7uZtcFQcAjjzyCCRMmoEuXLuUWGJWN5tqdu7WxjRnRv6WnF2DSpFhs335JGmvQwAsrVkSjRQt+UCQiciRWJb4GgwH9+/dHSEgIPDzY19IemG1TzDZmRGYuXsxEv34/IC0tXxobObIlPvigK1xdeRIoEZGjserkNqVSiRdffBE3b94s1yC+/fZbhIeHo3nz5hg4cCBOnTpVpvv98ssvaNSokeOWWBiKoUlJAAAYnX2h92ktc0BE9qVuXQ8EBbkBAHx8XLB27VOYPz+CSS8RkYOyuqtDw4YNce3atXILYNu2bZgzZw7Gjx+PTZs2oXHjxhg1ahQyMjLueb9r165h3rx5aNOmTbnFUtmoU/dD0JtWsrSBPQCBjfaJ7qRWK7F8eTT69GmA3btHoFevYLlDIiIiGVmdKb3++uuYN28eEhISkJaWhry8PLN/1lq9ejUGDRqEAQMGoEGDBpgxYwacnZ3v2RrNYDBgypQpePXVV1G7dm2rn7OqYJkDUQmjUcQXX/yGEydSzMbr1/fC6tV94e9fTabIiIjIXpS5xnfJkiV48cUX8fLLLwMAxo4da7Z1sSiKEAQBZ8+eLfOTa7Va/Pnnnxg9erQ0plAo0KlTJ5w4ceKu91u6dCl8fHwwcOBAHD9+vMzPdydBMP2rzJySTG3MREEJXVB4pf95KsLt14SvTdV2/XoeJkzYgYSEy1i79g/s3DkELi4sZ6jq+P52LDzejqWijnOZE9+lS5diyJAhWLNmTbk9eVZWFgwGA3x8fMzGfXx88Pfff1u8z7Fjx/Djjz9i8+bND/Xc3t7u959kz7IuADdNZ6kLQZ3hE+i4K99l4eNTyY833dWWLefw0ktbkZ5u2jny3Ll0HDlyHQMGNJE5MrIVvr8dC483PYwyJ76iKAIA2rVrV2HB3E9eXh7eeOMNzJw5E97e3g/1WJmZuTAayykwGTif2Qi3W5fz/SJQmJ4razz2ShBM/0lmZOTi1q8wVRH5+TpMn74H33xTcjKsv381rFnzNB57zA/pfE9UeXx/OxYeb8eiUFTMIqVV7cyEcl539vLyglKpLHUiW0ZGBnx9fUvNv3r1KpKSkjB27FhpzHgre23SpAm2b9+OOnXqlOm5RRGV+o1zZ//e4qBelfpnsYXKfrzJ3MmTqRgzZhsuXcqSxqKigrFwYU80amRKenm8HQff346Fx9sxVNQxtirx7dWr132T3yNHjpT58TQaDZo2bYqDBw8iMtK01a7RaMTBgwcxbNiwUvPr16+PrVu3mo199tlnyM/PxzvvvIOaNWuW+bkrNV0e1Km/AgAMrrVg8AyVOSAi2zAYjFi69Bjmzj0Avd70odfVVYWZM7tj2LDm3IGNiIjuyarE99VXXy21c9vDeuGFF/Dmm2+iWbNmaNGiBb755hsUFhaif//+AIA33ngD/v7+mDx5MpycnBASEmJ2/+rVqwNAqfGqTHN9LwSjFsCtbg6s9CcHceFCplnS27KlP1asiEZwsJfMkRERUWVgVeLbp0+fUieiPazo6GhkZmZi8eLFuHHjBkJDQ7Fq1Sqp1CElJQUKBfvT3klzbYd0mdsUkyNp3NgXb73VCR999CsmTGiHqVM7QqNRyh0WERFVEoIolq2KIjQ0FL/++mu5J75yyciopCe3iSK8NzSBsiAJosIJ6c8mAmr2J70bQQB8fd1Z81lJ5eVp4eysgkpV8uHXYDDi9Ok0PPpo6dImHm/HwuPtWHi8HYtCUTEdPMq8lFrG/JgqmDL7TygLkgAAupqPM+mlKuvo0WSEha3FggWHzMaVSoXFpJeIiOh+ypz4njt3rsqs9lZmd5Y5FLPMgaogvd6Ijz8+iL591+Hy5RwsWHAYR44kyx0WERFVAVbV+JL8nLhNMVVhiYnZGDcuBseOlWw7/NhjAdxumIiIygUT30pEKM6E6sZhAIC+ekMY3R+ROSKi8iGKItavP4tp0+KRl2fqWKJUCpg8uQNef729WY0vERHRg2LiW4lokuMhiKYz8rjaS1VFdnYR3nhjFzZvPi+N1a3rgeXLo9CmTaCMkRERUVXDxLcS0SSxjRlVLRcvZmLgwA1ISirZXnjw4KaYPTsMbm4aGSMjIqKqiIlvZWE0QJMUZ7qocoPOr5PMARE9vFq1qqN6dSckJeXC09MJn3zSA337Os5mNEREZFssnKskVBnHoSjOAADoAsMAJVfDqPJzdlZhxYpoREY+gt27RzDpJSKiCsXEt5Iw362N9b1U+YiiiDVrTuH8+Qyz8dBQX/zvf08jMLD8G5UTERHdiaUOlYQmKVa6rA3qIWMkRNZLTy/ApEmx2L79Epo2rYHt24fAyYn//RARkW1xxbcSUBRchzrzdwCAzrsljK4B8gZEZIX4+ER0774W27dfAgD8+ecN7Nz5t8xRERGRI+KSSyVgvtrLbg5UORQV6TFr1j588cUJaczHxwWffdYTvXoFyxgZERE5Kia+lYBZG7NaTHzJ/p05cwNjx27D2bMl9bxhYXWxeHFv7sJGRESyYeJr7wxaqFMSAABGJ2/ofdrIHBDR3RmNIlatOoGZM/ehuNgAAHByUuL99x/HqFGtoFAIMkdIRESOjImvnVOnHYRCZ2rurw2MBBRKmSMiurszZ9Lx/vt7YDSKAEwdG1asiEZoqK/MkREREfHkNrunSdopXeY2xWTvmjWrgddfbwcAGD26NXbseI5JLxER2Q2u+Nq52/W9oqCANjBC5miIzBUU6ODsrDIrYZg8uQO6d6+LDh1qyRgZERFRaVzxtWOK3H+gyvkLAKD3bQfRyVvmiIhKnDyZioiI/2LZsmNm42q1kkkvERHZJSa+duzOModiljmQnTAYjFi8+Aiior7DpUtZmDNnP06dSpU7LCIiovtiqYMdczLbpphtzEh+SUm5GD8+BgcOXJPGmjSpgWrVNDJGRUREVDZMfO2VvgDq6/sAAAbXQBi8mskcEDm6LVvOY8qUOOTkFAMABAGYMKEdpk7tCI2G3UaIiMj+MfG1U5rreyAYTQmGNqinKcsgkkFubjHefjsB69adkcaCgtyxdGlvdOpUW8bIiIiIrMPE105prt3RxiyI9b0kj4sXMzFkyCZcvpwjjfXr1wgffxwBDw9nGSMjIiKyHhNfeySK0oltokIDbUA3mQMiRxUQ4A6VynQOrJubBnPnhmPgwFAI/AaCiIgqIXZ1sEPK7LNQ5l8FAOj8OwNqN5kjIkdVrZoaK1ZEo3PnWkhIGI5Bg5ow6SUiokqLia8dMtutjd0cyEZEUcS6dWfwzz/ZZuMtW/pj48aBqFvXQ57AiIiIygkTXzt0e7c2gNsUk21kZxfh5Zd/wauvbse4cdug0xnMbucqLxERVQVMfO2MoM2GOu0QAEDvHgxD9QYyR0RV3f79V9G9+xps2WLaJfD48evYufNvmaMiIiIqfzy5zc5okuMhiKbVNm0tljlQxdFqDZg37wCWLDkKUTSNeXo64dNPe6BPn4byBkdERFQBmPjaGfP6XpY5UMW4eDETY8Zsw6lTadJYly61sWRJbwQGussYGRERUcVh4mtPRCM0SbGmi6pqpo4OROVIFEWsWXMa77+/G4WFegCAWq3AtGmdMW5cGygUrOUlIqKqi4mvHVFlnICi6AYAQBvQHVA6yRsQVTmnT6dh6tQ46XqDBl5YsSIaLVr4yxgVERGRbfDkNjuiuXZHNwe2MaMK0KKFP8aMeQwAMHJkS8TFDWPSS0REDoMrvnbErI0ZE18qB8XFemg0SrN2ZO+80xnh4fXQvXtdGSMjIiKyPa742gmhMA3qjBMAAL1XMxirBckcEVV2Z87cQM+e32L16pNm405OKia9RETkkJj42onbJ7UB7OZAD8doFPHFF7+hV6//4ezZDHzwwR6cP58hd1hERESyY6mDnbizjVkxd2ujB5SamocJE3YgIeGyNPbII14yRkRERGQ/mPjaA6MOmuRdposaT+h928gcEFVGMTEXMWlSLDIyCqWx0aNb4513usDZmW91IiIi/jW0A+q0w1DobgIAtIGRgIKHhcouP1+H6dP3YM2aU9KYv381LF7cC2Fh9eQLjIiIyM4ww7IDZt0cuE0xWeHSpSwMG7YZly5lSWNRUcFYsKAnfHxcZIyMiIjI/jDxtQO363tFCNAG9pA5GqpMatRwhU5nAAC4uqowa1YYhg5tZta+jIiIiEzY1UFmirwrUGWfBQDofdtAdPaROSKqTKpXd8LSpVF47LGa2LVrOIYNa86kl4iI6C6Y+MrMbLc2dnOg+/jpp7+QlJRrNta+fRC2bRuC4GB2byAiIroXJr4yu7ONGXdro7vJzS3Gq69ux0sv/YxXXomBwWA0u52rvERERPfHxFdO+kJoru8FABhcakLv3VLmgMgeHT2ajPDw/2LdujMAgP37r2Hnzr9ljoqIiKjy4cltMtKk7oNgMPVc1Qb1BLhqR3fQ641YuPAwFiw4BINBBAC4uWkwd244evcOljk6IiKiyoeJr4zM6ntZ5kB3SEzMxrhxMTh2LEUaa9s2EMuWRaFuXQ8ZIyMiIqq8mPjKRRRL2pgp1NAFdJc3HrILoihi/fqzmDYtHnl5WgCAUilg8uQOeP319lCpWJ1ERET0oJj4ykSZ8xeUeZcBADq/ThA11WWOiOzB77+n4tVXt0vX69b1wPLlUWjTJlDGqIiIiKoGLh/JxKybA9uY0S2tWtXEiBEtAACDBzdFQsJwJr1ERETlhCu+MjHbppj1vQ5LpzNApVKYtSObMaMbIiMf4QlsRERE5YwrvjIQtDlQpx4AABjc6sFQvaHMEZEcLl7MRFTUd1KbstuqVVMz6SUiIqoATHxloE7ZDUHUA2AbM0ckiiK++eYUIiL+i1On0jBtWjz+/jtL7rCIiIiqPJY6yODONmbFrO91KOnpBZg0KRbbt1+SxgIC3FBUpJcxKiIiIsfAxNfWRCM0ybGmi0oX6Go+LnNAZCvx8YmYMGEH0tLypbHnn2+BGTO6wdVVLWNkREREjoGJr42pMk9CWZgKANAGdAOUzjJHRBWtqEiPjz76FStX/iaN+fi44LPPeqJXL9byEhER2QoTXxsza2MWxDKHqu7vv7PwwgtbcfZsujQWHl4Pixb1gr9/NRkjIyIicjxMfG2M2xQ7Fk9PZ2RlFQIAnJyUmD69K0aNetSsfRkRERHZBrs62JBQlA5V+nEAgN6zCYxutWWOiCqat7cLFi/ujaZNa2DnzqF46aVWTHqJiIhkwsTXhjRJsRAgAuBqb1W1Y8clpKbmm411714XcXFDERrqK1NUREREBDDxtSmz3drYxqxKyc/XYcqUOAwfvgWvv74Doiia3a5U8q1GREQkN/41thWjHprkeNNFtQd0NdrJHBCVl5MnUxEZ+V+sWXMKALBrVyJ27vxb5qiIiIjo33hym42obxyBQpsNANAGRgAK9m2t7AwGI5YuPYa5cw9ArzcCAFxdVZg1Kww9e9aXOToiIiL6Nya+NmLWxqwW63sru6SkXIwfH4MDB65JYy1b+mPFimgEB3vJGBkRERHdDRNfG7ndxkyEAG1gD5mjoYexefN5TJ0ah5ycYgCAIAATJrTD1KkdodEoZY6OiIiI7oaJrw0o8q9Blf0nAEDv2xqiSw2ZI6IHdexYMl5++RfpelCQO5Yu7Y1OndiajoiIyN7x5DYbMN+tjWUOlVmbNoEYODAUANCvXyMkJAxn0ktERFRJcMXXBjTXuE1xZWU0ilAozDecmDs3HD161MdTT4VwMwoiIqJKhCu+Fc1QBM313QAAo7Mf9D6PyhoOlV1iYjaeeOJ7bNly3mzc3d0J/fo1YtJLRERUyXDFt4Kpr/8KQV8AANAG9QAEftawd6IoYv36s5g2LR55eVpcuBCHNm0CERTkLndoRERE9BCY+FawO+t7i1nfa/eys4swdWoctmz5Sxrz9HRGZmYhE18iIqJKjolvRRJFON3aplgUVNAFhsscEN3L/v1XMX58DJKT86SxwYObYvbsMLi5aWSMjIiIiMoDE98KpMy9CGXuPwAAnV9HiBoPmSMiS7RaA+bNO4AlS45CFE1jHh5O+PTTHujbN0Te4IiIiKjcMPGtQLc3rQDYxsxeJSZm46WXfsapU2nSWOfOtbBkSRRLG4iIiKoYJr4VSJMUK13W1mIbM3vk4qJCUlIuAECtVmDatM4YN65NqRZmREREVPmxxUAFEXS5UKf+CgAwVKsDg0cjmSMiS/z93bBwYU80bOiNmJgheOWVtkx6iYiIqiiu+FYQdcoeCEYdAEBbqyfAnq92Yc+ey2je3A/e3i7SWO/ewYiIqAe1WiljZERERFTR7GLF99tvv0V4eDiaN2+OgQMH4tSpU3edu379ejz33HNo27Yt2rZti5EjR95zvlxY32tfior0eO+93Rg4cAOmTImDePsstluY9BIREVV9sie+27Ztw5w5czB+/Hhs2rQJjRs3xqhRo5CRkWFx/uHDh9GnTx+sWbMG33//PQICAvDiiy8iNTXVxpHfgyhK/XtFpTO0NbvKHJBjO306Fb16/Q8rV/4GAPj55wuIj0+UNygiIiKyOdkT39WrV2PQoEEYMGAAGjRogBkzZsDZ2RkbNmywOP/TTz/F0KFDERoaiuDgYMyaNQtGoxEHDx60ceR3p8w6DWVhCgBAW/NxQOUqc0SOyWgUsXLlb2jb9kucOZMOAHByUmL27DCEh9eTNzgiIiKyOVlrfLVaLf7880+MHj1aGlMoFOjUqRNOnDhRpscoLCyEXq+Hh4d1PXIFoeLKbm9vWgEAulq9WN4rg+vX8zBhwg4kJFyWxpo08cWKFdEIDfWVMTKqSLffa3zPOQYeb8fC4+1YKuo4y5r4ZmVlwWAwwMfHx2zcx8cHf//9d5ke45NPPoGfnx86depk1XN7e1dgj9bUXdJFt+b94ebBfrC29NNP5zFq1E9ITy+QxiZO7IDZsyPg7MzzOR2Bjw/fc46Ex9ux8HjTw6jUWcAXX3yBbdu2Yc2aNXBycrLqvpmZuTAayz8moSgD3imHIADQezRCts4XSM8t/yciiw4fTsJTT62Trvv5VcPatU/jscf8kJdXiLy8e9yZKj1BMP1RzMjIxb/OX6QqiMfbsfB4OxaFomIWKWVNfL28vKBUKkudyJaRkQFf33t/Hf3VV1/hiy++wOrVq9G4cWOrn1sUUSFvHE3SLgiiKaPWBvXim9PG2rYNRHR0A2zbdhG9ewfjs896olEjP6Sn8z9KR1JR72+yTzzejoXH2zFU1DGW9eQ2jUaDpk2bmp2YdvtEtVatWt31fl9++SWWLVuGVatWoXnz5rYItcw0d9T3amuxjVlF+3dbMkEQsGBBDyxe3AvffNMXPj4ud7knERERORrZuzq88MILWL9+PTZt2oRLly7hgw8+QGFhIfr37w8AeOONN/Dpp59K87/44gssWrQIs2fPRlBQEG7cuIEbN24gPz9frh+hhNEATVKc6aLaHTq/jjIHVLUlJeWif/8fsHOneT24t7cLBg9uCoFnQBAREdEdZK/xjY6ORmZmJhYvXowbN24gNDQUq1atkkodUlJSoFCU5Offf/89dDodJkyYYPY4r7zyCl599VWbxv5vqvRjUGizAAC6gHBAoZY1nqpsy5bzmDIlDjk5xTh/PgMJCSPg719N7rCIiIjIjsme+ALAsGHDMGzYMIu3rV271ux6fHy8LUJ6IHeWORTX6iVjJFVXbm4x3n47AevWnZHGnJxUSE3NY+JLRERE92QXiW9Vobm2U7qsDeohYyRV09GjyRg7NgZXruRIY/36NcL8+RHw9HSWMTIiIiKqDJj4lhNFQTLUWacAADqfVhBd/GWOqOrQ641YsOAQFi48DIPBdDKbm5sGc+eGY+DAUNbyEhERUZkw8S0nmqRY6bI2iN0cysuVKzkYM2Ybjh1Lkcbatg3EsmVRqFvXut36iIiIyLEx8S0nmmt3tDFj4ltuFAoBf/2VCQBQKgVMntwBr7/eHiqV7A1JiIiIqJJh9lAeDMVQp+wGABidfaH3fUzeeKqQWrWq4+OPI1C3rge2bn0WU6Z0ZNJLRERED4QrvuVAnXoACr1pL1xtYCQgMDF7UIcOXUPTpjXg7l6yBfXTTzdGVFQDODvz15WIiIgeHDO0cqBJurObA9uYPQit1oCZM/fhqafWY9q0hFK3M+klIiKih8XEtxzc7t8rCkpoA8NljqbyuXgxE9HR3+Hzz49CFIH1688gISFR7rCIiIioiuEy2kNS3LwE1c2LAABdjfYQnbxkjqjyEEURa9acxvvv70ZhoR4AoFYrMG1aZ3TrVlfm6IiIiKiqYeL7kJzMyhzYzaGs0tMLMGlSLLZvvySNNWjghRUrotGiBXsgExERUflj4vuQzNqYcZviMomPT8SECTuQlpYvjY0c2RIffNAVrq5qGSMjIiKiqoyJ78PQ5UOd+isAwOBaCwbPJjIHZP8OHbqGwYM3Std9fFzw2Wc90atXsIxRERERkSPgyW0PQXN9DwSjFgCgrdUT4Na599W+fRDCw+sBAMLD62H37hFMeomIiMgmuOL7ENjGzHqCIGDRol7Ytu0iRo5sAYEfFoiIiMhGuOL7oERRqu8VFU7Q1uwqc0D2JzU1H889twl7914xG/f3r4YXXmjJpJeIiIhsiiu+D0iZfQbKgiQAgK5mF0BdTeaI7Mv27ZcwceJOZGQU4s8/byAhYTi8vV3kDouIiIgcGBPfB2TWzYFtzCT5+TpMn74Ha9acksaMRhFXr95k4ktERESyYuL7gJySShLfYia+AICTJ1Mxduw2XLyYJY1FRQVjwYKe8PFh0ktERETyYuL7AITiLKhuHAYA6Ks3gLG6Y3clMBiMWLr0GObOPQC93ggAcHVVYdasMAwd2oy1vERERGQXmPg+AE3yLgiiKcFz9G4Oycm5GD8+Bvv3X5PGWrb0x4oV0QgO5vbNREREZD+Y+D4AszZmDr5bW1GRHidOpAIwtTGeMKEdpk7tCI1GKXNkRERERObYzsxaRgM0SbGmiyo36Pw6yRyQvOrX98Ls2WEICnLHpk0D8c47XZj0EhERkV3iiq+VVBm/QVGcAQDQBYYBSo3MEdnWb7+loHFjX7i6qqWxIUOaom/fELi5OdZrQURERJULV3ytpElyzDZmer0RH398EH36fI8PPthrdpsgCEx6iYiIyO4x8bXS7TIHwHES38TEbPTtuw4ff3wQBoOIr78+iV9/vXL/OxIRERHZEZY6WEFRcB3qjBMAAJ1XCxhdA2SOqGKJooj1689i2rR45OVpAQBKpYDJkzugQ4daMkdHREREZB0mvlYwW+2tVbVXe7Ozi/DGG7uwefN5aaxuXQ8sXx6FNm0CZYyMiIiI6MEw8bWCWRuzKty/98CBqxg/fjuSknKlscGDm2L27DDW8hIREVGlxcS3rAxaqFPiAQBGJ2/ofdvIHFDFOHDgKp5++geIoum6p6cTPvmkB/r2DZE3MCIiIqKHxJPbykh94xAUOtMKqDYwElBUzV617dsHoWNHU/1uly61sXv3CCa9REREVCVwxbeMNNcco42ZUqnA0qVR+OmnvzB6dGsoFILcIRERERGVC674ltHt+l5RUEAbGCFzNOUjPb0AL7zwEw4fTjIbDwpyx9ixjzHpJSIioiqFK75loMhNhCrH1N1A79sWorOPzBE9vPj4REyYsANpafk4fToNCQnD4e7uJHdYRERERBWGK75lYNbNoVbl7uZQVKTHu+8mYPDgjUhLywcA5OfrcOlSlsyREREREVUsrviWwZ3bFBdX4vreM2duYOzYbTh7NkMaCw+vh0WLesHfv5qMkRERERFVPCa+96MvgOb6PgCAwSUABq/mMgdkPaNRxKpVJzBz5j4UFxsAAE5OSkyf3hWjRj0KQWAtLxEREVV9THzvQ3N9LwRDEYBb3RwqWZKYmpqHCRN2ICHhsjQWGuqLFSuiERrqK2NkRERERLbFxPc+zNqYVcL63qysIhw4cE26Pnp0a7zzThc4O/PQExERkWPhyW33IorQJMWaLirU0AZ0lzeeB9C4sS+mT+8KP79qWLeuP2bO7M6kl4iIiBwSM6B7UOacgzL/CgBA598FULvJHNH9/fHHDTRs6AUnp5JDO2rUo3jmmVB4ejrLGBkRERGRvLjiew+aa3e0MbPzbg4GgxGLFx9Bz57fYvbs/Wa3CYLApJeIiIgcHhPfe7izjZm2lv0mvklJuRgw4EfMmvUr9Hojli8/jkOHku5/RyIiIiIHwlKHuxC0OVCnHQQA6N3rw1C9ocwRWbZly3lMmRKHnJxiAKamExMmtEPr1jVljoyIiIjIvjDxvQt1cjwE0dTz1h7LHHJzi/H22wlYt+6MNBYU5I6lS3ujU6faMkZGREREZJ+Y+N6FU5L9tjE7ejQZ48bF4PLlHGmsX79GmD8/grW8RERERHfBxNcS0VjSxkzlCp1/Z5kDKrF//1U888yPMBhEAICbmwZz54Zj4MBQ7sBGREREdA88uc0CVcYJKIpuAAC0NbsDSvtZRW3XLhAtW/oDANq2DURCwnAMGtSESS8RERHRfXDF1wJN0h1tzOyszEGtVmLZsihs2fIXXn21LVQqfnYhIiIiKgsmvhaYbVMc1EO2OLKzi/DWW/EYO/YxaZUXAOrX98LEie1li4uIqCoTRRFGowFGo1HuUOgOggAUFRVBp9NCFOWOhsqDUqmCQmHbBTwmvv8iFKZBnfEbAEDv1QzGarVkiWP//qsYPz4Gycl5OHUqFXFxw+DqqpYlFiIiR6HX65CTkwmdrkjuUMiCzEwFP5BUKQK8vGrAycnFZs/IxPdfNMmx0mU52phptQbMm3cAS5YclT7RpqcX4Pz5DLRqxd68REQVRRRFZGRch0KhgIeHL5RKFc+fsDNKpSCd3E2VmyiKyMvLQVbWDfj51bLZyi8T33/RXCtJfIuDbFvfe/FiJsaM2YZTp9KksS5damPJkt4IDHS3aSxERI5Gr9dBFI3w8KgBjcZ+TmqmEiqVAno9V3yrCjc3D2RmFsJg0EOh0NjkOZn43smogyZ5l+mixhP6Gm1t8rSiKGLNmtN4//3dKCzUAwDUagWmTeuMcePaQKHgigMRka0IAk8aJrIFOb5RYeJ7B3XaYSh0pk0htIERgKLiX5709AJMmhSL7dsvSWMNGnhhxYpotGjhf497EhEREZE1+LH2DmZtzGxU35ucnIu4uH+k6yNHtkRc3DAmvURERETljInvHTS3tikWIdisjVmLFv54661O8PFxwdq1T2H+/Ah2byAiIrKRK1cS0bdvLxQU5MsdSpWi0+nwzDNP4ty5M3KHYoalDrco8q5AlX0WAKD3bQPR2bdCnufChUzUq+cBtVopjY0f3wZDhjRDjRquFfKcRERUtX300QeIifkZAKBUKuHn54+wsAiMGjUGTk5OZnP379+H775bi/Pnz8FoNOCRR4LRv/9AREc/Wepxd+/ehR9/XIcLF87DaDQiMDAI3btHYMCAQahe3cMmP1tFW7FiKQYMGARX12pyh1JhNmxYj+++W4vMzAwEBzfExIlT0aRJs7vOf+WVl/H777+VGu/YsTM+/niRdD0x8R8sX74Yv//+GwwGA+rVq49Zs+ajZs2aUKvVGDJkGJYv/xyLFv1/e/cel/P5P3D81d1ZESrlfFxFMpnD+NYsFoZsbCynZGYWOZsYcz5tTkkhYzbNmKGcCsOX8Y02Z5nDVtLBYUKUSnfd9+8PP7fdyuFOB+t+Px+PHg9dn+vzud6f++r2eN/XfX2ua3mx3FdhSOL7/7R3ayv6aQ4qlZpVq04yc+Yh/P1bEBDQRnPM0FAhSa8QQoiX0qpVG774Ygq5ublcvHiB2bOnAgYMHTpCU2fTpg0EBS2ib98BjB07AWNjYw4dOsiCBXOJj4/D33+Upm5oaAg//riWXr36MGTIMGxsbElOTiQiYjO7dkXSq1fvErkvpVKJsXHxfBN6/fp1oqMPMXr05y91neKM8WXt27eH4ODFjBs3kUaNGrNx43rGjBnO+vWbqVSpcoHnzJkzH6VSqfn97t27DBzYBw+PdzRlKSnJDB36CV27dmPQoCFYWFhy+XIcpqaPV2fw9HyX4OBA4uPjqFevfvHdpA4k8f1/2vN7i3YZsxs3MhgxYjf//e8VABYvjsHTsy7NmlUt0naEEELoLxMTY6ytH35baWdnz+7dLTl2LEZz/MaN6wQHB9KzZ2+GDBmmKe/dux/GxkYEBi7Aw+MdnJ0b88cfsYSFrWHEiLFaCW7VqtVo0eJN0tPTnxrH33/fICRkCb/9dhSlMofatesyZkwAzs6NmT17GhkZ6cydu1BTf8mShfz550WCg1cCD0cb69Wrj6GhEXv2RFKvXgOsrW1QqVTMmfOV5rzc3Fzee68j/v6jeffdrqhUKtat+55t28K5desWNWvWwtd3kFay9qT9+3+hQQMHbG2raMru3k1j0aKvOX36JOnp96hevQb9+w/E07OTpk5BMS5dGkp8/F+EhARx5sxJzMzMadmyFcOHj6VixYoAHD0azfffr+by5TgUCkMaN3Zh5MhxVK9efJtlbdiwDi+v9+nSpRsAn38+kSNHDrNjxzb69/ct8JwnR/P37duDqamZ1mu5cmUIrVu3YejQkZqyJ++jQoUKuLi8zr59e6hXz6+I7ujlSOILkJuFybWDAOSZ25FbuUmRXToq6i/GjPmFW7eyNGWDB7vSqJFtkbUhhBCi+JgkhGNxejYGyowSa1NtbMn9ppPJqf1+oc6Pj/+L2Ngz2Nk9HmA5cGAfubm59O7dP1/99977gNDQZezduxtn58bs2bMLc/Ny9OjRs8Drly9f8NrymZmZ+Pt/iq1tFebNW4S1tTUXL15ArdZt7d2oqJ107/4By5evBiA5OZkvvwwgMzNTs8ZyTMwRsrOzadvWA4CwsDXs2RPFuHETqVGjJqdPn2TmzClUrFgJV9c3CmznzJmTODk11CrLycnB0bEh/foNoFw5C44cOcysWVOpXr2G1vSAJ2NMT09nxAg/vLzeZ8SIMTx4kM3y5UuZMmUCQUErAMjOzsLbuy/1679GVlYmq1at4IsvxrFmzY9P3cBh7dpvCQtb88zXKyzsZ+zt829ypVQquXTpAv37D9SUKRQKmjdvyblzZ555zX/asWMr7dt3wNz84Q5rKpWK6Oj/0bevD2PG+HPp0kWqVq1G//4Deeutt7XObdjQmdOnT75wW8VNEl/A+MZhDPIeJqY51TtAEazheP++kqlTD7J27eM/rCpVLFi6tCMeHnVe+vpCCCFKRrlzSzC6e6lU2tUl8Y2OPoynpzt5eXnk5OSgUCgYPXq85nhSUiKWlpbY2OR/hsXY2Jhq1aqTlPTwm8nk5ESqVauOkZFuacIvv+wiLS2NVavWakYNa9SoqdM1AGrWrKk1klitWg3Mzc05eHA/np6dNW25ub1FuXIW5OTkEBa2hsDAZTRu/HDwqnr1Gpw5c4qtW7c8NfG9fv06Tk6NtMpsbavQp8/jDwcffujNb78dZf/+vVqJ75MxfvfdKhwcHLVG0ydOnEKPHl1ITLxCrVq1efvt9lptTZw4la5d3yEhIZ569RoUGOP7739Au3bPfuC+oD6Fh6PXeXl5VK6sPaWhcuXKXLmS8MxrPvLHH7HEx8cxYcKXmrI7d26TlZXJDz98x+DBfvj5Defo0SNMmvQ5QUErtF5vGxtbbty4/kJtlQRJfAHT5N2afxfFMmanT9/gs88iiYu7oynr1Kk+ixd3wNq65PajFkII8fIyG4/C4tSsEh/xzXQe+fyK/+Dq+gbjxk0kKyuLjRt/xNDQMF+i9cLtF3JX4D//vISDg+NLP/jm6Kg9CmtkZISHhye7d0fh6dmZrKwsDh8+yLRpcwBITk4iOzub0aOHaZ2nVCp57TXHp7bz4EE2JibaO4bl5eURFraG/ft/4ebNm+TmKsnJycHUVHs3vydj/OuvPzlx4hienu752klJSaZWrdokJSWyatUK/vjjHHfvpmlGwm/cuP7UxLdCBatSfZBwx46t1K/fQCvpV///H4ibW1s++qgvAK+95khs7GkiIjZrJb6mpqZkZ2eXbNDPIImvWq2Z36s2MEJZ1eOlLnfoUCIffbRFs6ViuXJGzJz5Nv36ucie70II8S+UU/v9Qk85KEnm5uaa0dWJE6fg69ubHTsi6Nr1fQBq1qxFRkYGqak3sbHRnm6nVCq5ejWZZs2aa+qeOXOK3NxcnUZ9n1xB4kkGBgaapOmR3NzcfPXMzPIPEnXo0Al//yHcuXOb33+PwdTUlDfffPigeFbWw29tv/46UGu+LvDMh84qVqyYb77yjz+G8fPP6xkxYiz16jXA3NycoKCF5OYqteo9GWNWVhb/+Y87fn4jeNKjudcBAaOxt69KQMAkbGxsUalU+Ph8hFKZ/zV45GWmOlhZVcTQ0JDbt29rld++fRtra+tnXvPRPe3bt4dBgz4r8Lp16tTVKq9duy5nz57SKrt3765mjvOrQO8TX8N7f2KYkQCA0q4NapMKL3W9li2r4eBQmT/+SOX11+1YsaIz9etXKoJIhRBCiBejUCjo338gwcGL8fTshKmpGW3btmf58qWsX/8Dw4eP1qofEbGZrKws3nnn4cPdnp6d2LRpA1u2/Fzg6g3p6ekFzvNt0OA1duyI4N69uwWOUlasWInLl+O0yv766yKGhs9PR1xcXsfOzo59+/Zw9Gg0Hh7vaJLyunXrYmJiwo0b1586raEgr73mSEJCvFbZ2bOncXNrS8eOD6dUqFQqEhMTqVu3bkGX0HBwcOTgwf3Y21ct8MPC3btpJCZeISBgMq+/7grA6dOnnhvjy0x1MDY2xsHBiePHf9PMvVWpVBw//js9evR6btv//e9elEolHTu+m++6DRs6a6bGPJKUlKg1rxzg8uU4HByePupe0vR+AwsTrWkOL7+ag6mpEStWdGb06Fbs3OktSa8QQohS4eHxDgqFIZs3/wyAvb09Q4eO4Oef1xMaGsKVKwmkpCSzYcMPLF8ehLd3P5ydH36d7ezcmD59fAgJCWTZsiXExp7h+vVrHDv2G5MnB2jWDH7SO+90pHJlayZOHMeZM6dISUnmwIF9xMY+fN7ljTdacOHCeaKidpCUlMjq1aHEx8cVeK2CdOjQiYiILfz+ewyeno+TsXLlLPD27sfSpYuIitpBSkoyFy9eYNOmDU+NFaBly9bExp4lLy9PU1azZk1+/z2Gs2dPk5Bwmfnz53Dnzq3nxvbBB724d+8e06ZN4vz5c6SkJBMTc4Q5c6aTl5dH+fIVsLKyYtu2LSQnJ3H8+O8EBy967nUrVLCiRo2az/x51qi8t3dftm+PICpqBwkJl1mwYC5ZWVl06fJ43eaZM6ewYkVwvnN37NiKu3tbrKwq5jvWu3d/9u37hW3bwklOTmLz5p+Ijj5E9+7aD0SePn2KFi3efO59lhS9H/HVXr9Xt8Q3Pf0BU6ce5NNPm+Hk9PjTlpOTDRMnFs8GGEIIIcSLMDIyokePXvz441q6d/8Qc3NzevXqQ7Vq1Vm//gc2bdpAXp6KunXrMXbsBM1yV48MHToCR8eGhIf/TETEFtRqFdWq1cDDoz3vvtu1wDaNjY1ZvDiE4ODFfP75SM2mBmPGPHzIrlWr1vj6fsLy5UvJyXlAly7d6NSpC3Fxf73QPXXs+C7ffbcae/uqNGnyutaxwYP9qFixEmFha7h6NQVLy/I4ODjh4zPwKVeDN99sg6GhIceO/UarVq0BGDBgEFevpjBmzHDMzMzo1q077u5vc//+s+d429jYsnz5apYvX8ro0f4olTnY21elVavWKBQKDAwMmDZtDkuWLMDH5yNq1qzNqFHjGD58yAvde2G1b9+BtLQ7rFq1gtu3b9GggQMLFy6lcuXHUx1u3Lieb1WJxMQEzpw5xeLF+RNigLZtPRg3biI//PAdgYELqFWrNrNmfcXrrzfV1ImNPUNGRgYeHoWba14cDNRPTrbRE7dupaPOvof1T3UwUOeSZ1mH291PwwvOw/3996sMHRrFlSt3adTIht27+2BqqvefI145BgZgY1Oe1NT0Qj+sIf49pL/1S1H3t1KZw61b17C2roqxscnzTxAlzshIoXmGpqhs3ryR//3vVxYtKjjBE4U3ZcpEGjR4DR+fjws8/qz3nEIB1tYFL5v3MvR6qoPxtQMYqB9OKH+4jNnzk97cXBXz5x+hW7efuHLlLgCJiff444/UYo1VCCGEEEXvvfd68PrrrmRm3i/tUMoUpVJJvXr1+eijPqUdiha9HqI0SfnH/N4X2KY4ISGNoUOjOHbsmqasRYtqLFv2LrVrl409y4UQQgh9YmRkxIABg0o7jDLH2NgYX99PSjuMfPQ38f3nMmaG5uTY5V9373FVNRs3nmfixP1kZOQAYGhowNixbzJqVCuMjPR64FwIIYQQ4l9BbxNfxZ1YDLNuAJBj/xYYFbyxRFpaNuPH7yMi4qKmrHZtK5Yvf5fmzauVSKxCCCGEEOLl6W3ia5KyT/PvZ63mcOnSbbZte7xVpbe3M3PmeGBpKQ8+CCFEWaSnz3wLUeJK472mt9/Rm1zbr/n3s7YpbtmyGqNGtcTKypRVq7oSFNRRkl4hhCiDDA0NAcjJeVDKkQihH/LyHi4w8ORSasVJb0d8jVJPAJBbsSEqy1qa8itX7lKjRnkMDR93wtixbzJgQBOqVi36ZTWEEEK8GhQKQ8zNLcnIuAOAiYmpbDX/ilGpDMjLkxH5skCtVpGenoaJiRkKhWGJtau3ia8BD984j3ZrU6vVrF17lilTDjB27JuMGNFSU9fY2FCSXiGE0AMVKlQG0CS/4tWiUChQqYp2HV9RegwMFFSoULlEP2DqbeL7SE71DqSmZjJmzC/s2vVw28R586Lx8KiDi0uVUo5OCCFESTIwMMDKypry5StpvoYVrwYDA6hUyYI7d+7LBjVlhJGRcYl/q6LXia/K2Ird5+wZMTKMv/9+vHB1376NqV+/UilGJoQQojQpFAoUCnme41ViYABmZmYYGysl8RWF9ko83LZu3TratWuHi4sLPXv25MyZM8+sHxUVRadOnXBxccHLy4uDBw/q3Ga20ogRu/vh3XubJum1tjYnLOw95s9/h3LljAt1L0IIIYQQ4tVU6olvZGQkc+fOZdiwYYSHh+Pk5MSgQYO4detWgfVPnDjB2LFj+fDDD4mIiKB9+/YMGzaMS5cuFVj/ad5e7ktIpK3m93bt6nDggA8dO9Z/qfsRQgghhBCvplJPfNesWUOvXr344IMPaNCgAdOnT8fMzIzNmzcXWH/t2rW4u7vzySefUL9+fUaNGkWjRo344YcfdGr3jxsPk15TU0PmzPFg/fru2NlZvPT9CCGEEEKIV1OpzvHNycnh3LlzDBkyRFOmUCho06YNJ0+eLPCcU6dO4evrq1Xm5ubG3r17dWq7fHkTnJysCQzsgKOjtc6xi3+HR3PmFQpkTpgekP7WL9Lf+kX6W78U1zNvpZr43rlzh7y8PKyttRNPa2tr4uPjCzwnNTUVGxubfPVTU1N1ajslZaxuwYp/tcqVZTk6fSL9rV+kv/WL9Ld4GaU+1UEIIYQQQoiSUKqJb6VKlTA0NMz3INutW7fyjeo+YmNjk29091n1hRBCCCGEgFJOfE1MTHB2dubIkSOaMpVKxZEjR3B1dS3wnKZNm3L06FGtsujoaJo2bVqcoQohhBBCiH+5Up/qMHDgQDZu3Eh4eDhxcXFMmzaNrKwsevToAcD48eNZuHChpr6Pjw+HDh3i22+/JS4ujqVLlxIbG0u/fv1K6xaEEEIIIcS/QKnv3Na5c2du375NUFAQN2/epGHDhqxatUozdeHatWsoFI/z82bNmrFgwQICAwNZtGgRderUISQkBAcHh9K6BSGEEEII8S9goFbLoiBCCCGEEKLsK/WpDkIIIYQQQpQESXyFEEIIIYRekMRXCCGEEELoBUl8hRBCCCGEXiiTie+6deto164dLi4u9OzZkzNnzjyzflRUFJ06dcLFxQUvLy8OHjxYQpGKoqBLf2/cuJE+ffrQokULWrRoga+v73P/PsSrRdf39yM7d+7E0dGRoUOHFnOEoijp2t/37t1j+vTpuLm50bhxYzp27Cj/p/+L6Nrf3333HR07dqRJkya0bduWOXPm8ODBgxKKVryM33//nc8++ww3NzccHR3Zu3fvc8+JiYmhe/fuNG7cGE9PT7Zs2aJzu2Uu8Y2MjGTu3LkMGzaM8PBwnJycGDRoUL7d4R45ceIEY8eO5cMPPyQiIoL27dszbNgwLl26VMKRi8LQtb9jYmLo0qULa9euZcOGDVStWpWPP/6YGzdulHDkojB07e9HkpOT+eqrr2jevHkJRSqKgq79nZOTw8CBA0lJSWHJkiXs2rWLmTNnYmdnV8KRi8LQtb+3b9/OwoUL8ff3JzIyktmzZxMZGcmiRYtKOHJRGJmZmTg6OjJ16tQXqp+UlMSQIUNo1aoVW7duZcCAAUyePJlDhw7p1rC6jPnwww/V06dP1/yel5endnNzU4eGhhZYf+TIkepPP/1Uq6xnz57qL7/8sljjFEVD1/5+Um5urtrV1VUdHh5eTBGKolSY/s7NzVV/9NFH6o0bN6oDAgLUfn5+JRGqKAK69vePP/6obt++vTonJ6ekQhRFSNf+nj59utrHx0erbO7cuWpvb+9ijVMUPQcHB/Uvv/zyzDpff/21ukuXLlplo0aNUn/88cc6tVWmRnxzcnI4d+4cbdq00ZQpFAratGnDyZMnCzzn1KlTtG7dWqvMzc2NU6dOFWeooggUpr+flJWVRW5uLlZWVsUVpigihe3vkJAQrK2t6dmzZ0mEKYpIYfp7//79NG3alBkzZtCmTRu6du3KihUryMvLK6mwRSEVpr9dXV05d+6cZjpEUlISBw8epG3btiUSsyhZRZWvlfrObUXpzp075OXlYW1trVVubW1NfHx8geekpqZqdon7Z/3U1NRii1MUjcL095MWLFhAlSpVtP6zFa+mwvT3sWPH2LRpExERESUQoShKhenvpKQkjh49ipeXFytXriQxMZHp06eTm5uLv79/SYQtCqkw/e3l5cWdO3fo06cParWa3NxcvL29+eyzz0oiZFHCCsrXbGxsyMjIIDs7GzMzsxe6Tpka8RVCFytXriQyMpLg4GBMTU1LOxxRxDIyMhg/fjwzZ86kcuXKpR2OKAFqtRpra2tmzpxJ48aN6dy5M5999hkbNmwo7dBEMYiJiSE0NJSpU6eyZcsWgoODOXjwICEhIaUdmniFlakR30qVKmFoaJhvIvytW7fyfUp4xMbGJt/o7rPqi1dHYfr7kdWrV7Ny5UrWrFmDk5NTcYYpioiu/Z2UlERKSgp+fn6aMpVKBUCjRo3YtWsXtWrVKt6gRaEV5v1ta2uLkZERhoaGmrJ69epx8+ZNcnJyMDExKdaYReEVpr+XLFlCt27dNNOYHB0dyczMZMqUKfj5+aFQyNheWVJQvpaamoqlpeULj/ZCGRvxNTExwdnZmSNHjmjKVCoVR44cwdXVtcBzmjZtytGjR7XKoqOjadq0aXGGKopAYfob4JtvvmHZsmWsWrUKFxeXkghVFAFd+7tevXps376diIgIzU+7du1o1aoVERER2Nvbl2T4QkeFeX83a9aMxMREzQccgISEBGxtbSXpfcUVpr+zs7PzJbePPvSo1eriC1aUiqLK18pU4gswcOBANm7cSHh4OHFxcUybNo2srCx69OgBwPjx41m4cKGmvo+PD4cOHeLbb78lLi6OpUuXEhsbS79+/UrrFoQOdO3vlStXsmTJEubMmUP16tW5efMmN2/e5P79+6V1C0IHuvS3qakpDg4OWj8VKlTAwsICBwcHSYT+BXR9f/fu3Zu0tDRmz57N5cuXOXDgAKGhofTt27e0bkHoQNf+9vDwYP369ezcuZOkpCT+97//sWTJEjw8PLRG/cWr6f79+5w/f57z588DD5edPH/+PFevXgVg4cKFjB8/XlPf29ubpKQkvv76a+Li4li3bh1RUVH4+vrq1G6ZmuoA0LlzZ27fvk1QUBA3b96kYcOGrFq1SvNVybVr17Q+ITZr1owFCxYQGBjIokWLqFOnDiEhITg4OJTWLQgd6NrfGzZsQKlUMmLECK3r+Pv7M3z48BKNXehO1/4W/2669nfVqlVZvXo1c+fOpVu3btjZ2eHj48PgwYNL6xaEDnTtbz8/PwwMDAgMDOTGjRtUrlwZDw8PRo8eXVq3IHQQGxuLj4+P5ve5c+cC0L17d+bNm8fNmze5du2a5njNmjUJDQ1l7ty5rF27Fnt7e2bNmoW7u7tO7Rqo5fsAIYQQQgihB2RoRAghhBBC6AVJfIUQQgghhF6QxFcIIYQQQugFSXyFEEIIIYRekMRXCCGEEELoBUl8hRBCCCGEXpDEVwghhBBC6AVJfIUQQgghhF6QxFcIIYAtW7bQvHnz0g6j0BwdHdm7d+8z60yYMIGhQ4eWUERCCPHqKXNbFgsh9NeECRMIDw/PV75nzx5q165dChE9tmXLFiZOnAiAgYEBVapU4T//+Q/jxo3D2tr6pa9/+PBhrKysgId73rdv356IiAgaNmyoqTNp0iSKe7POpUuXEhwcDIBCoaBKlSq89dZbjB07looVK77wdSZMmMC9e/dYtmxZMUUqhNBHkvgKIcoUd3d3zZ7vj1SuXLmUotFmaWnJrl27UKlUXLhwgS+++IK///6b1atXv/S1bW1tn1unfPnyL93Oi3jttddYs2YNKpWKuLg4vvjiC9LT0wkMDCyR9oUQ4mlkqoMQokwxMTHB1tZW68fQ0JA1a9bg5eVF06ZNadu2LdOmTeP+/ftPvc6FCxfo378/rq6uNGvWjB49enD27FnN8WPHjtGnTx+aNGlC27ZtmTVrFpmZmc+MzcDAAFtbW+zs7Gjbti39+/cnOjqa7OxsVCoVwcHBvPXWWzRu3Jj33nuPX3/9VXNuTk4OM2bMwM3NDRcXFzw8PAgNDdUc/+dUh/bt2wPw/vvv4+joSP/+/QHtqQ4//fQTbm5uqFQqrRj9/Pw0I9MAe/fupXv37ri4uNC+fXuCg4PJzc195n0aGhpq7rNNmzZ06tSJ6OhozfG8vDy++OIL2rVrR5MmTejYsSPff/+95vjSpUsJDw9n3759ODo64ujoSExMDADXrl1j5MiRNG/enJYtW+Ln50dycvIz4xFCiEck8RVC6AUDAwMmTZrEjh07mDdvHkePHmX+/PlPrT9u3Djs7e3ZtGkTW7ZsYfDgwRgbGwOQmJjI4MGD6dChA9u2bWPx4sUcP36cmTNn6hSTmZkZKpWK3Nxc1q5dy5o1awgICGDbtm24ubkxdOhQEhISAAgLC2P//v0EBgaya9cu5s+fT/Xq1Qu87s8//wzAd999x+HDh1m6dGm+Op06dSItLU2TUAKkpaVx6NAhunXrBjxM7gMCAvDx8SEyMpIZM2awZcsWVqxY8cL3mJyczOHDhzWvHYBKpcLe3p4lS5awc+dOhg0bxuLFi4mMjATg448/5t1338Xd3Z3Dhw9z+PBhXF1dUSqVDBo0CAsLC9atW8f69espV64cn3zyCTk5OS8ckxBCf8lUByFEmXLgwAFcXV01v7u7uxMUFISvr6+mrEaNGowaNYqpU6cybdq0Aq9z9epVBg0aRP369QGoU6eO5lhoaCheXl6aa9apU4dJkybRv39/pk2bhqmp6XPjTEhIYP369TRu3BhLS0tWr17N4MGD6dKlCwCff/45MTExfP/990ydOpVr165Ru3Zt3njjDQwMDJ6a9MLjqR0VK1Z86hQIKysr3nrrLbZv307r1q0B2L17N5UqVaJVq1YABAcH8+mnn9K9e3cAatasyciRI5k/fz7+/v5Pbf/SpUu4urqSl5fHgwcPALRGkY2NjRkxYoTm95o1a3Lq1Cl27dpF586dsbCwwMzMjJycHK34t27dikqlYvbs2RgYGAAwd+5cWrRowW+//Yabm9tTYxJCCJDEVwhRxrRq1UormTU3NwcgOjqa0NBQ4uPjycjI0CRlWVlZmjr/NHDgQCZPnszWrVs1X9fXqlULeDgN4uLFi2zfvl1TX61Wo1KpSE5O1iTLT0pPT8fV1RWVSsWDBw944403mDVrFhkZGfz99980a9ZMq36zZs24cOECAN27d+fjjz+mU6dOuLu78/bbb790oufl5cWXX37JtGnTMDExYfv27XTp0gWFQqG5zxMnTmiN8D7vdQOoW7cuy5cv58GDB2zbto3z58/Tr18/rTrr1q1j8+bNXL16lQcPHqBUKnFycnpmvBcuXCAxMTHf6/TgwQMSExML8xIIIfSMJL5CiDLF3Nw83woOycnJDBkyhN69ezN69GisrKw4fvw4kyZNQqlUFpjADR8+nK5du3Lw4EF+/fVXgoKCWLx4MZ6enmRmZuLt7a2ZO/tPVatWfWpsFhYWhIeHo1AosLW1xczMDICMjIzn3pezszP79u3j119/JTo6mlGjRtGmTRuCgoKee+7TtGvXjsmTJ3PgwAFcXFw4duyY1shsZmYmw4cPp0OHDvnOfdaotrGxsaYPxo0bx6effkpwcDCjRo0CYOfOnXz11VcEBATg6uqKhYUFq1ev5vTp08+MNzMzE2dnZxYsWJDv2KvyAKMQ4tUmia8Qosw7d+4carWaCRMmaEYzo6Kinnte3bp1qVu3Lr6+vowZM4bNmzfj6elJo0aN+Ouvv3ReIk2hUBR4jqWlJVWqVOHEiRO0bNlSU37ixAmaNGmiVa9z58507tyZjh078sknn5CWlpZvmbBH82nz8vKeGY+pqSkdOnRg+/btXLlyhbp16+Ls7Kw53qhRIy5fvvzSS8H5+fkxYMAAevfujZ2dHSdOnMDV1ZW+fftq6jw5YmtsbJzvwTtnZ2eioqKwtrbG0tLypWISQugnebhNCFHm1a5dG6VSSVhYGElJSURERLBhw4an1s/OzmbGjBnExMSQkpLC8ePHOXv2rGYKw+DBgzl58iQzZszg/PnzJCQksHfvXmbMmFHoGAcNGsQ333xDZGQk8fHxLFiwgAsXLuDj4wPAmjVr2LFjB3FxcVy+fJldu3Zha2tLhQoV8l3L2toaMzMzDh06RGpqKunp6U9t18vLiwMHDrB582a8vLy0jg0bNoytW7cSHBzMn3/+SVxcHDt37mTx4sU63ZurqyuOjo6aVShq165NbGwshw4d4vLlywQGBmqtmAFQvXp1Ll68SHx8PLdv30apVOLl5UWlSpXw8/Pj2LFjJCUlERMTw6xZs7h+/bpOMQkh9JOM+AohyjwnJycmTpzIN998w6JFi2jevDljxowhICCgwPoKhYK0tDQCAgJITU2lUqVKdOjQQfNAlpOTE2FhYQQGBtKnTx/g4QNanTt3LnSMPj4+ZGRkMG/ePG7fvk39+vVZtmyZ5qE6CwsLVq1axZUrV1AoFLi4uLBy5UrNCPY/GRkZMXnyZEJCQggKCqJ58+aEhYUV2O6bb76JlZUVly9fzpf4uru7s2LFCkJCQvjmm28wMjKiXr169OzZU+f78/X1ZcKECQwePBhvb2/Onz/P6NGjMTAwoEuXLvTp00dr+bZevXrx22+/8cEHH5CZmcnatWtp1aoVP/zwAwsWLMDf35/79+9jZ2dH69atZQRYCPFCDNTFvY2PEEIIIYQQrwCZ6iCEEEIIIfSCJL5CCCGEEEIvSOIrhBBCCCH0giS+QgghhBBCL0jiK4QQQggh9IIkvkIIIYQQQi9I4iuEEEIIIfSCJL5CCCGEEEIvSOIrhBBCCCH0giS+QgghhBBCL0jiK4QQQggh9ML/AQGBtqZTXXKwAAAAAElFTkSuQmCC\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 DecisionTreeClassifier 0.73 0.76 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" DecisionTreeClassifier | \n",
" 0.73 | \n",
" 0.76 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 30
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = DecisionTreeClassifier\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"dt_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"dt_result_df"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"id": "15ozJF5gDULm",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"outputId": "fcf3b4db-710a-493d-ca6d-e7a531b4ccb2"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkj0lEQVR4nOzdd3iTZdsG8DOzexcKbRnS2lKmIBsUWkZpUWQIgmzwZVtlqZVXEEGWCrKH+IHlVQRkVJRC2SJDhggqQ4ZABxQ66c56vj9K04YWaGjaJ2nO33F4mN4Zz5U8Tbly57qvWyIIggAiIiIioipOKnYARERERESVgYkvEREREVkFJr5EREREZBWY+BIRERGRVWDiS0RERERWgYkvEREREVkFJr5EREREZBWY+BIRERGRVWDiS0RERERWgYkvURUUEhKCDz74QOwwrM6QIUMwZMgQscN4qmXLliEwMBCpqalih2J2AgMDsWzZMpM8Vnx8PAIDA7F9+3aTPB4AXLhwAY0aNUJCQoLJHtPUJk2ahHfeeUfsMIhKJRc7ACJLs337dkRGRup/lslk8PDwQPv27TFp0iR4eXmJGJ15y8nJwfr167Fnzx7cvn0bcrkcgYGB6N+/P1577TVIJBKxQ3yqa9euISYmBr1794avr6/Y4RjQarXYuXMndu7ciStXriAnJwfVq1dH69at8eabb6Jx48Zih1huu3btQkpKCoYPHy52KHqVGdPixYvRo0cP+Pj46MeGDBmCU6dO6X+2sbFBnTp10LdvXwwdOhRSack5rrS0NKxduxYHDx5EYmIi7Ozs0LhxYwwePBjBwcGlHjsrKwsbNmxAbGws4uLioNVqUbt2bXTs2BFDhw7V/+37z3/+g759++Ly5cuoX7++iV8BovJh4kv0jCIiIuDr6wuVSoU//vgDO3bswNmzZ/HTTz/BxsZG1Nj27NljdklkcnIyhg8fjuvXryM8PByDBw9Gfn4+YmNj8f777+PIkSP4/PPPIZPJxA71ia5du4bly5ejVatWJRLfr7/+WqSogLy8PEycOBFHjx5Fy5YtMWbMGLi4uCAhIQExMTHYsWMHDh8+jBo1aogWoyn89NNPuHr1aoUlmRcuXDD6d/BxMfn4+ODChQuQy03zT+2lS5dw/PhxfP/99yWuq1GjBiZPngygIKn96aefMG/ePKSlpWHSpEkGt71x4waGDx+O1NRU9OnTB40bN8aDBw+wa9cujB07FiNHjsT7779vcJ+4uDgMHz4cd+7cQffu3fHGG29AoVDgypUr+OGHH7B//37s3bsXANCgQQM0atQI//d//4eFCxea5LkTmQoTX6Jn9PLLL+tn0Pr16wc3Nzd89dVXOHDgAMLDw0WNTalUVvox8/PzoVAoSp1dAoD3338f169fx/Lly9G5c2f9+NChQ7FgwQL83//9H4KCgjB69OjKChlAwSy0vb29SR5LjNe90MKFC3H06FFERkaWSMAmTpyIDRs2VGo8giAgPz8ftra2lXrcZ6HT6aBWq2FjY2PSD60SicSkj7dt2zZ4e3vjhRdeKHGdk5MTXnvtNf3PAwcORFhYGDZu3IiIiAh9Mq9Wq/HOO+/gwYMH+Pbbb9G0aVP9fYYPH46pU6fi//7v/9C4cWP93zGNRoOJEyciJSUFUVFRaNGihcGxJ02ahK+++spgLCwsDMuWLUN2djYcHBxM9RIQlRtrfIlMpPAfg7i4OIPx69evIyIiAq1atULjxo3Rp08fHDhwoMT9Hzx4gLlz5yIkJASNGjXCyy+/jPfee8+gDlOlUmHp0qXo2rUrGjVqhI4dO2LhwoVQqVQGj1W8xvfPP/9EYGAgduzYUeKYR48eRWBgIA4dOqQfS0pKQmRkJNq1a4dGjRqhR48e+OGHHwzu99tvvyEwMBA///wzFi9ejJdeeglNmzZFVlZWqa/NH3/8gV9//RW9e/c2SHoLTZkyBXXr1sW6deuQl5cHoKg+8uuvv8aGDRsQHByMJk2aYPDgwfjnn39KPEZZXuft27cjMDAQp06dwscff4y2bduiY8eOAICEhAR8/PHHCA0NRZMmTdC6dWtEREQgPj7e4P6FtYtDhw5FYGAgAgMD8dtvvwEoWeNb+Drt3r0bq1at0n9YGjZsGG7dulXiOXz77bfo3LkzmjRpgtdffx1nzpwpU93w3bt3sXnzZrRv377UmVCZTIZRo0aVmO3NzMzEBx98gBYtWuDFF19EZGQkcnNzDW6zbds2DB06FG3btkWjRo0QHh6O7777rsQxQkJCMGbMGBw9ehR9+vRBkyZN9DOTZX0MADhy5AgGDx6MZs2aoXnz5ujbty927dqlf30PHz6MhIQE/WsfEhKiv29Z3x+BgYH45JNP8OOPP6JHjx5o3Lgxjh49qr+ueI1vVlYWPv30U/37sm3bthgxYgT+/vvvp8b0uBrf69ev45133kGbNm3QpEkThIaGYvHixaW+HsUdOHAAbdq0KdO3OTY2NmjUqBGys7ORkpKiH4+NjcU///yD//znPwZJL1Dwe/LJJ5/A2dnZ4DWIjY3F5cuXMXbs2BJJLwA4OjqWmFVu164dcnJycPz48afGSlSZOONLZCKFi02cnZ31Y1evXsXAgQPh5eWF//znP7C3t0dMTAwmTJiAZcuWoWvXrgCA7OxsDBo0CNevX0ffvn3RoEEDpKWl4eDBg0hKSoK7uzt0Oh3GjRuHs2fPon///vDz88M///yDb775Bjdv3sTKlStLjatx48aoVauWvi61uN27d8PFxQUdOnQAUFCO0L9/f0gkEgwaNAju7u745ZdfMH36dGRlZZVIqlauXAmFQoFRo0ZBpVJBoVCUGkNhYt2rV69Sr5fL5XjllVewfPly/P7772jXrp3+up07dyI7Oxtvvvkm8vPzsXHjRgwbNgy7du2Cp6enUa9zoVmzZsHd3R0TJkxATk4OgIIPCOfOnUOPHj1Qo0YNJCQkYNOmTRg6dCh+/vln2NnZoWXLlhgyZAg2btyIsWPHol69egAAPz+/Up9Xoa+++goSiQQjR45EVlYW1q1bh6lTp2Lr1q3623z33Xf45JNP0KJFCwwfPhwJCQmYMGECnJ2dn1qe8Msvv0Cj0aBnz55PvN2j3n33Xfj6+mLy5Mm4ePEitm7dCnd3d0ybNk1/m02bNuH5559HSEgI5HI5Dh06hFmzZkEQBAwaNMjg8f79919MmTIFb7zxBvr374/nnnvOqMfYvn07PvzwQzz//PMYM2YMnJyccOnSJRw9ehSvvvoqxo4di8zMTNy9e1dfZ184m2js++PkyZOIiYnBoEGD4ObmZlAzW9zMmTOxd+9eDB48GH5+fkhPT8fZs2dx/fp1NGzY8Ikxleby5csYNGgQ5HI53njjDfj4+OD27ds4ePBgieSxuKSkJCQmJqJBgwaPvc2jEhISIJFIDP4mHTx4EMDj34tOTk7o3LkzduzYgVu3bqFOnTr6D5DFZ5Sfxt/fH7a2tvj9999LvP+IRCUQkVG2bdsmBAQECMePHxdSUlKEO3fuCHv27BHatGkjNGrUSLhz547+tsOGDRNeeeUVIT8/Xz+m0+mEN954Q+jWrZt+bMmSJUJAQIAQGxtb4ng6nU4QBEHYuXOnUL9+feH06dMG12/atEkICAgQzp49qx8LDg4W3n//ff3PX3zxhdCwYUMhPT1dP5afny+0aNFCiIyM1I99+OGHQvv27YXU1FSDY0yaNEl48cUXhdzcXEEQBOHkyZNCQECA0LlzZ/3Yk4wfP14ICAgQMjIyHnub2NhYISAgQIiKihIEQRDi4uKEgIAAoUmTJsLdu3f1tzt//rwQEBAgzJ07Vz9W1te58NwNHDhQ0Gg0Bscv7XmcO3dOCAgIEHbs2KEfi4mJEQICAoSTJ0+WuP3gwYOFwYMH638ufJ3CwsIMYvvmm2+EgIAA4cqVK4IgFJyLVq1aCX379hXUarX+dtu3bxcCAgIMHrM0c+fOFQICAoSLFy8+8XaFli5dKgQEBBice0EQhAkTJgitWrUyGCvtdRk5cqTQuXNng7Hg4GAhICBA+OWXX0rcviyP8eDBA6FZs2ZCv379hLy8PIPbFr4HBEEQRo8eLQQHB5d4PGPeHwEBAUL9+vWFq1evlnicgIAAYenSpfqfX3zxRWHWrFklblfc42Iq/B3etm2bfmzQoEFCs2bNhISEhMc+x9IcP35cCAgIEA4ePFjiusGDBwvdu3cXUlJShJSUFOH69evCggULhICAAGH06NEGt33ttdeEF1988YnHWr9+vRAQECAcOHBAEARB6NWr11PvU5pu3boJb731ltH3I6pILHUgekbDhw/Xf1UeEREBOzs7rFq1Sj87l56ejpMnTyIsLAxZWVlITU1Famoq0tLS0KFDB9y8eRNJSUkACr5KrF+/fqkzI4Vfa+7Zswd+fn6oV6+e/rFSU1PRpk0bANB/3V6a8PBwqNVqxMbG6seOHTuGBw8e6Ov4BEFAbGwsQkJCIAiCwTE6dOiAzMxM/de7hXr16lWmGs7s7GwAT54JK7zu0XKJLl26GHTKaNKkCZo2bYojR44AMO51LtS/f/8SC5iKPw+1Wo20tDTUrl0bzs7OuHjx4lOf45P06dPHoP730bKYv/76C+np6ejfv7/BQqhXX30VLi4uT338wtfM2FrKAQMGGPzcokULpKenG5yD4q9LZmYmUlNT0apVK8TFxSEzM9Pg/r6+vnjppZdKHKcsj3Hs2DFkZ2dj9OjRJepiy/LVvrHvj5YtW8Lf3/+pj+vs7Izz58+X+B16FqmpqTh9+jT69u0Lb29vg+ue9hzT0tL08ZTmxo0baNu2Ldq2bYuwsDB8/fXXCAkJwbx58wxuV5aa20ffi1lZWc9Up+vi4qKPm8hcsNSB6BnNmDEDzz33HDIzM7Ft2zacPn3aILm5ffs2BEHAkiVLsGTJklIfIyUlBV5eXrh9+za6dev2xOPdunUL169fR9u2bR/7WI9Tv3591KtXDzExMejXrx+AgjIHNzc3fWKQmpqKBw8eYPPmzdi8eXOpj/No39eytvMq/EczOzv7sf9wPy45rlOnTonb1q1bFzExMQCMe52fFHdeXh7WrFmD7du3IykpCYIg6K97NMEz1qNJTuFr8ODBAwBAYmIiAKB27doGt5PL5Y/9Cr44R0dHAEWvYXnjysjI0D/m2bNnsWzZMvzxxx8l6n8zMzPh5OSk//lxvw9leYzbt28DAJ5//nmjnkMhY98fZf3dnTp1Kj744AN06tQJDRs2RMeOHdGrVy/UqlXL6BgLP+gEBAQYfd9CxX8vi/Px8cGcOXOg0+lw+/ZtrF69GmlpaSU+RDg4ODw1GX30vejo6Fhi7UJZYzW37jJETHyJnlGTJk30XR26dOmCN998E1OmTMGePXvg4OAAnU4HABg5cmSps2BAyUTnSXQ6HQICAgx6CBf3tDrQ8PBwrF69GqmpqXB0dMTBgwfRo0cP/QxjYbw9e/YsUQtcKDAw0ODnsq7Y9/Pzw/79+3HlyhW0bNmy1NtcuXIFAMo0C1fcs7zOpa20nz17NrZv345hw4bhhRdegJOTEyQSCSZNmvTYZKOsHtfporyPW6iw1vjKlSsICgoyWVy3b9/G8OHDUa9ePXzwwQeoWbMmFAoFjhw5gg0bNuhf+0Kl/T4Y+xjPytj3R1l/d8PDw9GiRQvs27cPx44dw9dff42vvvoKy5Yt0y+MrAxubm4Aij4sPcre3t6gNr558+bo06cPFi9ejP/+97/6cT8/P1y6dAmJiYklPvgUevS9WK9ePVy8eBF37txBzZo1yxzzgwcPSv3gSiQmJr5EJiCTyTB58mQMHToU3377LUaPHq2fEVIoFAb/IJWmdu3auHr16lNvc/nyZbRt2/aZZlHCw8OxfPlyxMbGwtPTE1lZWejRo4f+end3d33C/rR4jdWpUyesWbMGO3fuLDXx1Wq12LVrF1xcXNC8eXOD60rrfnDz5k39TKgxr/OT7N27F7169TLY8S4/P7/EbG9FzGAVJiC3b9/Wz8ADBW2kCrsFPMnLL78MmUyGXbt2PXbR0rM4ePAgVCoVVq1aZZAkPams5lkfo/DDydWrV5+YLD3u9S/v++NJqlevjkGDBmHQoEFISUlB7969sXr1an3iW9bjFf6ultaV5GkKP9wU7zLyJPXr10fPnj3x/fffY+TIkfrXvlOnTvjpp5+wc+dOjB8/vsT9srKycODAAdSrV09/HoKDg/HTTz/hxx9/xJgxY8p0fI1Ggzt37hh03SAyB6zxJTKR1q1bo0mTJvjmm2+Qn58PDw8PtGrVCps3b8a9e/dK3L542UC3bt1w+fJl7Nu3r8TtCmffwsLCkJSUhC1btpS4TV5enr47weP4+fkhICAAu3fvxu7du1GtWjWDJFQmkyE0NBR79+4t9R/m8mxv27x5c7Rr1w7bt283aJ1WaPHixbh58ybeeuutEjNx+/fvN6ivvHDhAs6fP4+XX34ZAIx6nZ+ktE0LNm7cCK1WazBmZ2cHoPzlD8U1atQIrq6u2LJlCzQajX58165dyMjIeOr9a9asiX79+uHXX3/Fxo0bS1yv0+nwf//3f7h7965RcRW+Jo+WfWzbts3kj9GhQwc4ODhgzZo1yM/PN7iu+H3t7OxKfe3L+/4ojVarLXEsDw8PVK9e3aBF2uNiepS7uztatmyJbdu26ctbCj1t9t/Lyws1a9bEX3/9Veb433rrLWg0Gqxfv14/FhoaCn9/f3z11Vf4888/DW6v0+kwc+ZMZGRkYOLEiQb3CQgIwOrVq3Hu3LkSx8nKyirRju3atWvIz89Hs2bNyhwvUWXgjC+RCY0aNQrvvPMOtm/fjoEDB2LmzJl488038eqrr6J///6oVasWkpOT8ccff+Du3bv48ccf9ffbu3cv3nnnHfTt2xcNGzZERkYGDh48iFmzZqF+/fp47bXXEBMTg5kzZ+K3335D8+bNodVqcePGDezZswfr1q176pa04eHhWLp0KWxsbPD666+X+Kp7ypQp+O2339C/f3/069cP/v7+yMjIwN9//40TJ04YbItqrAULFmD48OEYP348XnnlFbRo0QIqlQqxsbE4deoUwsPDMWrUqBL3q127NgYOHIiBAwdCpVIhKioKrq6ueOutt/S3Kevr/CSdOnVCdHQ0HB0d4e/vjz/++APHjx+Hq6urwe2CgoIgk8nw1VdfITMzE0qlEm3atIGHh8czvzZKpRJvv/02Zs+ejWHDhiEsLAwJCQnYvn17mcthPvjgA8TFxWHOnDmIjY1FcHAwnJ2dcefOHezZswc3btwwmOEvi/bt20OhUGDs2LEYMGAAsrOzsXXrVnh4eOD+/fsmfQxHR0dERkbiv//9L15//XW88sorcHZ2xuXLl5GXl4cFCxYAABo2bIjdu3dj3rx5aNy4Mezt7RESEmKS98ejsrOz0bFjR4SGhqJ+/fqwt7fH8ePH8eeffxp8M/C4mErz3//+FwMHDkTv3r3xxhtvwNfXFwkJCTh8+DCio6OfGE/nzp2xb9++MtfO+vv7o2PHjvjhhx8wfvx4uLm5QalUYunSpRg2bBjefPNN9OnTB40aNUJmZiZ++ukn/P333xg5cqTB74pCocDy5csxYsQIDB48GN27d0fz5s2hUChw9epV/PTTT3B2djZox3b8+HHY2dmZ/NsjovJi4ktkQt26dUPt2rXxf//3f+jfvz/8/f2xbds2LF++HDt27EB6ejrc3d3RoEEDTJgwQX8/BwcHfPvtt1i2bBn27duHHTt2wMPDA23bttUvypJKpVixYgU2bNiA6Oho7Nu3D3Z2dvD19cWQIUP0PVOfJDw8HF9++SVyc3MRFhZW4npPT09s3boVK1aswL59+7Bp0ya4urrC398fU6dOLddrU716dWzduhXr16/Hnj17EBsbC5lMhsDAQMyfPx+9evUq9R/zXr16QSqV4ptvvkFKSgqaNGmCjz76CNWrV9ffpqyv85NMnz4dUqkUu3btQn5+Ppo3b47169cbJNgAUK1aNcyaNQtr1qzB9OnTodVqERUVVa7EFwAGDx4MQRCwfv16LFiwAPXr18eqVaswZ86cMu3+ZWdnh6+++grbt2/Hzp07sXLlSuTl5aF69epo3bo1Pv/8c4MFfmVRr149LF26FF9++SUWLFgAT09PDBw4EO7u7vjwww9N/hj9+vWDh4cH1q5di5UrV0Iul6NevXoG/aPffPNNXLp0Cdu3b8eGDRvg4+ODkJAQk7w/HmVra4uBAwfi2LFjiI2NhSAIqF27tv6D1tNiKk39+vWxZcsWLFmyBJs2bUJ+fj68vb1LfT8+qm/fvvjf//6Hs2fPlrqRRGlGjRqFw4cP43//+x/efvttAAXf/vz4449Yu3YtDh48iO3bt8PW1haNGjXCqlWrSo29Tp062LlzJzZs2IB9+/bhwIED0Ol0qFOnDvr161dik5U9e/aga9eu+kWSROZCIphqdQURkQnFx8ejc+fOeO+990qdCbYGOp0Obdu2RdeuXTFnzhyxwyEzMGzYMFSvXh2fffaZ2KE81qVLl9C7d2/s2LHDqMWWRJWBNb5ERGYgPz+/RJ3nzp07kZ6ejlatWokUFZmbyZMnIyYmRr9TpDlau3YtQkNDmfSSWWKpAxGRGfjjjz8wb948dO/eHa6urrh48SJ++OEHBAQEoHv37mKHR2aiadOmRi1wE8OjC92IzAkTXyIiM+Dj44MaNWpg48aNyMjIgIuLC1577TVMnTrVYGMUIiJ6dqzxJSIiIiKrwBpfIiIiIrIKTHyJiIiIyCow8SUiIiIiq8DEl4iIiIisgtV2dUhNzYROJ3YUVNEkEsDDwwkpKZngMs6qj+fbuvB8Wxeeb+silQLu7k4mf1yrTXwFAXzjWBGeb+vC821deL6tC8+3daioc8xSByIiIiKyCkx8iYiIiMgqMPElIiIiIqvAxJeIiIiIrAITXyIiIiKyCkx8iYiIiMgqMPElIiIiIqvAxJeIiIiIrAITXyIiIiKyCkx8iYiIiMgqMPElIiIiIqvAxJeIiIiIrAITXyIiIiKyCkx8iYiIiMgqMPElIiIiIqsgauJ7+vRpjB07Fh06dEBgYCD279//1Pv89ttv6N27Nxo1aoSuXbti+/btlRApEREREVk6URPfnJwcBAYGYubMmWW6fVxcHMaMGYPWrVsjOjoaw4YNw3//+18cPXq0giMlIiIiIksnF/PgHTt2RMeOHct8+++//x6+vr744IMPAAB+fn44e/YsNmzYgJdeeqmiwiQiIiKiiqLJhSwnAdLsBEhzEiDJTMA/1zPhMXaxyQ8lauJrrD/++ANt27Y1GOvQoQPmzp1r9GNJJAX/UdVWeI55rq0Dz7d14fm2LjzfFkqbD2l2gkFiK82OhzQ78eFYPKT5qfqb33ngiBGbe+Hc/QAkjTV9OBaV+CYnJ8PT09NgzNPTE1lZWcjLy4OtrW2ZH8vd3cnU4ZEZ8/Dg+bYmPN/WhefbuvB8mxGtCshKADLjgcy4h/8VvxwH5N4v88NF/xWIt7b2RHK2A5ycKiZFtajE15RSUzOh04kdBVU0iaTgj2RKSiYEQexoqKLxfFsXnm/rwvNdyXRqSHPuQJqTCGl2PGT62dqCWVpZTiIkufcgwbOfDEEig87eG5ny2pi2pTnW7fPQX1fdU2mKZ1GCRSW+np6eSE5ONhhLTk6Go6OjUbO9ACAI4BvHivB8Wxeeb+vC821deL5NQKeBNPcupDkJBQntw6S2ILktKEOQ5t4tZ1Irhc6uJnQOPtDa+0Dn4AOdvQ+0D/+vc/CFzrY6zv+ZjHHjduPatTT9fcPC/LBkSagpnmkJFpX4vvDCC/jll18Mxo4fP44XXnhBnICIiIiIzIlOC2leUrFkNv7hrG2xy7l3IBGe/WtvARLo7GpA5+ANnb1vsWS2WGJrVwOQPj7N1Gp1WLH8DObPPw6NpiAWe3s5Zs/uhMGDG0Mmq5hiblET3+zsbNy+fVv/c3x8PC5dugQXFxd4e3vjiy++QFJSEhYuXAgAGDBgAL799lssXLgQffv2xcmTJxETE4M1a9aI9RSIiIiIKoeggzT3nr7kQFY4O5tTWIqQCGnOHUgETbkOo7Xzgs7eGzoH34LZWn1S61swbl8TkCrKdYy8PC2+/fYvfdLbtKkXVq8Oh5+fW7ke92lETXz/+usvDB06VP/zvHnzAAC9e/fG/Pnzcf/+fdy5c0d/fa1atbBmzRrMmzcPUVFRqFGjBubMmcNWZkRERGTZBB0keclF3Q8e1tEW/L8wqU2ERKcu12F0ttUeW3qgtfeGzt4bkFVMfW1xDg4KrF4djldf3Yxx417EtGltoVTKKvy4EkGwzkqZlBQubrMGEgng6emE5GQuhrAGPN/Whefbulj0+RYESPJTii0QK0pqi2prEyHRqcp1GJ2NR1FSa1Bb6wutQ2FSa9yaKFPJylIhMzMfNWsaduW4cyezxBgASKUV08HDomp8iYiIiMyKIECSnwppTuLD0oOCJFaWHV9UZ5uTCIk2r1yH0SndiiWzBSUHWodil+19ALmdiZ6UaZ0+nYjx42NQvboDoqP7Qy4v2ji4tKS3IjHxJSIiIiqNIECiSi9KZPW1tQmGSa0mp1yH0SldixJZe1/oHLyhtfctKkew9wYUDiZ6UpVHo9Fh8eLfsGjRSWi1Am7dysCyZacxaVJr0WJi4ktERERWSaJ6ULL0oDCxfViCINFkl+sYOoXzw4ViPg+TWcNOCFoHH0DhaKJnZD5u3kzH+PExOHOmaK1Wy5be6NOnvohRMfElIiKiqkidpe9LK3vY+aDE1rnqzHIdQpA7FEtgfQ07ITwcF5TOJnpClkEQBGzZcgmRkQeRlVVQsyyTSTB1alu8804rgzIHMTDxJSIiIsuiyXm48UL8I7W1xTZkUGeU6xCCzK5Y6UFBuYHOwddg0ZigcClYdUcAgPT0PEybth/R0f/ox+rUccGqVWFo0cJbxMiKMPElIiIi86HJNayh1dfSJgD5d+CecRtSVXq5DiHIbIsSWYOWXsWSWqUbk1ojZGbmIyRkI+Lji2bRBwxoiLlzg+HoWPHt0cqKiS8RERFVDm2+QTJrsJtY4YYM+alPfIinfVEuSJUPF4oVXxxWvBOCLwQbdya1JubkZIPwcH+sXXsOrq42+PzzrujZM0DssEpg4ktERETlp1U9LDtIKH273Jx4SPOSy3cMqQLah627DDdgKOqEINh6MqkVyX//+xLy8rSYNKk1fHwqt01ZWTHxJSIioifTqSHNufPI4rBiO4tlJ0Cad69chxAksofb4T5SelC4aMzRFx6+9ZCWkm15G1hUMYIgYOPGPyGTSTBoUGP9uK2tHJ9/3kXEyJ6OiS8REZE102kgzb1ruDDskU4I0twkSPDs2aYgkUJnV/ORll6GnRB0ttUB6eO3rJVIAEjE7QhAQHJyDiZP3oc9e67Dzk6Oli29ERDgIXZYZcbEl4iIqKrSaSHNSyq99KDwcu4dSATdMx9CgAQ6uxqGpQfFdxaz94XOzguQMuWwdIcO3cTbb+/FvXsFvY1zczWIjb3BxJeIiIgqmKCDNPdesd3E4iF9OEsre7htrjTnDiSC5tkPAQl0dtUf6XhQtEhMZ+8DnX0NQKow4RMjc5OXp8Gnn/6KNWt+1495eNjhyy+7ITTUT8TIjMfEl4iIyNwIOkjykovqaYvtLFawq1gipDmJkOjU5TqMzrZaUbnBo5swOPhAZ1cTkJlPKyqqfBcv3se4cTG4dKloYWJISF0sWRIKLy/L20aZiS8REVFlEgRI8lOKtfQqtl2uvtVXIiQ6VbkOo7PxKJbIlrZdrjcgszHRk6KqRhAErFt3Dp98chT5+VoAgI2NDDNnvoxRo16AxEI7ZzDxJSIiMhVBgCQ/9ZHdxBIL6mn1GzEkQqLNK9dhdEq3h1vjFt9NrNh2ufbegNzORE+KrFF2thqrVp3VJ70NGnhi1apwBAV5ihxZ+TDxJSIiKgtBgESVXpTI6mtrDXcZk2hzy3UYndL1YdmBd7Htch/2rXXwgdbOG1BY3lfMZFkcHZVYuTIMvXtvxVtvNcP06R1ga2v5aaPlPwMiIiITkKgyHnY8iDfcWSynWFKryS7XMXQK54fdD7wflh4YdkLQ2nsDCkcTPSOissvOViMnR41q1ez1Y23a+OLEiRGoW9dVvMBMjIkvERFVfeqsh8msYX/a4rO1UnVmuQ6hkzsWJbWFHQ8e6YQgKJ1N9ISITOf8+SSMG7cbNWs6YuvW1yGVFtXvVqWkF2DiS0RElk6dXZDMPuxLW1RbW2xDBnVGuQ4hyO0f1s4W7iZW7PLDRWOCwoVb5ZJF0Wp1WLHiDObPPw6NRodr19KwevVZjB/fQuzQKgwTXyIiMl+a3BI1tMVLEJCbAM+8tHIdQpDZFtXQPma7XEHpxqSWqpSEhExMnBiDY8fi9WNNm3pZXF9eYzHxJSIicWjzSyazxXcWy4mHND+1XIcQpDbQOXgXS2yLOiEUJriCjTuTWrIq0dFXMHXqfmRk5AMo+PWPiGiFadPaQql8/LbRVQETXyIiMj2t6mHZQULp2+XmxEOal/z0x3kCQaqAxMkXapua+q1xH+2EINh6MqkleigzMx8ffngImzdf1I/5+DhhxYruaNeuloiRVR4mvkREZBydGtKcO48sDiu2s1h2AqR598p1CEEif7ibmLe+40HxRWNaBx/Arho8q7kgIzkTgmCi50ZURT14kI/Onf+HW7eK6t179QrEwoWd4epqK2JklYuJLxERFdFpIM29WzKpLdYJQZqbBAmePdMUJDLo7Go+LEHwNeyEUFhfa1sdkD75K1dO5BKVnbOzDV56qRZu3cqAo6MS8+eHoF+/IIvdge1ZMfElIrIWOi2keUlF3Q+yH9lZLCcB0ty7kAi6Zz6EAAl0djUebrbga7ibWGFSa+cFSPnPD1Fl++STTsjN1eD999tVuTZlZcW/PEREVYGggzT3XrGOB6W09Mq9A4mgffZDQAKdXfWHHQ+KbZdbvBOCfQ1AqjDhEyMiYwmCgC1bLkGhkKJPn/r6cUdHJVatChcxMvEx8SUiMneCDpK85KLSg+xi9bQ5BTO20pxESHTqch1GZ1utaOOFR0oPtA4+0NnVBGRKEz0pIqoI6el5mDZtP6Kj/4GDgwLNmtXAc8+5ih2W2WDiS0QkJkGAJD+lWEuvoqS2qNVXIiQ6VbkOo7PxKLabWCnb5dp7AzIbEz0pIhLDsWNxmDAhBomJWQAKtiHetesfRES0Ejky88HEl4iooggCJPmpj+wmVry2NgGynERItHnlOoxO6WbQl7Zom9yi/0NmPau2iayNSqXFggXHsXz5aX2HExcXG3zxRVf07BkgbnBmhokvEdGzEARIVOmGC8MMOiEUzNZKtLnlOoxO6VrKbmKGCS7k9iZ6UkRkaa5dS8XYsbtx4UJRC8H27X2xfHkYfHycRIzMPDHxJSIqhUSV8XCzhfgS2+Tqk1pNdrmOoVM4F5UbPLJFbuHiMSgcTfSMiKgqEQQBUVF/YsaMw8jN1QAAFAopIiPbY/z4FpBKratNWVkx8SUiqyNRZ0L6sC9tqdvl5iRAqs4s1zF0csdHamgf7YTgDUHpbKJnRETW5sGDfHz22Ql90uvv74bVq8PRpImXyJGZNya+RFS1qLMhy7gKSdbDxWGPJrXZCZCqM57+OE8gyO0fztD6Fu0sZu9rsGhMUDhzhwUiqjAuLrZYujQUAwZsx7BhTTBrVkfY27OV4NMw8SUiy6HJLWU3McNOCFClw60chxBktiWT2ke2yxWUrkxqiahS5eVpkJurhpubnX4sJKQufvllKOrX9xQxMsvCxJeIzIM27+FCsQTDncVyEiDNftgVIT+1XIcQpDbFZmW9obMv6oRQ+H/Bxp1JLRGZlYsX72PcuN3w9XXG//7Xy2CbYSa9xmHiS0QVT6t62NKreMeDYu29cuIhzUsu1yEEqQI6ex/IXGsjT+FlkNQWLhoTbDyY1BKRxdDpBKxbdw6zZx9Ffr4Wly6lYMOGCxgxoqnYoVksJr5EVD46NaQ5dx5p5VVsZ7HsBEjz7j39cZ5AkMgfdjrw0S8OK+yCUDBb6wvB1hMSqRSenk7ISs7U97IkIrJESUlZiIjYi0OHbunHGjTwRJs2PiJGZfmY+BLR4+k0kObeLZnUPuyIIM1OgDQ3CRI8e5YpSGTQ2dU02GzB4LK9L3S21QCpzIRPjIjIfMXEXMPkyfuQklLUB3zMmOaYPr0DbG2ZupUHXz0ia6XTQpqXZFhPW3xnsZwESHPvQiLonvkQgkQKnV2NYn1pH0lqHXyhs60OSPmniIgoO1uNmTOPICrqgn7My8sBy5Z1R6dOdUSMrOrgvzZEVZGggzT33sNZ2eLb5SY8XDyWAGnuHUgE7bMfAhLo7LyKktrCelr7Ypsw2NcApGyvQ0T0NOnpeQgP34Rr19L0Y2Fhfli0qBs8POyecE8yBhNfIksj6CDJSy7Wlza+qFetvhwhERJBU67D6Gyrl+h4UDBb+7Ajgl1NQKY00ZMiIrJurq62aNLEC9eupcHeXo45c4IxaFAjgw4OVH5MfInMiSBAkp9imNQW7ixWOFubkwiJTlWuw+hsPQvKDUopPdDae0Nn7w3IbEz0pIiIqCwWLAhBXp4GH330Evz8ytORnB6HiS9RZREESPJTH9lNrNh2uQ/LEiS6/HIdRmfjXsosbfHtcn0Ama2JnhQRET2L6OgrUCplCAvz14+5uNhiw4aeIkZV9THxJTIFQYBElV5sVrb4bmJFlyXa3Kc/1hPolK5FSW2p2+X6AHJ7Ez0pIiIytczMfHz44SFs3nwRrq42aNrUC97eTmKHZTWY+BKVgUSVUbL0oLCm9mGyK9Fkl+sYOoXLw93EihaHFW6RW9i/FgpHEz0jIiKqbKdPJ2LcuBjcvp0BAEhPz8cPP1xCREQrkSOzHkx8yepJ1JmQPuxLa5DUFtbZ5iRAqs4s1zF0ckeDzRZKdEJw8IGg4Cd+IqKqSKPRYdGik1i8+DdotQV9zx0dlZg/PwT9+gWJHJ11YeJLVZs6G0hNhCLxCiTZxWtrCxePJUCqzijXIQS5fbEaWp+Hs7aPJLVKFxM9ISIisiQ3b6Zj/PgYnDlzRz/WsqU3Vq4MQ506/LehsjHxJculzSu26ULhbmLFa2vjIVWlAwCe9U+LILPVJ7XFt8stvnhMULoCbDdDRETFCIKAzZsvIjLyILKz1QAAmUyCKVPa4N13W0Mul4ocoXVi4ksWSRkfA+dfRparrlaQ2jxcEOZbrAyhWBcEex8INu5MaomIyGjp6Xn4+OMj+qS3Th0XrFoVhhYtvEWOzLox8SWLZP/n4icmvYJUoS8zULjXRY6setHM7cNFY4KNB5NaIiKqEG5udli0qBuGD/8RAwY0xNy5wXB05KY/YmPiSxZHkpcCefIpAIDWzgv59QaUTGptPQGJFBIJ4OnphJzkTAiCyIETEVGVpVJpoVJpDZLb8HB/7Ns3CE2beokYGRXHxJcsjjIhFhJBBwDIrzcQ2S9+InJERERkza5dS8XYsbvx3HOuWLu2h8E2w0x6zQsrq8niKOP36C+rfLuLGAkREVkzQRDwzTcX0Lnz/3Dhwj1ER/+DLVsuiR0WPQFnfMmyaFVQJh4AAOiUblBXY9NvIiKqfMnJOZg8eR/27LmuH/P3d0NQkIeIUdHTMPEli6K4dxxS9QMAgMqnKyDlrzAREVWugwdvIiJiL+7dK1pkPWxYE8ya1RH29goRI6OnYdZAFoVlDkREJJa8PA0+/fRXrFnzu37Mw8MOX37ZDaGhfiJGRmXFxJcshyDAJj6m4KJEBpVPF5EDIiIia5GWlotevbbi0qVk/VhISF0sWRIKLy8HESMjY3BxG1kM2YOrkGX+CwBQV29XsGMaERFRJXB1tdVvMWxjI8PcucHYtKk3k14LwxlfshgGZQ61wkSMhIiIrI1EIsHixd2Ql7cbs2Z1RFCQp9gh0TNg4ksWQ/mwzAEAVL6hIkZCRERV3Z4916FUyhASUlc/5uFhhy1b+ooXFJUbE1+yCJL8VCjunQQAaJz9oXV+XuSIiIioKsrOVmPmzCOIiroAT097HDkyFNWq2YsdFpkIa3zJIigT9kMiaAGwmwMREVWM8+eT0KXL/xAVdQFAQa/eTZv+EjkqMiXO+JJFYBszIiKqKFqtDitWnMH8+ceh0egAAPb2csye3QmDBzcWOToyJSa+ZP50GigT9xdcVLhAXb2tyAEREVFVkZCQiQkTYnD8eLx+rGlTL6xeHQ4/PzcRI6OKwMSXzJ7i3klIVekAAJVPZ0DKXXGIiKj8oqOvYOrU/cjIyAcASCRAREQrTJvWFkqlTOToqCIw8SWzZ1jmwDZmRERUfikpuZg8eR8yM1UAAB8fJ6xY0R3t2tUSOTKqSFzcRmZPqd+tTQqVN3drIyKi8vPwsMPChZ0BAL16BeLQoSFMeq0AZ3zJrMkeXIP8wVUAgLpaGwi2HiJHRERElkij0UGl0sLevqhcrm/fIHh7O6FNGx9IJBIRo6PKwhlfMmvs5kBEROV182Y6evbcjMjIgyWua9vWl0mvFWHiS2ZNGb9Xf5mJLxERGUMQBGzefBHBwRtx5swdbNr0N3788R+xwyIRsdSBzJZElQFF0jEAgNaxLrQugSJHREREliI9PQ/Tpu1HdHRRolunjgu8vR1FjIrExsSXzJYy8QAkggYAkO/bvaDPDBER0VMcOxaHCRNikJiYpR8bMKAh5s4NhqOjUsTISGxMfMlssY0ZEREZQ6XSYsGC41i+/DQEoWDM1dUGn3/eFT17BogbHJkFJr5knnRaKBNiCy4qnKD2ai9yQEREZM5SU3PRv/82XLhwTz/WoUMtLF/eHd7eTiJGRuaEiS+ZJXnyaUjzUwEAau/OgIxfTRER0eO5utrC3d0OAKBQSBEZ2R7jx7eAVMoyOSrCrg5klmyKlTnk+4aKGAkREVkCqVSCZctC0bq1D2JiBmLixJZMeqkEzviSWdLv1gYJVN7dRI6GiIjMzaFDN2FrK0fbtr76MS8vR+za9YaIUZG5E33G99tvv0VISAgaN26Mfv364cKFC0+8/YYNGxAaGoomTZqgY8eOmDt3LvLz8yspWqoM0sybkKdfAgBoqrWEYFdN5IiIiMhc5OVp8NFHh/HGG9sxbtxupKfniR0SWRBRE9/du3dj3rx5mDBhAnbs2IH69etj1KhRSElJKfX2u3btwhdffIGJEydi9+7d+PTTT7F7924sWrSokiOnisTd2oiIqDR//pmE0NDvsGbN7wCAxMQsREU9ecKMqDhRE9/169ejf//+6Nu3L/z9/TFr1izY2tpi27Ztpd7+3LlzaN68OV599VX4+vqiQ4cOeOWVV546S0yWxbC+l23MiIisnU4nYM2a39Gy5Ve4eDEZAGBjI8PcucF4++2WIkdHlkS0Gl+VSoW///4bY8aM0Y9JpVK0a9cO586dK/U+zZo1w48//ogLFy6gSZMmiIuLw5EjR/Daa68ZfXyJhPshmCOJOhOKpF8BAFqHWtC5NSjXeSq8L8+1deD5ti4839bh7t0sRETsxaFDt/RjDRp4YvXqcAQFeYoYGVWkinpfi5b4pqWlQavVwsPDw2Dcw8MDN27cKPU+r776KtLS0vDmm29CEARoNBoMGDAAY8eONfr47u7s6WeWru4DdCoAgOz5nvCs5mySh/Xw4Pm2Jjzf1oXnu+qKjr6Mt97aheTkHP3YpEltMHduZ9jacn0+Gc+ifmt+++03rFmzBjNnzkSTJk1w+/ZtfPrpp1ixYgUmTJhg1GOlpmZCp6ugQOmZOV7cAduHlzM8Q6BOzizX40kkBf8opqRk6nfxoaqL59u68HxXbcnJOXjzze3IyVEDALy8HBAV1RsvvlgdWVm5yMp6ygOQRZNKK2aSUrTE183NDTKZrMRCtpSUFHh6lv7VxZIlS9CzZ0/069cPABAYGIicnBzMmDED48aNg1Ra9pJlQQD/UJobQQdl/N6Ci3IHqLxeAkx0jni+rQvPt3Xh+a6aPDzsMWdOJ0yevA/du/vhyy+7ITCwOpKT+UHHGlTUORZtcZtSqUTDhg1x4sQJ/ZhOp8OJEyfQrFmzUu+Tl5dXIrmVyWQAAIHvAosnTz4Lad59AICqZjAgs33KPYiIqKrQanXIz9cYjA0a1Ajff98b33zTEx4ediJFRlWJqF0dRowYgS1btmDHjh24fv06Pv74Y+Tm5qJPnz4AgPfeew9ffPGF/vbBwcHYtGkTfv75Z8TFxeHYsWNYsmQJgoOD9QkwWa7CTSsAtjEjIrImCQmZeP31H/Dxx78YjEskEoSEPAcJVzCSiYha4xseHo7U1FQsXboU9+/fR1BQENatW6cvdbhz547BDO+4ceMgkUjw5ZdfIikpCe7u7ggODsakSZPEegpkQjYPyxwAblNMRGQtoqOvYOrU/cjIyMexY/Ho3LkuunSpJ3ZYVEVJBCutEUhJ4eI2cyLNioPH9oYAALVHc6T3OGySx5VIAE9PJ9aEWQmeb+vC823ZMjPz8eGHh7B580X9mI+PE1atCkObNr4lbs/zbV2k0orp2GJRXR2o6lImFM32qmpx0woioqrs9OlEjB8fg1u3MvRjvXoFYuHCznB15foOqjhMfMksGGxT7MP6XiKiqkij0WHx4t+waNFJaLUF07aOjkrMnx+Cfv2CWMtLFY6JL4lPnQ3lnSMAAK29NzTuTUQOiIiITC01NReDB+/EmTN39GMtW3pj5cow1KnjImJkZE2Y+JLolHePQKLLB/CwmwM/8RMRVTkuLjaQywsWrMtkEkyZ0gbvvttaP0ZUGfjbRqJTxhVvY8ZuDkREVZFMJsWKFWFo0qQ6du16A1OntmXSS5WOM74kLkGnX9gmyOygqtFJ3HiIiMgkjh+Pg62tHM2b19SP1arljH37BrGWl0TDj1okKnnKH5Dl3gUAqGp2BOTcmYeIyJKpVFrMmXMUvXtvxZgxu5GVpTK4nkkviYmJL4nKoJuDL9uYERFZsmvXUhEevglLl56GIAC3bmVg/frzYodFpMdSBxKVQf9e1vcSEVkkQRCwceOf+Oijw8jN1QAAFAopIiPbY/z4FiJHR1SEiS+JRppzB4qUcwAAtXtT6Oy9RY6IiIiMlZycg8mT92HPnuv6MX9/N6xeHY4mTbxEjIyoJCa+JBplfPHZXm5aQURkaQ4evImIiL24dy9bPzZsWBPMmtUR9vYKESMjKh0TXxKNMr54GzMmvkREluTevWwMHx6NvDwtAMDDww5fftkNoaF+IkdG9Hhc3Ebi0ORCeecwAEBr5wWNRzNx4yEiIqNUr+6A//73JQBAcHAdHD48lEkvmT3O+JIolHePQKLNBQCofEIBCT+DERGZM51OgFarg0Ih04+99VYz1KzpiB49nodUyjZlZP6YbZAoWN9LRGQ5kpKyMGDAdsybd8xgXCqV4NVXA5j0ksVg4kuVTxD0/XsFqQ1UNTuJGw8RET1WTMw1dOwYhcOHb2HFijM4evS22CERPTOWOlClk6X9CVlOAgBAXeMlQOEockRERPSo7Gw1Zs48gqioC/qxatUcRIyIqPyY+FKlsym2W1s+d2sjIjI7588nYezY3bh+PU0/1r27HxYv7gYPD24tT5aLiS9VOsM2ZtytjYjIXGi1OqxYcQbz5x+HRqMDANjbyzF7dicMHtwYEglrecmyMfGlSiXJvQdF8lkAgMatEXSOtUWOiIiIACAlJRdvvbULx47F68eaNvXC6tXh8PNzEzEyItNh4kuVyqZYN4d8dnMgIjIbzs5KZGerAQASCRAR0QrTprWFUil7yj2JLAe7OlClUiYU1feyzIGIyHwoFDKsWhWOgAB37NjRD9Ond2DSS1UOZ3yp8mjzoUw8CADQ2XpC49FC5ICIiKzX6dOJsLNToFGjavoxPz83/PLLMPblpSqLM75UaRR3j0KiyQYAqHy6AVLOJBARVTaNRofPPjuBnj03Y+zYn5GToza4nkkvVWVMfKnSsI0ZEZG4bt5MR8+em/HZZyeg1Qr4559UrF9/XuywiCoNSx2ochjs1qaAumawyAEREVkPQRCwZcslREYeRFaWCgAgk0kwdWpbjBnTXOToiCoPE1+qFLL0S5BlF2xzqfbqAEHpLHJERETWIT09D9Om7Ud09D/6sbp1XbByZRhatPAWMTKiysfElyqF4aYVbGNGRFQZjh2Lw4QJMUhMzNKPDRzYEJ9+GgxHR6WIkRGJg4kvVQrD+l4mvkREFS0pKQtvvLEdKpUWAODqaoPPP++Knj0DRI6MSDxc3EYVTpKXAvn9UwAAjUt96JyeEzkiIqKqz8vLEVOntgEAdOhQC4cPD2XSS1aPM75U4ZQJeyGBAIBlDkREFUUQBOh0AmSyojmtt99uCW9vJ7z+ehDblBGBM75UCZQG2xSzjRkRkaklJ+dg2LAfsWjRbwbjMpkU/fs3YNJL9BBnfKliaVVQJu4HAOiUbtBUaylyQEREVcvBgzcREbEX9+5lY9++G+jUqQ5atmS3BqLSMPGlCqW4dxxSdSYAQOXbDZDyV46IyBTy8jT49NNfsWbN7/oxV1dbfZ9eIiqJWQhVKIM2Zj6s7yUiMoWLF+9j3LgYXLqUrB8LDq6DpUu7w8vLQcTIiMwbE1+qOIIAm7iCxFeQyKHy6SxyQERElk2nE7Bu3TnMnn0U+fkFbcpsbGSYMeMljBrVjLW8RE/BxJcqjOzBVciybgIA1F7tIChdRY2HiMiSpabmYty43Th06JZ+LCjIE6tXhyMoyFPEyIgsBxNfqjDKOO7WRkRkKvb2Cty9W7QD25gxzTF9egfY2vKfcqKyYjszqjDKhKLd2pj4EhGVj62tHKtWhaN2bRds3twHs2d3YtJLZCS+Y6hCSPJTobh3EgCgcfaH1tlf5IiIiCzL+fNJsLdX4Pnn3fVjDRpUw8mTIyCXc96K6FnwnUMVQpmwHxKhYOGFiptWEBGVmVarw9KlpxAWtgljxvyM/HyNwfVMeomeHd89VCEM2pixzIGIqEwSEjLRt+8PmDPnV2g0Ovz1132sX39e7LCIqgyWOpDp6dRQJh4ouKhwgbp6G5EDIiIyf9HRVzB16n5kZOQDACQSICKiFUaOfEHcwIiqECa+ZHKKe79BqkoHAKh8ugBShbgBERGZsczMfHz44SFs3nxRP+bj44QVK7qjXbtaIkZGVPUw8SWTY5kDEVHZnD6diPHjY3DrVoZ+rFevQCxc2BmurrYiRkZUNTHxJZNTxhe0MRMkUqh8uoocDRGRebpzJxO9e2+FSlWwENjRUYn580PQr18QJBLuwEZUEbi4jUxK9uAa5A+uAgDU1dpAsHF/yj2IiKxTzZpOGD/+RQBAy5beOHRoCPr3b8Ckl6gCccaXTKpwthdgGzMiouIEQQAAg8R22rS28PFxxqBBjdimjKgS8F1GJmWY+LK+l4gIANLT8zB69M9YufKswbhCIcOwYU2Y9BJVEs74kslIVOlQJB0HAGgd60LrEiByRERE4jt2LA4TJsQgMTELu3dfw8sv10bjxtXFDovIKjHxJZNRJh6ERCjYYSi/VlhBE0oiIiulUmmxYMFxLF9+Gg+rHODgoMC9e9niBkZkxZj4kskYtDHzYZkDEVmva9dSMXbsbly4cE8/1qFDLSxf3h3e3k4iRkZk3Zj4kmnotFDGxxZcVDhB7dVe5ICIiCqfIAiIivoTM2YcRm5uwTdgCoUUkZHtMX58C0il/CaMSEzlSnzz8/NhY2NjqljIgsnvn4JUlQYAUHt3BmRKkSMiIqpcaWm5eOedWOzZc10/5u/vhtWrw9GkiZeIkRFRIaOXkep0OqxYsQIvvfQSmjVrhri4OADAl19+ia1bt5o8QLIMNsW6OeSzmwMRWSGlUo6rV1P1Pw8f3hT79w9m0ktkRoxOfFeuXIkdO3Zg2rRpUCgU+vGAgAD88MMPJg2OLIcy4eFubZBA5dNN5GiIiCqfg4MCq1aFoUYNB2zc+BoWLuwMe3vF0+9IRJXG6MQ3Ojoas2fPRs+ePSGVFt09MDAQN27cMGlwZBmkmTchT78EANBUawnB1lPkiIiIKt7Fi/dx82a6wdgLL9TA6dOjEBrqJ05QRPRERie+SUlJqF27dolxQRCg0WhMEhRZFqVBmQN3ayOiqk2nE7B27e8IDf0O48bFQKPRGVxvY8N140TmyujE19/fH2fOnCkxvmfPHgQFBZkkKLIsNsXbmLG+l4iqsKSkLAwYsB3//e9h5OdrcfbsHWzYcF7ssIiojIz+WDp+/Hh88MEHSEpKgiAIiI2Nxb///oudO3dizZo1FREjmTGJOhOKpF8BAFqH2tC6NhA5IiKiihETcw2TJsUiNTVPPzZmTHMMHtxYxKiIyBhGJ75dunTB6tWrsWLFCtjZ2WHp0qVo0KABVq9ejfbt2bvV2igSD0KiUwMAVL6h3K2NiKqc7Gw1Zs48gqioC/oxLy8HLF0aiuDguuIFRkRGe6ZCpBYtWmD9+vWmjoUskA3re4moCjt/Pgljx+7G9etp+rGwMD8sWtQNHh52IkZGRM/C6Brfzp07Iy0trcT4gwcP0LlzZ5MERRZC0EGZsLfgotwB6hodRA6IiMh0EhIy0aPH9/qk195ejkWLumLDhp5MeokslNGJb0JCAnQ6XYlxlUqFpKQkkwRFlkGefAbSvGQAgKpmMCCzFTkiIiLT8fFxwogRTQEATZt64cCBIRg8uDEkLOkislhlLnU4cOCA/vLRo0fh5OSk/1mn0+HEiRPw8fExbXRk1oq3MVOxzIGIqgBBEAwS2+nTO8DHxwkjR74ApVImYmREZAplTnwnTJgAAJBIJPjggw8MH0Quh4+PT4lxqtoM63u5WxsRWa7MzHx8+OEhNGtWAyNHvqAft7WVY+zYF8ULjIhMqsyJ7+XLlwEAISEh+OGHH+Du7l5hQZH5k2bFQZ72FwBA7fkiBDvuRU9Elun06USMGxeD27czEB19BR061EJAgIfYYRFRBTC6xvfgwYNMeumRMgduWkFElkej0WHhwuPo2XMzbt/OAADI5TLcvJkhcmREVFGeqZ1ZTk4OTp8+jcTERKjVaoPrhg4dapLAyLwpE4olvj5MfInIsty8mY7x42Nw5swd/VjLlt5YuTIMdeq4iBgZEVUkoxPfixcvYvTo0cjNzUVubi5cXFyQlpYGOzs7uLu7M/G1BupsKO/8AgDQ2ntD495E5ICIiMpGEARs3nwRkZEHkZ1dMHEjk0kwZUobvPtua8jlRn8RSkQWxOh3+Lx58xAcHIzTp0/DxsYGW7ZswaFDh9CwYUO8//77FREjmRnlncOQ6PIBPCxzYGsfIrIAGRl5GD36Z0RE7NUnvXXquGDXrjcwdWpbJr1EVsDod/mlS5cwYsQISKVSyGQyqFQq1KxZE9OmTcOiRYsqIkYyM6zvJSJLJJFI8Pvvd/U/DxjQEIcODUGLFt4iRkVElcnoxFcul0MqLbibh4cHEhMTAQCOjo64e/fuk+5KVYGg09f3CjI7qGp0FDkgIqKycXa2wYoV3eHhYYd1617B0qWhcHRUih0WEVUio2t8GzRogD///BN169ZFy5YtsXTpUqSlpSE6OhrPP/98RcRIZkSe8gdkuQU79KlqdgLk3LaTiMzTtWupsLdXwNu7aMOlNm18cebMW3BwUIgYGRGJxegZ30mTJqFatWr6y87Ozvj444+RlpaGTz75xOQBknlRxsfoL7PMgYjMkSAI+OabC+jc+X+YOHEPdDrB4HomvUTWy+gZ38aNG+sve3h44OuvvzZpQGTelPF79ZdVvqEiRkJEVFJycg4mT96HPXuuAwB+/TUOUVEXMHx4U5EjIyJzYLIlrH///TfGjBljqocjMyTNSYQi9Q8AgNr9BejsuSCEiMzHwYM30anTRn3SCwDDhjVB//4NRIyKiMyJUYnv0aNHsWDBAixatAhxcXEAgOvXr2P8+PF4/fXXodPpjA7g22+/RUhICBo3box+/frhwoULT7z9gwcPMGvWLHTo0AGNGjVCaGgojhw5YvRxyXic7SUic5SXp8FHHx3GgAHbce9eNgDAw8MOGze+hs8+6wJ7e5Y2EFGBMpc6bN26FR999BFcXFzw4MEDbN26FR988AHmzJmDsLAw/PTTT/Dz8zPq4Lt378a8efMwa9YsNG3aFN988w1GjRqFPXv2wMOj5D7pKpUKI0aMgIeHB5YsWQIvLy8kJibC2dnZqOPSszFsYxYmYiRERAX+/DMJAwb8gIsXk/VjwcF1sHRpd3h5OYgYGRGZozInvlFRUZg6dSreeust7N27F++88w42bdqEXbt2oUaNGs908PXr16N///7o27cvAGDWrFk4fPgwtm3bhtGjR5e4/bZt25CRkYHvv/8eCkXBJ3hfX99nOjYZSZML5Z3DAACtnRc0Hi+IGg4RUVzcA7Rtux75+VoAgI2NDDNmvIRRo5pBKuXGOkRUUpkT37i4OHTvXrCKv1u3bpDL5Zg2bdozJ70qlapEXbBUKkW7du1w7ty5Uu9z8OBBvPDCC/jkk09w4MABuLu745VXXsF//vMfyGQyo44vkXDDMWMoko5Aos0FAKh9u0MitYwdjgrPMc+1deD5ti61aztj6NCm+Oqr39GggSdWrw5HUJCn2GFRBeH727pU1Hkuc+Kbl5cHOzu7h8FIoFAoUL169Wc+cFpaGrRabYmSBg8PD9y4caPU+8TFxeHkyZN49dVXsXbtWty+fRuzZs2CRqPBxIkTjTq+u7vT029ERc4d0F+0bdAbtp6W9fp5eFhWvFQ+PN/WY/HiUNSp44IpU9rB1tboRkVkgfj+pvIw6q/E1q1bYW9vDwDQarXYvn073NzcDG4zdOhQ00X3CEEQ4OHhgdmzZ0Mmk6FRo0ZISkrC119/bXTim5qaiWdYi2edBAFu13ZBBkCQ2iDFoTWQnCl2VGUikRT8kUxJyYQgPP32ZNl4vquu7Gw1Zs48ghdfrImBAxsCKDrfY8c2Q1ZWLrKyRA6SKhTf39ZFKq2YScoyJ77e3t7YsmWL/mdPT09ER0cb3EYikZQ58XVzc4NMJkNKSorBeEpKCjw9S/+qqlq1apDL5QZlDfXq1cP9+/ehUqmgVJZ960lBAN84ZSRL/ROynIKtqVU1X4YgdwAs7LXj+bYuPN9Vy/nzSRg3bjeuXUvDDz9cQuvWPnjuOVf99Tzf1oXn2zpU1Dkuc+J78OBBkx5YqVSiYcOGOHHiBLp06QIA0Ol0OHHiBAYPHlzqfZo3b46ffvoJOp0O0oc1pjdv3kS1atWMSnrJODbFd2vz4W5tRFQ5tFodVqw4g/nzj0OjKfiKThAEXL6cbJD4EhGVlagrlEaMGIEtW7Zgx44duH79Oj7++GPk5uaiT58+AID33nsPX3zxhf72AwcORHp6Oj799FP8+++/OHz4MNasWYNBgwaJ9RSsgmEbMya+RFTxEhIy0bfvD5gz51d90tu0qRcOHBiCsDB/kaMjIksl6kqA8PBwpKamYunSpbh//z6CgoKwbt06fanDnTt39DO7AFCzZk18/fXXmDdvHnr27AkvLy8MHToU//nPf8R6ClWeJDcJiuSzAACNWyPoHGuJHBERVXXR0Vcwdep+ZGTkAyio7YyIaIVp09pCqTSugw8RUXESQbDOSpmUFC5uKwvbqxvhdGICACC78VTkNJshckTGkUgAT08nJCdzMYQ14Pm2bFlZKkRGHsTmzRf1Yz4+TlixojvatSv5oZvn27rwfFsXqbRiOniw9ws9kbJ4fS/LHIioAuXna3H48C39z716BWLhws5wdbUVMSoiqkosYxcCEoc2D8o7hwAAOltPaDxeFDkgIqrKPDzssGxZdzg5KbF8eXesWRPOpJeITOqZZnxv376Nbdu2IS4uDtOnT4eHhweOHDkCb29vPP/886aOkUSiuPsrJJpsAIDKJxSQsraOiEzn5s102NsrUL26g36sU6c6+P33t+DiwoSXiEzP6BnfU6dO4dVXX8WFCxcQGxuLnJwcAMCVK1ewbNkykwdI4inexiyfZQ5EZCKCIOD77/9GcPBGvPtuLB5dasKkl4gqitGJ7xdffIF3330X69evh0Kh0I+3adMGf/zxhyljIzEJApTxewsuShVQe4eIHBARVQXp6XkYPfpnRETsRXa2Gvv3/4tNm/4WOywishJGJ77//POPfsOJ4tzd3ZGWlmaSoEh8svSLkGXfBgCovTpAUHBvdCIqn2PH4tCpUxSio//Rjw0Y0BA9ewaIGBURWROja3ydnJxw//591Kpl2Frm0qVL8PLyMllgJK7im1bk+4aJGAkRWTqVSosFC45j+fLT+jZUrq42+Pzzrkx6iahSGT3j26NHD3z++ee4f/8+JBIJdDodzp49iwULFqBXr14VECKJwWCbYt9QESMhIkt29WoqwsM3YdmyoqS3Q4daOHx4KJNeIqp0Rs/4Tpo0CZ988gk6deoErVaLHj16QKvV4pVXXsG4ceMqIkaqZJK8ZMjvnwYAaFzqQ+f0nMgREZElunkzHV26/A+5uRoAgEIhRWRke4wf3wJSqUTk6IjIGhmd+CqVSsyZMwfjx4/H1atXkZ2djQYNGqBu3boVEB6JQZkQCwkKpmZULHMgomdUt64rwsP9sW3bZfj7u2H16nA0acKSOCISj9GJ75kzZ9CiRQt4e3vD29u7ImIikdkY1PeyjRkRPbsFCzqjVi1nvPtua9jbK55+ByKiCmR0je/w4cMREhKCRYsW4dq1axURE4lJq4Ii8QAAQKd0g6ZaK5EDIiJLkJenwUcfHcaPP/5jMO7sbIMPP+zApJeIzILRie8vv/yCkSNH4tSpU3jllVfw2muvYd26dbh7925FxEeVTJF0DFJ1JgBA5duNu7UR0VNdvHgfoaHfYc2a3zFlyj4kJGSKHRIRUamMTnzd3d0xePBgfP/999i3bx+6d++OnTt3IiQkBEOHDq2IGKkSKROKyhxY30tET6LTCVi79neEhn6HS5eSARTM/P7xBydCiMg8GV3jW1ytWrUwevRo1K9fH0uWLMHp06dNFReJQRBgE1fQxkyQyKHibm1E9BhJSVmIiNiLQ4du6ceCgjyxenU4goI8RYyMiOjxnjnxPXv2LHbt2oW9e/ciPz8fnTt3xuTJk00ZG1UyWcY/kGXdBACovdpBULqKGg8RmaeYmGuYPHkfUlJy9WNjxjTH9OkdYGtbrvkUIqIKZfRfqC+++AI///wz7t27h/bt22P69Ono3Lkz7OzsKiI+qkTFd2tTsZsDET0iO1uNmTOPICrqgn7My8sBS5eGIji4rniBERGVkdGJ7+nTpzFq1CiEhYXB3d29ImIikSgNdmtj4ktEhrKy8vHzz1f1P4eF+WHRom7w8ODEBxFZBqMT3++//74i4iCRSfJTobh/EgCgcX4eWmd/kSMiInPj5eWIRYu6Yty43ZgzJxiDBjWCRMId2IjIcpQp8T1w4ABefvllKBQKHDhw4Im37dy5s0kCo8qlTNgHiaADwNleIiqQkJAJe3s53NyKZnTDwvxx+vRbqFbNXsTIiIieTZkS3wkTJuDYsWPw8PDAhAkTHns7iUSCS5cumSw4qjyG9b1sY0Zk7aKjr2Dq1P14+eXaWLfuFYOZXSa9RGSpypT4Xr58udTLVEXo1FAm7C+4qHSFunprkQMiIrFkZubjww8PYfPmiwCAXbuuYtu2y3j99SCRIyMiKj+jN7DYuXMnVCpViXGVSoWdO3eaIiaqZIp7JyFVZwAAVN6dASm3FiWyRqdPJyI4+H/6pBcAevUKRJcuz4kYFRGR6Rid+EZGRiIzs+R2lNnZ2YiMjDRJUFS5WOZAZN00Gh0+++wEevbcjNu3Cz4EOzoqsXx5d6xZEw5XV1uRIyQiMg2juzoIglDqKt6kpCQ4OTmZJCiqXIVtzASJDCqfLiJHQ0SV6ebNdIwfH4MzZ+7ox1q29MbKlWGoU8dFxMiIiEyvzIlvr169IJFIIJFIMGzYMMjlRXfVarWIj4/HSy+9VCFBUsWRPbgK+YNrAAB19TYQbNibmcha3LiRhi5dvkVWVkH5mkwmwZQpbfDuu60hlxv9hSARkdkrc+LbpUvBTOClS5fQoUMHODg46K9TKBTw8fFBt27dTB8hVShl/F79ZZUP25gRWZPnnnPFSy/VQkzMddSp44JVq8LQooW32GEREVWYMie+EydOBAD4+PggPDwcNjY2FRYUVR6D+t5arO8lsiYSiQSLFnVDrVon8cEH7eHoqBQ7JCKiCmX0d1m9e/dm0ltFSFTpUCQdBwBonZ6D1vl5kSMiooqiUmkxe/ZR7Nt3w2Dcw8MOc+YEM+klIqtQphnfVq1aYc+ePXB3d0fLli2fuEXlqVOnTBYcVSxlwgFIBA0AIN+3O8CtR4mqpGvXUjF27G5cuHAPmzb9jcOHh6B6dYen35GIqIopU+IbGRkJR0dH/WXuzV41KBPYxoyoKhMEAVFRf2LGjMPIzS34kJuRkYdTpxLxyiv8hoeIrE+ZEt/evXvrL/fp06fCgqFKpNNAGR9bcFHhDHX1diIHRESmlJycg8mT92HPnuv6MX9/N6xeHY4mTbxEjIyISDxG9/H9+++/IZfLERgYCADYv38/tm/fDn9/f0ycOBFKJevELIH8/mlIVWkAHu7WJuN5I6oqDh68iYiIvbh3L1s/Nnx4U3z88cuwt+fOjERkvYxe3DZjxgzcvHkTABAXF4dJkybBzs4Oe/bswWeffWbq+KiC2DzctAIAVL6hIkZCRKaSl6fBRx8dxoAB2/VJr4eHHTZufA0LF3Zm0ktEVs/oxPfmzZsICgoCAMTExKBVq1b44osvMG/ePMTGxpo8QKoYhW3MBEig8mH/ZaKqIDk5B5s2/a3/OSSkLg4fHorQUD8RoyIiMh9GJ76CIECn0wEATpw4gZdffhkAULNmTaSlpZk2OqoQ0sx/Ic+4DADQVGsFwdZT5IiIyBR8fZ2xcGFn2NjIMHduMDZt6g0vL3ZvICIqZHSNb6NGjbBq1Sq0bdsWp0+fxscffwwAiI+Ph6cnEyhLYFNs04p8X+7WRmSpkpKyYG+vgJNTUW/1Pn3qo3VrH/j4OIkYGRGReTJ6xvfDDz/ExYsXMXv2bIwdOxZ16tQBAOzduxfNmjUzeYBkega7tbGNGZFFiom5hk6dNuLDDw+VuI5JLxFR6SSCIAimeKD8/HxIpVIoFJaxeCIlJRMPKzasikT1AB5bnoNEp4bWoTZS+/xZpTeukEgAT08nJCdnwjS/6WTOrOF8Z2erMXPmEURFXdCPff31K3j11QARoxKHNZxvKsLzbV2kUsDDw/Qf4o0udSj0119/4fr1gv6Q/v7+aNiwocmCooqjuHMIEp0aAKDibm1EFuX8+SSMHbsb168XracIC/NDu3a1RIyKiMhyGJ34pqSk4N1338Xp06fh7OwMAHjw4AFat26NxYsXw93d3eRBkukUb2PG+l4iy6DV6rBixRnMn38cGk3BV1X29nLMmROMQYMacTdNIqIyMrrGd/bs2cjJycHPP/+MU6dO4dSpU/jpp5+QlZWFOXPmVESMZCo6LZQJBS3nBLkD1DU6iBwQET1NQkIm+vb9AXPm/KpPeps29cKBA0MweHBjJr1EREYwesb36NGjWL9+Pfz8ivpC+vv7Y+bMmRg5cqRJgyPTkqechTQvGQCg8g4BZLYiR0RET3L9ehq6d/8OGRn5AAoqkyIiWmHatLZQKmUiR0dEZHmMnvHV6XSlLmCTy+X6/r5kngy6OfiwzIHI3D33nCuaN68BoKBTw44d/TB9egcmvUREz8joxLdNmzb49NNPkZSUpB9LSkrCvHnz0LZtW5MGR6Zl2L+X2xQTmTupVIKlS0MxZEhjHDo0hIvYiIjKyehShxkzZmDcuHHo3LkzatQomIm4e/cunn/+eXz22WcmD5BMQ5p1G/K0vwAAas8XIdhVFzkiIipOo9Fh8eLf0KaND156qbZ+3MvLEV980VXEyIiIqg6jE9+aNWtix44dOHHihL6dmZ+fH9q1a2fy4Mh0lPF79Ze5aQWRebl5Mx3jx8fgzJk7qFnTEYcPD4Gbm53YYRERVTlGJb67d+/GgQMHoFar0bZtWwwZMqSi4iITYxszIvMjCAK2bLmEyMiDyMpSAQDu3cvGr7/GWeWGFEREFa3Mie93332HTz75BHXq1IGtrS327duH27dv4/3336/I+MgU1FlQ3P0FAKC194HWrbHIARFRenoepk3bj+jof/Rjdeq4YNWqMLRo4S1iZEREVVeZF7d9++23mDhxIvbu3Yvo6GjMnz8fmzZtqsjYyESUd45AoiuYTeJubUTiO3YsDp06RRkkvQMGNMShQ0OY9BIRVaAyJ75xcXHo1auX/udXX30VGo0G9+7dq4i4yISUxcocVOzmQCQalUqLOXOOok+frUhMzAIAuLjYYN26V7B0aSgcHZUiR0hEVLWVudRBpVLB3t5e/7NUKoVCoUB+fn6FBEYmIuigTChY2CbI7KCq0VHkgIisV2JiJtat+wOCUPBz+/a+WL48DD4+TuIGRkRkJYxa3Pbll1/Czq5opbFarcaqVavg5FT0RzsyMtJ00VG5yVPOQZZb0HNZVbMTIOdKcSKx1K3rik8/7YT33juAyMj2GD++BaRSlh4REVWWMie+LVu2xL///msw1qxZM8TFxel/5p7x5sdgtza2MSOqVCkpubCzk8Pevmi3yzffbIS2bX1Rr56biJEREVmnMie+GzdurMg4qIIYJr7dRIyEyLocPHgTERF70aOHPxYs6Kwfl0gkTHqJiERi9JbFZDmkOYlQpJ4HAKjdX4DOnqvFiSpaXp4GH310GAMGbMe9e9lYv/489u27IXZYRESEZ9i5jSyH4W5t3LSCqKJdvHgf48bF4NKlZP1YSEhdNGniJWJURERUiIlvFWbYxoyJL1FF0ekErFt3DrNnH0V+vhYAYGMjw8yZL2PUqBe4/oGIyEww8a2qNDlQ3jkMANDa1YDG4wVRwyGqqpKSshARsReHDt3SjwUFeWL16nAEBXmKGBkRET2KiW8Vpbx7BBJtHgBA5RMKSFjOTWRq166l4tVXNyMlJVc/NmZMc0yf3gG2tvzzSkRkbp4pGzpz5gymTp2KN954A0lJBT1id+7ciTNnzpg0OHp2BvW9tdjGjKgiPPecKwIC3AEAXl4O2Ly5D2bP7sSkl4jITBmd+O7duxejRo2Cra0tLl68CJVKBQDIysrCmjVrTB4gPQNB0LcxE6Q23K2NqILIZFKsWBGGfv2CcPjwUAQH1xU7JCIiegKjE99Vq1Zh1qxZmDNnDuTyolmN5s2b4+LFiyYNjp6NPPUCZDmJAABVzZcBhYPIERFZPq1Wh6VLT+HUqUSDcV9fZ6xYEQYPD+6KSERk7oz+Pu7ff/9FixYtSow7OTnhwYMHJgmKykeZwN3aiEwpISETEybE4PjxeNSu7YJDhwbDyclG7LCIiMhIRs/4enp64vbt2yXGz549i1q1apkkKCofZVyxNmY+oSJGQmT5oqOvoFOnKBw/Hg8AiIvLwOHDt55yLyIiMkdGJ779+/fHp59+ivPnz0MikSApKQk//vgjFixYgIEDB1ZEjGQESW4SFCm/AwA0bo2hc+SHEaJnkZmZj7ff3oP//OdnZGTkAwB8fJywY0c/vPpqgMjRERHRszC61GH06NHQ6XQYPnw4cnNzMXjwYCiVSowcORJDhgypiBjJCDbFujnk+3K2l+hZnD6diPHjY3DrVoZ+rFevQCxc2BmurrYiRkZEROVhdOIrkUgwbtw4jBo1Crdv30ZOTg78/Pzg4MAFVOagsJsDwPpeImNpNDosXvwbFi06Ca1WAAA4Oioxf34I+vUL4g5sREQW7pmbTSqVSvj7+5syFiovbR6Udw4CAHS2ntB4vihyQESW5ebNdCxdekqf9LZs6Y2VK8NQp46LyJEREZEpGJ34Dhky5ImzHlFRUeUKiJ6d4u5RSDQ5ALhbG9Gz8Pd3x4wZL2HGjCOYMqUN3n23NeRyvo+IiKoKoxPfoKAgg581Gg0uXbqEq1evolevXqaKi56BTbEyh3yWORA9VXp6Huzs5LCxKfpT+NZbzdChQ20EBXmKGBkREVUEoxPfDz/8sNTxZcuWIScnp9wB0TMy2K1NCbV3sMgBEZm3Y8fiMGFCDHr1CsTHHxftbiiRSJj0EhFVUSb7Dq9nz57Ytm2bqR6OjCRLvwhZdhwAQO3VAYLCSeSIiMyTSqXFnDlH0afPViQmZmHlyrP45ZeSvcmJiKjqeebFbY86d+4clEqlqR6OjGQTX7RpRb5vdxEjITJf166lYuzY3bhw4Z5+rEOHWvD3dxMxKiIiqixGJ74TJ040+FkQBNy/fx9//fUXxo8fb7LAyDiGbcyY+BIVJwgCoqL+xIwZh5GbqwEAKBRSREa2x/jxLSCVsk0ZEZE1MDrxdXIy/ApdIpHgueeeQ0REBDp06GCywKjsJLn3Ib9/GgCgcQ2CzqmuuAERmZHk5BxMnrwPe/Zc14/5+7th9epwNGniJWJkRERU2YxKfLVaLfr06YOAgAC4uLCvpblQJsZCgoK+oyofzvYSFbp2LRW9em3FvXvZ+rHhw5vi449fhr29QsTIiIhIDEYtbpPJZBg5ciQePHhg0iC+/fZbhISEoHHjxujXrx8uXLhQpvv9/PPPCAwMtPoSC4NtimuxjRlRoTp1XODj4wgA8PCww8aNr2Hhws5MeomIrJTRXR2ef/55xMfHmyyA3bt3Y968eZgwYQJ27NiB+vXrY9SoUUhJSXni/eLj47FgwQK0aNHCZLFYJK0KisQDAACdjTs0ni1FDojIfCgUMqxaFY4ePfxx+PBQhIb6iR0SERGJyOjE991338WCBQtw6NAh3Lt3D1lZWQb/GWv9+vXo378/+vbtC39/f8yaNQu2trZPbI2m1WoxdepUvP3226hVq5bRx6xKFEnHIFVnAgBUPt0AqUzkiIjEodMJWLv2d5w7d8dgvF49N6xf3xNeXg4iRUZEROaizDW+y5cvx8iRIzF69GgAwLhx4wy2LhYEARKJBJcuXSrzwVUqFf7++2+MGTNGPyaVStGuXTucO3fusfdbsWIFPDw80K9fP5w9e7bMxytOIin4z9LZJBS1MVPV6l4lnpMpFb4efF2qtrt3sxARsReHDt3Cxo1/ITZ2IOzsWM5Q1fH9bV14vq1LRZ3nMie+K1aswMCBAxEVFWWyg6elpUGr1cLDw8Ng3MPDAzdu3Cj1PmfOnMEPP/yAnTt3luvY7u5VYIMHQQASH9b3SuVwbtwLsKkCz6sCeHjwdamqoqMv4623diE5uWDnyMuXk3Hq1F307dtA5MiosvD9bV14vqk8ypz4CkJB14BWrVpVWDBPk5WVhffeew+zZ8+Gu7t7uR4rNTUTOp2JAhOJLP0y3DL+BQCoqrfHg0wpkJkpclTmRSIp+COZkpKJh7/CVEVkZ6sxc+YRfPNN0WJYLy8HREX1xosvVkdyMt8LVR3f39aF59u6SKUVM0lpVDsziYnnnd3c3CCTyUosZEtJSYGnp2eJ28fFxSEhIQHjxo3Tj+keZq8NGjTAnj17ULt27TIdWxBg8W8cRVzxTStCLf75VKSqcL6pyPnzSRg7djeuX0/Tj4WF+WHx4m4IDCxIenm+rQff39aF59s6VNQ5NirxDQ0NfWrye+rUqTI/nlKpRMOGDXHixAl06dIFQEEie+LECQwePLjE7evVq4ddu3YZjH355ZfIzs7G9OnTUaNGjTIfuyoovltbvi/bmFHVp9XqsGLFGcyffxwaTcGHXnt7OWbP7oTBgxtzBzYiInoioxLft99+u8TObeU1YsQIvP/++2jUqBGaNGmCb775Brm5uejTpw8A4L333oOXlxemTJkCGxsbBAQEGNzf2dkZAEqMV3WSvBQo7p8EAGicn4fOmW2aqOq7ejXVIOlt2tQLq1eHw8/PTeTIiIjIEhiV+Pbo0aPEQrTyCg8PR2pqKpYuXYr79+8jKCgI69at05c63LlzB1Kp0V3Xqjxl4n5IhIJ//FWc7SUrUb++Jz74oB0+/fRXRES0wrRpbaFUsoUfERGVjUQQylZFERQUhF9//dXkia9YUlIse3Gb0y/DYXtzOwAgvdtuqGt0EDki8ySRAJ6eTqz5tFBZWSrY2sohlxd9+NVqdfjzz3t44YWSpU0839aF59u68HxbF6m0Yjp4lHkqtYz5MVUGnRrKhIe7tSldoa7eRuSAiEzv9OlEBAdvxKJFJw3GZTJpqUkvERHR05Q58b18+XKVme21dIp7JyBVZwAAVN5dAKlRFStEZk2j0eGzz06gZ8/NuHUrA4sW/YZTpxLFDouIiKoAZkwWqHg3B5VvdxEjITKtmzfTMX58DM6cKdp2+MUXa3K7YSIiMgkmvhaoMPEVJDKofLqIHA1R+QmCgC1bLiEy8iCyslQAAJlMgilT2uDdd1sb1PgSERE9Kya+Fkb24CrkD64BANTV20CwKd8OdkRiS0/Pw3vvHcDOnVf0Y3XquGDVqjC0aOEtYmRERFTVMPG1MMr4vfrLbGNGlu7atVT067cNCQlF2wsPGNAQc+cGw9FRKWJkRERUFTHxtTDKuBj9Zdb3kqXz9XWGs7MNEhIy4epqg88/74qePa1rMxoiIqo8LJyzIBJVOhT3jgMAtE7PQev8vMgREZWPra0cq1eHo0uX53D48FAmvUREVKGY+FoQZcIBSAQtACDfN6ygmzeRhRAEAVFRF3DlSorBeFCQJ777rje8vU3fqJyIiKg4ljpYEGU8yxzIMiUn52Dy5H3Ys+c6Gjashj17BsLGhn9+iIiocnHG11LoNFAm7Cu4qHCGuno7kQMiKpuDB2+iU6eN2LPnOgDg77/vIzb2hshRERGRNeKUi4VQ3D8FqSoNAKDy7gzIuOKdzFtengZz5hzF2rXn9GMeHnb48stuCA31EzEyIiKyVkx8LQR3ayNLcvHifYwbtxuXLhXV8wYH18HSpd25CxsREYmGia+FKKzvFSCByqebyNEQlU6nE7Bu3TnMnn0U+fkFCzFtbGSYMeMljBrVDFIpF2QSEZF4mPhaAGnmDcgzCna10lRrBcHWQ+SIiEp38WIyZsw4Ap1OAFDQsWH16nAEBXmKHBkREREXt1kEm2K7teVztzYyY40aVcO777YCAIwZ0xx7977JpJeIiMwGZ3wtAOt7yVzl5Khhays3KGGYMqUNOnWqgzZtfEWMjIiIqCTO+Jo5ieoBFEm/AgC0jnWgdQ0SOSKiAufPJ6Fz5/9h5cozBuMKhYxJLxERmSUmvmZOcecgJDo1AEDlE8rd2kh0Wq0OS5eeQljYJly/noZ5847hwoUkscMiIiJ6KpY6mDmbYmUO+bVY30viSkjIxIQJMTh+PF4/1qBBNTg4sK80ERGZPya+5kynhfLhwjZB7gC1VweRAyJrFh19BVOn7kdGRj6Agi8fIiJaYdq0tlAqZSJHR0RE9HRMfM2YPOUMpPkFGwCovEMAmY3IEZE1yszMx4cfHsLmzRf1Yz4+TlixojvataslYmRERETGYeJrxpRsY0Yiu3YtFQMH7sCtWxn6sV69AvHZZ53h4mIrYmRERETGY+JrxmziuFsbiatmTSfI5QVrYB0dlZg/PwT9+gVBwkWWRERkgdjVwUxJs25Dnv43AEDj+SIEu+oiR0TWyMFBgdWrw9G+vS8OHRqC/v0bMOklIiKLxcTXTHHTCqpsgiBg8+aL+PffdIPxpk29sH17P9Sp4yJOYERERCbCxNdMGbQxY30vVbD09DyMHv0z3n57D8aP3w21WmtwPWd5iYioKmDia47UWVDc/QUAoLX3gdatkcgBUVV27FgcOnWKQnT0PwCAs2fvIjb2hshRERERmR4Xt5kh5Z3DkOhUAB6WOXC2jSqASqXFggXHsXz5aQhCwZirqw2++KIrevR4XtzgiIiIKgATXzPE+l6qaNeupWLs2N24cOGefqxDh1pYvrw7vL2dRIyMiIio4jDxNTeCTl/fK8jsoKrxssgBUVUiCAKiov7EjBmHkZurAQAoFFJERrbH+PEtIJXy2wUiIqq6mPiaGXnKOUjzCmbhVDWDAbmdyBFRVfLnn/cwbdp+/c/+/m5YvTocTZp4iRgVERFR5eDiNjOjjI/RX2aZA5lakyZeGDv2RQDA8OFNsX//YCa9RERkNTjja2aKb1Os8g0VMRKqCvLzNVAqZQbtyKZPb4+QkLro1KmOiJERERFVPs74mhFpdgIUqecBAGqPZtDZ1xQ5IrJkFy/eR7du32L9+vMG4zY2cia9RERklZj4mhFlQrHZXh/O9tKz0ekErF37O0JDv8OlSyn4+OMjuHIlReywiIiIRMdSBzNi0MasFndrI+MlJWUhImIvDh26pR977jk3ESMiIiIyH0x8zYUmB8o7hwEAWrsa0Lg3FTcesjgxMdcwefI+pKTk6sfGjGmO6dM7wNaWb3UiIiL+a2gmlHePQKLNA1C4WxurUKhssrPVmDnzCKKiLujHvLwcsHRpKIKD64oXGBERkZlh4msmlHHcrY2Md/16GgYP3onr19P0Y2Fhfli0qBs8PNgDmoiIqDgmvuZAEPT1vYLMFqqancSNhyxGtWr2UKu1AAB7eznmzAnGoEGNDNqXERERUQF+n24G5KnnIcu9AwAFWxTL7UWOiCyFs7MNVqwIw4sv1sCBA0MweHBjJr1ERESPwcTXDBh0c2CZAz3Bjz/+g4SETIOx1q19sHv3QPj5sXsDERHRkzDxNQNMfOlpMjPz8fbbe/DWWz9h4sQYaLU6g+s5y0tERPR0THxFJs25C0XK7wAAjVtj6Bx8RY6IzM3p04kICfkfNm++CAA4diwesbE3RI6KiIjI8nBxm8iUCbH6y/mc7aViNBodFi/+DYsWnYRWKwAAHB2VmD8/BN27+4kcHRERkeVh4isyZXyM/jLLHKjQzZvpGD8+BmfO3NGPtWzpjZUrw1CnjouIkREREVkuJr5i0uZBeecQAEBnWw0azxdFDojEJggCtmy5hMjIg8jKUgEAZDIJpkxpg3ffbQ25nNVJREREz4qJr4iUd3+BRJMDAMj3CeVubYQ//kjC228XLXasU8cFq1aFoUULbxGjIiIiqhqYaYmI3RzoUc2a1cDQoU0AAAMGNMShQ0OY9BIREZkIZ3zFIghQxu8tuChVQu0dLHJAJAa1Wgu5XGrQjmzWrI7o0uU5LmAjIiIyMc74ikSW/jdk2XEAALVXBwgKJ5Ejosp27VoqwsI26duUFXJwUDDpJSIiqgBMfEViU6zMIb9WmIiRUGUTBAHffHMBnTv/Dxcu3ENk5EHcuJEmdlhERERVHksdRKKMYxsza5ScnIPJk/dhz57r+rGaNR2Rl6cRMSoiIiLrwMRXBJLc+5AnnwEAaFwbQOdYR+SIqDIcPHgTERF7ce9etn5s2LAmmDWrI+ztFSJGRkREZB2Y+IpAmRALCQp24uJsb9WXl6fBp5/+ijVrftePeXjY4csvuyE0lLW8RERElYWJrwgM6nuZ+FZpN26kYcSIXbh0KVk/FhJSF0uWhMLLy0HEyIiIiKwPE9/KplVBkXgAAKCzcYfGs6XIAVFFcnW1RVpaLgDAxkaGmTNfxqhRLxi0LyMiIqLKwa4OlUyR9CukmiwAgMqnGyCViRwRVSR3dzssXdodDRtWQ2zsILz1VjMmvURERCJh4lvJlAZlDmxjVtXs3XsdSUnZBmOdOtXB/v2DEBTkKVJUREREBDDxrVyCoK/vFSRyqL1DRA6ITCU7W42pU/djyJBovPvuXgiCYHC9TMa3GhERkdj4r3ElkmVcgSzrJgBA7dUegtJF3IDIJM6fT0KXLv9DVNQFAMCBAzcRG3tD5KiIiIjoUVzcVomU8dy0oirRanVYseIM5s8/Do1GBwCwt5djzpxgdOtWT+ToiIiI6FFMfCsR25hVHQkJmZgwIQbHj8frx5o29cLq1eHw83MTMTIiIiJ6HCa+lUSSlwL5/d8AABqXAOicuXGBpdq58wqmTduPjIx8AIBEAkREtMK0aW2hVLJLBxERkbli4ltJlIn7IBEKvg5X+XC211KdOZOI0aN/1v/s4+OEFSu6o127WiJGRURERGXBxW2VpHgbM1UttjGzVC1aeKNfvyAAQK9egTh0aAiTXiIiIgvBGd/KoFNDmfBwtzalK9TVWoscEJWVTidAKjXccGL+/BB07VoPr70WwM0oiIiILAhnfCuB4t4JSNUZAACVdxdAys8bluDmzXS88sr3iI6+YjDu5GSDXr0CmfQSERFZGGZglUAZV6yNGcsczJ4gCNiy5RIiIw8iK0uFq1f3o0ULb/j4OIkdGhEREZUDE99KoNTv1iYrmPEls5Wenodp0/YjOvof/Zirqy1SU3OZ+BIREVk4Jr4VTPbgKuSZ1wEA6uptIdiwx6u5OnYsDhMmxCAxMUs/NmBAQ8ydGwxHR6WIkREREZEpMPGtYMq4Yt0cuGmFWVKptFiw4DiWLz8NQSgYc3GxwRdfdEXPngHiBkdEREQmw8S3ghm0MfNlfa+5uXkzHW+99RMuXLinH2vf3hfLl4extIGIiKiKYeJbgST5aVDcOw4A0DjVg9bZX+SI6FF2dnIkJGQCABQKKSIj22P8+BYlWpgRERGR5WM7swqkTDwAiaAF8LDMge2vzI6XlyMWL+6G5593R0zMQEyc2JJJLxERURXFGd8KxDIH83PkyC00blwd7u52+rHu3f3QuXNdKBQyESMjIiKiimYWM77ffvstQkJC0LhxY/Tr1w8XLlx47G23bNmCN998Ey1btkTLli0xfPjwJ95eNDoNlAmxBRcVzlBXbytyQNYtL0+Djz46jH79tmHq1P0QClexPcSkl4iIqOoTPfHdvXs35s2bhwkTJmDHjh2oX78+Ro0ahZSUlFJv/9tvv6FHjx6IiorC999/j5o1a2LkyJFISkqq5MifTHH/FKSqdAAPd2uTsR2WWP78Mwmhod9hzZrfAQA//XQVBw/eFDcoIiIiqnSiJ77r169H//790bdvX/j7+2PWrFmwtbXFtm3bSr39F198gUGDBiEoKAh+fn6YM2cOdDodTpw4UcmRP5kyvthubb6hIkZivXQ6AWvW/I6WLb/CxYvJAAAbGxnmzg1GSEhdcYMjIiKiSidqja9KpcLff/+NMWPG6MekUinatWuHc+fOlekxcnNzodFo4OLiYtSxJZKKXWtWtFubFGrfblzXVsnu3s1CRMReHDp0Sz/WoIEnVq8OR1CQp4iRUUUqfJ/x/WYdeL6tC8+3damo8yxq4puWlgatVgsPDw+DcQ8PD9y4caNMj/H555+jevXqaNeunVHHdnevwB6t6deBjCsAAEnNtvDwrVtxx6ISfvzxCkaN+hHJyTn6sUmT2mDu3M6wteV6Tmvg4cEezNaE59u68HxTeVh0FrB27Vrs3r0bUVFRsLGxMeq+qamZ0OkqJi7biz/A8eHl7BpdkZucWTEHohJ++y0Br722Wf9z9eoO2LixN158sTqysnKRlfWEO5PFk0gK/lFMScnEI+sXqQri+bYuPN/WRSqtmElKURNfNzc3yGSyEgvZUlJS4On55K+jv/76a6xduxbr169H/fr1jT62IKDC3jjK+L36y/m+YXyDVqKWLb0RHu6P3buvoXt3P3z5ZTcEBlZHcjL/UFqTinx/k/nh+bYuPN/WoaLOsaiL25RKJRo2bGiwMK1woVqzZs0ee7+vvvoKK1euxLp169C4cePKCLXMJKoHUCT9CgDQOtaB1sX4pJzK7tG2ZBKJBIsWdcXSpaH45pue8PCwe8w9iYiIyNqI3tVhxIgR2LJlC3bs2IHr16/j448/Rm5uLvr06QMAeO+99/DFF1/ob7927VosWbIEc+fOhY+PD+7fv4/79+8jOztbrKdgQHHnICQ6NQAgn7u1VaiEhEz06bMVsbGG9eDu7nYYMKAhJHztiYiIqBjRa3zDw8ORmpqKpUuX4v79+wgKCsK6dev0pQ537tyBVFqUn3///fdQq9WIiIgweJyJEyfi7bffrtTYS2MTV7yNWXcRI6naoqOvYOrU/cjIyMeVKyk4dGgovLwcxA6LiIiIzJhEePS7YiuRklIBi9t0Wnhs9Yc0PwU6uSNS3vgXkBm36I6eLDMzHx9+eAibN1/Uj/n4OOGbb3qiSROvEreXSABPTyfW+FoJnm/rwvNtXXi+rYtUWjEdPESf8a1K5MlnIM0vWKin9g5h0mtip08nYty4GNy+naEf69UrEAsXdoarq62IkREREZElYOJrQjYPN60AHtb3kkloNDosWnQSixf/Bq224GO+o6MS8+eHoF+/INbyEhERUZkw8TUh/W5tkEDl003kaKqG27czMHbsbpw5c0c/1rKlN1auDEOdOsbt1kdERETWjYmviUizbkOe/jcAQOP5IgS76iJHVDVIpRL8808qAEAmk2DKlDZ4993WkMtFb0hCREREFobZg4koi5U5qHzDRIykavH1dcZnn3VGnTou2LXrDUyd2pZJLxERET0TzviaiE18URsz1vc+u5Mn49GwYTU4ORUtDOzduz7Cwvxha8tfVyIiInp2nDozBXUWFHePAgC09r7QujUSOSDLo1JpMXv2Ubz22hZERh4qcT2TXiIiIiovJr4moLxzCBKdCgCg8g3lbm1GunYtFeHhm7Bs2WkIArBly0UcOnRT7LCIiIioiuE0mgkY1veyzKGsBEFAVNSfmDHjMHJzNQAAhUKKyMj26NixjsjRERERUVXDxLe8BB1s4vcWXJTbQ1Wzo8gBWYbk5BxMnrwPe/Zc14/5+7th9erwUndgIyIiIiovJr7lJE/5HdK8ewAAVY1OgIw7iD3NwYM3ERGxF/fuZevHhg9vio8/fhn29goRIyMiIqKqjIlvORmUOdRiG7OnOXkyHgMGbNf/7OFhhy+/7IbQUD8RoyIiIiJrwMVt5aSMK5b4+oSKGIllaN3aByEhdQEAISF1cfjwUCa9REREVCk441sO0uwEKNIuAADUHs2gs68hckTmTyKRYMmSUOzefQ3DhzeBhB0wiIiIqJJwxrcc2M3hyZKSsvHmmzvwyy+3Dca9vBwwYkRTJr1ERERUqTjjWw5MfB9vz57rmDQpFikpufj77/s4dGgI3N3txA6LiIiIrBgT32elyYHy7hEAgNauJjTuL4gbj5nIzlZj5swjiIq6oB/T6QTExT1g4ktERESiYuL7jJR3jkCizQPA3doKnT+fhHHjduPatTT9WFiYHxYt6gYPDya9REREJC4mvs/IsMzButuYabU6rFhxBvPnH4dGowMA2NvLMWdOMAYNasRaXiIiIjILTHyfhSDoE19BZmvVu7UlJmZiwoQYHDsWrx9r2tQLq1eHw8/PTcTIiIiIiAwx8X0G8tTzkOXeAQCoanQE5PYiRySevDwNzp1LAlBQ7RER0QrTprWFUikTOTIiIiIiQ2xn9gyU8TH6y9bezaFePTfMnRsMHx8n7NjRD9Ond2DSS0RERGaJM77PwLC+17p2a/v99zuoX98T9vYK/djAgQ3Rs2cAHB2VIkZGRERE9GSc8TWSNOcuFCnnAABqtybQOfiKHFHl0Gh0+OyzE+jR43t8/PEvBtdJJBImvURERGT2mPgaSZmwV3/ZWmZ7b95MR8+em/HZZyeg1QrYsOE8fv319tPvSERERGRGWOpgJIMyh1pVu42ZIAjYsuUSIiMPIitLBQCQySSYMqUN2rSxjpluIiIiqjqY+BpDmwflnUMAAJ1tNWg8moscUMVJT8/De+8dwM6dV/Rjdeq4YNWqMLRo4S1iZERERETPhomvEZR3f4FEkwMAyPcJBSRVs1Lk+PE4TJiwBwkJmfqxAQMaYu7cYNbyEhERkcVi4msEZVyxNmZVtMzh+PE49O69FYJQ8LOrqw0+/7wrevYMEDcwIiIionKqmlOWFUEQoIwvWNgmSJVQ1QwWOaCK0bq1D9q2Lajf7dChFg4fHsqkl4iIiKoEzviWkSz9b8hyCrblVdd4CVA4ihxRxZDJpFixIgw//vgPxoxpDqlUInZIRERERCbBGd8ysilW5pBfRXZrS07OwYgRP+K33xIMxn18nDBu3ItMeomIiKhK4YxvGRnu1mb5ie/BgzcREbEX9+5l488/7+HQoSFwcrIROywiIiKiCsMZ3zKQ5N6HPPkMAEDj2gA6xzoiR/Ts8vI0+O9/D2HAgO24dy8bAJCdrcb162kiR0ZERERUsTjjWwbKhFhIUNDmwJJney9evI9x43bj0qUU/VhISF0sWRIKLy8HESMjIiIiqnhMfMvAJr54fa/ltTHT6QSsW3cOs2cfRX6+FgBgYyPDzJkvY9SoFyCRsJaXiIiIqj4mvk+jzYci8SAAQGfjAY1nC5EDMk5SUhYiIvbi0KFb+rGgIE+sXh2OoCBPESMjIiIiqlxMfJ9CkXQMUk0WAEDl0w2QykSOyDhpaXk4fjxe//OYMc0xfXoH2Nry1BMREZF14eK2p1DGW3Ybs/r1PTFz5suoXt0Bmzf3wezZnZj0EhERkVViBvQkggCbwt3aJHKovTuLHNDT/fXXfTz/vBtsbIpO7ahRL+D114Pg6morYmRERERE4uKM7xPIMi5DlnUTAKD26gBB6SxuQE+g1eqwdOkpdOv2LebOPWZwnUQiYdJLREREVo+J7xMYbloRKmIkT5aQkIm+fX/AnDm/QqPRYdWqszh5MuHpdyQiIiKyIix1eAKDbYprmWcbs+joK5g6dT8yMvIBABIJEBHRCs2b1xA5MiIiIiLzwsT3MSR5KZAnnwIAaFwCoHOqJ3JEhjIz8/Hhh4ewefNF/ZiPjxNWrOiOdu1qiRgZERERkXli4vsYysR9kAg6AIDKzDatOH06EePHx+DWrQz9WK9egVi4sDNreYmIiIgeg4nvYyjjitf3mk8bs2PH4vD66z9Aqy3YQtnRUYn580PQr18Qd2AjIiIiegIubiuNTg1l4v6Ci0pXqKu1FjmgIq1aeaNpUy8AQMuW3jh0aAj692/ApJeIiIjoKTjjWwpF0nFI1Q8AACqfroDUfF4mhUKGlSvDEB39D95+uyXkcn52ISIiIioL88nozIhhGzPxyhzS0/PwwQcHMW7ci/pZXgCoV88NkyaZzyw0EVFVIggCdDotdDqd2KFQMRIJkJeXB7VaBUEQOxoyBZlMDqm0cifwmPg+ShD02xQLEhlU3l1ECePYsThMmBCDxMQsXLiQhP37B8PeXiFKLERE1kKjUSMjIxVqdZ7YoVApUlOl/EBSpUjg5lYNNjZ2lXZEJr6PkD24BnnmDQCAunpbCDZulXp8lUqLBQuOY/ny0/pPtMnJObhyJQXNmrE3LxFRRREEASkpdyGVSuHi4gmZTM71E2ZGJpPoF3eTZRMEAVlZGUhLu4/q1X0rbeaXie8jDMscKreN2bVrqRg7djcuXLinH+vQoRaWL+8Ob2+nSo2FiMjaaDRqCIIOLi7VoFSyNaQ5ksul0Gg441tVODq6IDU1F1qtBlKpslKOycT3EYVlDkDl1fcKgoCoqD8xY8Zh5OZqAAAKhRSRke0xfnwLSKWccSAiqiwSCRcNE1UGMb5RYeJbjCQ/DYp7JwAAGic/aF2er/BjJifnYPLkfdiz57p+zN/fDatXh6NJE68n3JOIiIiIjMGPtcUoE/dDImgBVN5sb2JiJvbv/1f/8/DhTbF//2AmvUREREQmxsS3GDHamDVp4oUPPmgHDw87bNz4GhYu7MzuDURERJXk9u2b6NkzFDk52WKHUqWo1Wq8/vqruHz5otihGGCpQyGdBsqEfQUXFc5Qe7WrkMNcvZqKunVdoFDI9GMTJrTAwIGNUK2afYUck4iIqrZPP/0YMTE/AQBkMhmqV/dCcHBnjBo1FjY2Nga3PXbsKDZt2ogrVy5Dp9Piuef80KdPP4SHv1ricQ8fPoAfftiMq1evQKfTwdvbB506dUbfvv3h7OxSKc+toq1evQJ9+/aHvb2D2KFUmG3btmDTpo1ITU2Bn9/zmDRpGho0aPTE+2zZ8h127PgBSUlJcHV1RadOIRgzZmKJ3ycA2LhxA9asWY5+/QbinXemAAAUCgUGDhyMVauWYcmSVRXyvJ4FZ3wfUtz/DVJVOgAU9O6VmnbWVacTsHbt7wgJ2YhFi34zuE4mkzLpJSKicmnduh2io/dgy5ZovP32ZERHb8fXX68xuM0PP3yPyMgpaNy4Kdau3YBvvvkenTt3w+efz8Py5V8a3HbNmhWYOfNDBAU1xOefL0VU1GZMnPgurl37B3v27K6056VWqyvsse/evYvjx4+WmvQboyJjLK8DB2KxfPlijBjxH3z99f/g7x+AyZPfRlpa6mPvExu7B6tXL8eIEaPx7bdb8cEHH+HAgX1Yu3ZFidteuvQ3fvxxO/z8Sq6L6to1DBcu/IEbN66XuE4snPF9yKDMoZZpyxySkrIQEbEXhw7dAgAsXvwbunZ9Ds2b1zTpcYiIyHoplQp4eHgCALy8amDv3lY4c6ZooiUp6S6WL/8S/foNxJgxE/TjAwcOhkIhx5dffo7g4C5o2LARLl78Cxs3rkdExBT07z9Qf9uaNb3RsmUbZGZmPjaOe/eSsGLFEpw6dRJqtQp16jyHyZPfR8OGjfDppx8jKysT8+Z9ob/9kiVf4OrVK1i+fC0AYOLE0ahXzw8ymRyxsbtRr54/PDw8odPpMHfuAv39NBoNXnstFBMnTkJY2CvQ6XT49ttv8OOPO5CSkoJatWpj+PBRCA5+/EZUBw/ug79/AKpVq64fy8hIx6JFC3H+/DlkZj6Aj48vhgwZga5di3KD0mJctmwNbty4hhUrluLChXOwtbVDq1at8fbbU+Dq6goAOHnyOL755mv8++91SKUyNGrUGO+8MxU+Pr6PjbG8vv/+W7z6ai/06NETADBtWiROnPgVP/30I4YMGV7qff766zwaN26Kbt0KnnPNmt7o0iUUFy/+ZXC7nJwczJr1Ed57bzq++ebrEo/j7OyMxo2b4sCBWNSrN860T+wZMfF9qGi3NilU3l1N9rgxMdcwefI+pKTk6sf+859maNCgmsmOQUREFUd5cwcczn8KiTqr0o4pKByR/cJ/oarT65nuf+PGNfz11wV4eRVNsBw+fAAajQYDBw4pcfvXXuuLNWtWYv/+vWjYsBFiY/fAzs4effr0K/XxnZxK7y2fk5ODiRNHo1q16pg/fxE8PDxw5cplCIJxvXdjYn5G7959sWpVQTIVHx+Pjz56Hzk5Ofoey7/9dgJ5eXno2DEYALBx43rExsZg6tRI+PrWwvnz5zB79gy4urqhWbMXSz3OhQvnUL9+kMGYSqVCYGAQBg8eBnt7B5w48SvmzJkJHx9fg/KAR2PMzMxERMQ4vPpqL0RETEZ+fh5WrVqGGTM+wNKlqwEAeXm5GDBgEPz8nkdubg7WrVuNDz+civXrv3vsBg5RUf+HjRvXP/H12rhxK2rUKLnJlVqtxj//XMaQISP0Y1KpFC1atMLff1947OM1atQUsbExuHjxLzRo0AgJCfE4efIYQkPDDW63aNECtGvXHi1bti418QWAoKCGOH/+3BPjr0xMfAFIH1yHPOMfAICmWmsIth7lfszsbDVmzjyCqKiiX6zq1R2wbFkogoPrlvvxiYioctj/vUT/b0RlH9eYxPf48V/RtetL0Gq1UKlUkEqlmDTpPf31cXG34ejoCE9PzxL3VSgU8Pb2QVxcwTeT8fG34e3tA7ncuDRh3749SE9Px7p1UfoaYF/fWkY9BgDUqlUL48e/o//Z29sXdnZ2OHLkILp2Ddcfq0OHl2Fv7wCVSoWNG9fjyy9XolGjJgAAHx9fXLjwB6Kjtz828b179y7q129gMFatWnW8+WbRh4PXXx+AU6dO4uDB/QaJ76MxbtiwDgEBgQaz6ZGRM9CnTw/cvn0LtWvXQadOnQ2OFRk5E6+80gU3b95AvXr+pcbYq1dfhIQ8eUKutHMKFMxea7VauLu7G4y7u7vj1q2bj328bt26IyMjHePHvwVBEKDVatGrV18MHTpSf5v9+/fin38u46uvop4SWzUkJd194m0qExNfADbFyhzyTdDN4fz5JIwduxvXr6fpx7p398Pixd3g4VF5+1ETEVH55TR6Fw5/zKn0Gd+chu88/YbFNGv2IqZOjURubi62bPkOMpmsRKJV5uM/467AV6/+g4CAwHIvfAsMNJyFlcvlCA7uir17Y9C1azhyc3Px669H8PHHcwEA8fFxyMvLw6RJEwzup1ar8fzzgY89Tn5+HpRKwx3DtFotNm5cj4MH9+H+/fvQaNRQqVSwsTHcze/RGK9du4rffz+Drl1fKnGchIR41K5dB3Fxt7Fu3WpcvPg3MjLS9TPhSUl3H5v4Oju7VPpCwt9/P4ONG9djypQP0KBBI8THx2HJks+xYcM6DB/+FpKS7mLJki+wePGKUhe7FWdjY4O8vLxKivzpmPgCUMbv1V8ubxuzo0dv4403tuu3VLS3l2P27E4YPLgx93wnIrJAqjr/396dh0VZtQ8c/86wKigiIJiZa4CyJKbiAhqSQhiWlkaoiLu4hcsrmpa4Yrkh4IJLFmaaJeCG1qv9NH1RSk1Tc3nDBVwyEEkRZJv5/eHr1ASogwjG3J/r4rrizHme5344jdc9Z+7nnDfLXXJQmWrUqKGZXZ069UOCg99lx45EXn/9TQAaNnyBnJwcMjMzsLbWLrcrLCzk2rUrtG7dRtP355+PU1RUpNOs76OSIIVCgfpvWXVRUVGJfqamJSeJunf3ZcyYEdy6lcWPP6ZgYmJC+/b3V2DKy7tfTvjxx5Fa9bpwfza7LHXq1ClRr/zFF+v56quNjBs3kaZNm1OjRg2iohZRVKT9ANvfY8zLy6NTJ09CQsaVuM6D2uuwsPHY2dUnLGwa1tY2qFQqgoLeobCw5N/ggScpdbCwqIOBgQFZWdoPsmVlZWFlVfa322vWrMTHxw9//zcBaNasOffu5fHxx3MJChrMuXNnuXUriyFD+muOKS4u5sSJn4iP38x33yVjYHB/9arbt//Q1Dg/C/Q+8VUU3MboxkEAis0bU2zh+ETna9fuOezt6/LLL5m89JItK1f60ayZZUWEKoQQQjwWpVLJgAGDiIlZQrduvpiYmNKlizcrVkSzcePnjB07Xqt/YuIW8vLyePVVHwC6dfPl6683ER//ldbDbQ/cuXOn1Drf5s1fZMeORG7f/qPUWco6dSy5eFH7Cf9ffz2HgcGj0xEXl5ewtbVl795vOXw4GS+vVzVJeZMmTTA2NubGjd/KLGsozYsvOnDp0gWttpMnT+Dh0UVTz6pSqUhLS6NJkyYPPZe9vQP793+HnV39Uj8s/PFHNmlplwkLm85LL7kBcOLE8UfG+CSlDkZGRtjbO3L06A907vyK5n6OHv2R3r37lnm+e/fulZise1CDrFaradOmLXFxm7RenzdvFo0aNaJfv4GapBfg4sVU7O3LnnWvbHqf+Bpd24tCff+TVv7zPvCEs7ImJoasXOlHQsI5Jk5sj7GxwaMPEkIIISqYl9erLF8exZYtXxEYOAA7OztGjRpHTEwkxsbG+Pr2wNDQkAMH9rFq1XICAvrj5HS/htXJyZnAwCCWLYskM/N3Onf2wtrahitX0klM3IKra6tSE+JXX/UhLu4Tpk6dxIgRo7Gysua//z2HtbUNzs6uvPxyWzZuXM+uXTtwdnbl2293ceFC6kPLEf6qe3dfEhPjSU+/TFTUn0u11axpRkBAf6KjF6NWq3F1bUVOTg4nTx7HzMyc1157vdTztWvXgY8+mkNxcbEmWWvYsCH/9397OXnyBLVq1ebLLzdw69bNRya+b73Vl+3bEwkPn0a/fkHUrm3BlSvp7N37LWFh06lVqzYWFhZs2xaPlZU1N278xsqV0Y+85yctdQgI6MfcueE4OrakRQsnNm/+gry8PHr0+HMJt9mzP8TGph4jR44BoFMnT7788gvs7R3+93BbOmvWrKRTp84YGBhQs6ZZidIMU1NTateuU6L9xInjDB06stzxVzS9T3xNtHZre02nY+/cyWfGjP0MH94aR8c/P205OlozdWrpn76EEEKIymBoaEjv3n354os4evV6mxo1atC3byDPPdeAjRs/5+uvN1FcrKJJk6ZMnDhFs9zVA6NGjcPBoQUJCV+RmBiPWq3iueeex8vLu8xE0sjIiCVLlhETs4R//es9iouLady4KRMm3H/Izt29A8HBQ1mxIpqCgnx69OiJr28PUlN/fax78vF5jU8/XYudXX1cXV/Sem3YsBDq1LFk/fp1XLt2FXPzWtjbOxIUNKiMs0H79h0xMDDgyJEfcHfvAMDAgUO4du0qEyaMxdTUlJ49e+Hp+Qp37z68xtva2oYVK9ayYkU048ePobCwADu7+ri7d0CpVKJQKAgPn8fSpQsJCnqHhg0bERo6ibFjRzzWvZeXt3d3srNvsWbNSrKybtK8uT2LFkVTt+6fpQ43bvymtarEwIFDUCgUrF69goyMDOrUqUOnTp0ZPnyUTtc+depncnJy8PIqX63506BQ/73YRk/cvHkHVVExVl81R5l/E5WhOTffuQgGD69PeuDHH68xatQuLl/+g5Ytrfnmm0BMTPT+c8QzR6EAa+taZGbeKffDGuKfQ8Zbv1T0eBcWFnDz5nWsrOpjZGT86ANEpTM0VGqeoakoW7Zs5j//+Z7Fi2Mq9LwCPvxwKs2bv6i1GsRfPew9p1SClVXpy+Y9Cb3euc0w8wjK/JsAFD7n/VhJb1GRigULDtGz55dcvvwHAGlpt/nll8ynGqsQQgghKt4bb/TmpZfcyM29W9WhVCuFhYU0bdqMd94JrOpQtOj1FKXJ/zatgMdbxuzSpWxGjdrFkSPXNW1t2z7H8uWv0ahR9dizXAghhNAnhoaGDBw4pKrDqHaMjIwIDh5a1WGUoNeJ74NtitUoKGjQvcx+arWazZvPMHXqd+TkFABgYKBg4sT2hIa6Y2io1xPnQgghhBD/CHqb+Cpy0jHM/gWAIus2qGuUvoVwdvY9Jk/eS2LiOU1bo0YWrFjxGm3aPFcpsQohhBBCiCent4mv8dU9mv9+2KYV589nsW3bn1tVBgQ4MW+eF+bm8uCDEEJUR3r6zLcQla4q3mt6+x39XxPf/IZlL2PWrt1zhIa2w8LChDVrXicqykeSXiGEqIYerONaUJBfxZEIoR+Ki+/vo/DXpdSeNr2d8TX6PRmA4prPU1zHSdN++fIfPP98LQwM/hyEiRPbM3CgK/XrV/yyGkIIIZ4NSqUBNWqYk5NzCwBjYxPZav4Zo1IpKC6WGfnqQK1WcedONsbGpiiVlbfZl94mvgrV/YfUChr6wv/2Do+LO8mHH+5j4sT2jBvXTtPXyMhAkl4hhNADtWvXBdAkv+LZolQqUakqdh1fUXUUCiW1a9et1A+Yepv4PlDwvC+ZmblMmPBvdu++v3/4/PnJeHk1xsWlXhVHJ4QQojIpFAosLKyoVctS8zWseDYoFGBpacatW3dlg5pqwtDQqNK/VdHrxFdtWJPdZxozLnQ9v//+58LV/fo506yZZRVGJoQQoioplUqUSnme41miUICpqSlGRoWS+IpyeyYebtuwYQNdu3bFxcWFPn368PPPPz+0/65du/D19cXFxQV/f3/279+v8zXvFRoy7psgAgJ3aJJeK6sarF//BgsWvErNmkbluhchhBBCCPFsqvLENykpiYiICEaPHk1CQgKOjo4MGTKEmzdvltr/2LFjTJw4kbfffpvExES8vb0ZPXo058+fL7V/WV5ZEUzMLjvN7127NmbfviB8fJo90f0IIYQQQohnU5UnvuvWraNv37689dZbNG/enJkzZ2JqasqWLVtK7R8XF4enpydDhw6lWbNmhIaG0rJlSz7//HOdrvvLjfsbVpiYGDBvnhcbN/bC1tbsie9HCCGEEEI8m6q0xregoIDTp08zYsQITZtSqaRjx4789NNPpR5z/PhxgoODtdo8PDzYs2dPqf3LUquWMY6OVkRGdsfBwUrn2MU/w4OaeaUSqQnTAzLe+kXGW7/IeOuXp/XMW5Umvrdu3aK4uBgrK+3E08rKigsXLpR6TGZmJtbW1iX6Z2Zm6nTtq1cn6has+EerW1eWo9MnMt76RcZbv8h4iydR5aUOQgghhBBCVIYqTXwtLS0xMDAo8SDbzZs3S8zqPmBtbV1idvdh/YUQQgghhIAqTnyNjY1xcnLi0KFDmjaVSsWhQ4dwc3Mr9ZhWrVpx+PBhrbbk5GRatWr1NEMVQgghhBD/cFVe6jBo0CA2b95MQkICqamphIeHk5eXR+/evQGYPHkyixYt0vQPCgriwIEDfPLJJ6SmphIdHc2pU6fo379/Vd2CEEIIIYT4B6jyndv8/PzIysoiKiqKjIwMWrRowZo1azSlC9evX0ep/DM/b926NQsXLiQyMpLFixfTuHFjli1bhr29fVXdghBCCCGE+AdQqNWyKIgQQgghhKj+qrzUQQghhBBCiMogia8QQgghhNALkvgKIYQQQgi9IImvEEIIIYTQC9Uy8d2wYQNdu3bFxcWFPn368PPPPz+0/65du/D19cXFxQV/f3/2799fSZGKiqDLeG/evJnAwEDatm1L27ZtCQ4OfuT/H+LZouv7+4GdO3fi4ODAqFGjnnKEoiLpOt63b99m5syZeHh44OzsjI+Pj/yb/g+i63h/+umn+Pj44OrqSpcuXZg3bx75+fmVFK14Ej/++CMjR47Ew8MDBwcH9uzZ88hjUlJS6NWrF87OznTr1o34+Hidr1vtEt+kpCQiIiIYPXo0CQkJODo6MmTIkBK7wz1w7NgxJk6cyNtvv01iYiLe3t6MHj2a8+fPV3Lkojx0He+UlBR69OhBXFwcmzZton79+gwePJgbN25UcuSiPHQd7weuXLnCRx99RJs2bSopUlERdB3vgoICBg0axNWrV1m6dCm7d+9m9uzZ2NraVnLkojx0He/t27ezaNEixowZQ1JSEnPnziUpKYnFixdXcuSiPHJzc3FwcGDGjBmP1T89PZ0RI0bg7u7O1q1bGThwINOnT+fAgQO6XVhdzbz99tvqmTNnan4vLi5We3h4qGNjY0vt/95776mHDx+u1danTx/1Bx988FTjFBVD1/H+u6KiIrWbm5s6ISHhKUUoKlJ5xruoqEj9zjvvqDdv3qwOCwtTh4SEVEaoogLoOt5ffPGF2tvbW11QUFBZIYoKpOt4z5w5Ux0UFKTVFhERoQ4ICHiqcYqKZ29vr/73v//90D4ff/yxukePHlptoaGh6sGDB+t0rWo141tQUMDp06fp2LGjpk2pVNKxY0d++umnUo85fvw4HTp00Grz8PDg+PHjTzNUUQHKM95/l5eXR1FRERYWFk8rTFFByjvey5Ytw8rKij59+lRGmKKClGe8v/vuO1q1asWsWbPo2LEjr7/+OitXrqS4uLiywhblVJ7xdnNz4/Tp05pyiPT0dPbv30+XLl0qJWZRuSoqX6vyndsq0q1btyguLsbKykqr3crKigsXLpR6TGZmpmaXuL/2z8zMfGpxiopRnvH+u4ULF1KvXj2tf2zFs6k8433kyBG+/vprEhMTKyFCUZHKM97p6ekcPnwYf39/Vq1aRVpaGjNnzqSoqIgxY8ZURtiinMoz3v7+/ty6dYvAwEDUajVFRUUEBAQwcuTIyghZVLLS8jVra2tycnK4d+8epqamj3WeajXjK4QuVq1aRVJSEjExMZiYmFR1OKKC5eTkMHnyZGbPnk3dunWrOhxRCdRqNVZWVsyePRtnZ2f8/PwYOXIkmzZtqurQxFOQkpJCbGwsM2bMID4+npiYGPbv38+yZcuqOjTxDKtWM76WlpYYGBiUKIS/efNmiU8JD1hbW5eY3X1Yf/HsKM94P7B27VpWrVrFunXrcHR0fJphigqi63inp6dz9epVQkJCNG0qlQqAli1bsnv3bl544YWnG7Qot/K8v21sbDA0NMTAwEDT1rRpUzIyMigoKMDY2PipxizKrzzjvXTpUnr27KkpY3JwcCA3N5cPP/yQkJAQlEqZ26tOSsvXMjMzMTc3f+zZXqhmM77GxsY4OTlx6NAhTZtKpeLQoUO4ubmVekyrVq04fPiwVltycjKtWrV6mqGKClCe8QZYvXo1y5cvZ82aNbi4uFRGqKIC6DreTZs2Zfv27SQmJmp+unbtiru7O4mJidjZ2VVm+EJH5Xl/t27dmrS0NM0HHIBLly5hY2MjSe8zrjzjfe/evRLJ7YMPPWq1+ukFK6pEReVr1SrxBRg0aBCbN28mISGB1NRUwsPDycvLo3fv3gBMnjyZRYsWafoHBQVx4MABPvnkE1JTU4mOjubUqVP079+/qm5B6EDX8V61ahVLly5l3rx5NGjQgIyMDDIyMrh7925V3YLQgS7jbWJigr29vdZP7dq1MTMzw97eXhKhfwBd39/vvvsu2dnZzJ07l4sXL7Jv3z5iY2Pp169fVd2C0IGu4+3l5cXGjRvZuXMn6enp/Oc//2Hp0qV4eXlpzfqLZ9Pdu3c5c+YMZ86cAe4vO3nmzBmuXbsGwKJFi5g8ebKmf0BAAOnp6Xz88cekpqayYcMGdu3aRXBwsE7XrValDgB+fn5kZWURFRVFRkYGLVq0YM2aNZqvSq5fv671CbF169YsXLiQyMhIFi9eTOPGjVm2bBn29vZVdQtCB7qO96ZNmygsLGTcuHFa5xkzZgxjx46t1NiF7nQdb/HPput4169fn7Vr1xIREUHPnj2xtbUlKCiIYcOGVdUtCB3oOt4hISEoFAoiIyO5ceMGdevWxcvLi/Hjx1fVLQgdnDp1iqCgIM3vERERAPTq1Yv58+eTkZHB9evXNa83bNiQ2NhYIiIiiIuLw87Ojjlz5uDp6anTdRVq+T5ACCGEEELoAZkaEUIIIYQQekESXyGEEEIIoRck8RVCCCGEEHpBEl8hhBBCCKEXJPEVQgghhBB6QRJfIYQQQgihFyTxFUIIIYQQekESXyGEEEIIoRck8RVCCCA+Pp42bdpUdRjl5uDgwJ49ex7aZ8qUKYwaNaqSIhJCiGdPtduyWAihv6ZMmUJCQkKJ9m+//ZZGjRpVQUR/io+PZ+rUqQAoFArq1atHp06dmDRpElZWVk98/oMHD2JhYQHc3/Pe29ubxMREWrRooekzbdo0nvZmndHR0cTExACgVCqpV68enTt3ZuLEidSpU+exzzNlyhRu377N8uXLn1KkQgh9JImvEKJa8fT01Oz5/kDdunWrKBpt5ubm7N69G5VKxdmzZ3n//ff5/fffWbt27ROf28bG5pF9atWq9cTXeRwvvvgi69atQ6VSkZqayvvvv8+dO3eIjIyslOsLIURZpNRBCFGtGBsbY2Njo/VjYGDAunXr8Pf3p1WrVnTp0oXw8HDu3r1b5nnOnj3LgAEDcHNzo3Xr1vTu3ZuTJ09qXj9y5AiBgYG4urrSpUsX5syZQ25u7kNjUygU2NjYYGtrS5cuXRgwYADJycncu3cPlUpFTEwMnTt3xtnZmTfeeIPvv/9ec2xBQQGzZs3Cw8MDFxcXvLy8iI2N1bz+11IHb29vAN58800cHBwYMGAAoF3q8OWXX+Lh4YFKpdKKMSQkRDMzDbBnzx569eqFi4sL3t7exMTEUFRU9ND7NDAw0Nxnx44d8fX1JTk5WfN6cXEx77//Pl27dsXV1RUfHx8+++wzzevR0dEkJCSwd+9eHBwccHBwICUlBYDr16/z3nvv0aZNG9q1a0dISAhXrlx5aDxCCPGAJL5CCL2gUCiYNm0aO3bsYP78+Rw+fJgFCxaU2X/SpEnY2dnx9ddfEx8fz7BhwzAyMgIgLS2NYcOG0b17d7Zt28aSJUs4evQos2fP1ikmU1NTVCoVRUVFxMXFsW7dOsLCwti2bRseHh6MGjWKS5cuAbB+/Xq+++47IiMj2b17NwsWLKBBgwalnverr74C4NNPP+XgwYNER0eX6OPr60t2drYmoQTIzs7mwIED9OzZE7if3IeFhREUFERSUhKzZs0iPj6elStXPvY9XrlyhYMHD2r+dgAqlQo7OzuWLl3Kzp07GT16NEuWLCEpKQmAwYMH89prr+Hp6cnBgwc5ePAgbm5uFBYWMmTIEMzMzNiwYQMbN26kZs2aDB06lIKCgseOSQihv6TUQQhRrezbtw83NzfN756enkRFRREcHKxpe/755wkNDWXGjBmEh4eXep5r164xZMgQmjVrBkDjxo01r8XGxuLv7685Z+PGjZk2bRoDBgwgPDwcExOTR8Z56dIlNm7ciLOzM+bm5qxdu5Zhw4bRo0cPAP71r3+RkpLCZ599xowZM7h+/TqNGjXi5ZdfRqFQlJn0wp+lHXXq1CmzBMLCwoLOnTuzfft2OnToAMA333yDpaUl7u7uAMTExDB8+HB69eoFQMOGDXnvvfdYsGABY8aMKfP658+fx83NjeLiYvLz8wG0ZpGNjIwYN26c5veGDRty/Phxdu/ejZ+fH2ZmZpiamlJQUKAV/9atW1GpVMydOxeFQgFAREQEbdu25YcffsDDw6PMmIQQAiTxFUJUM+7u7lrJbI0aNQBITk4mNjaWCxcukJOTo0nK8vLyNH3+atCgQUyfPp2tW7dqvq5/4YUXgPtlEOfOnWP79u2a/mq1GpVKxZUrVzTJ8t/duXMHNzc3VCoV+fn5vPzyy8yZM4ecnBx+//13WrdurdW/devWnD17FoBevXoxePBgfH198fT05JVXXnniRM/f358PPviA8PBwjI2N2b59Oz169ECpVGru89ixY1ozvI/6uwE0adKEFStWkJ+fz7Zt2zhz5gz9+/fX6rNhwwa2bNnCtWvXyM/Pp7CwEEdHx4fGe/bsWdLS0kr8nfLz80lLSyvPn0AIoWck8RVCVCs1atQosYLDlStXGDFiBO+++y7jx4/HwsKCo0ePMm3aNAoLC0tN4MaOHcvrr7/O/v37+f7774mKimLJkiV069aN3NxcAgICNLWzf1W/fv0yYzMzMyMhIQGlUomNjQ2mpqYA5OTkPPK+nJyc2Lt3L99//z3JycmEhobSsWNHoqKiHnlsWbp27cr06dPZt28fLi4uHDlyRGtmNjc3l7Fjx9K9e/cSxz5sVtvIyEgzBpMmTWL48OHExMQQGhoKwM6dO/noo48ICwvDzc0NMzMz1q5dy4kTJx4ab25uLk5OTixcuLDEa8/KA4xCiGebJL5CiGrv9OnTqNVqpkyZopnN3LVr1yOPa9KkCU2aNCE4OJgJEyawZcsWunXrRsuWLfn11191XiJNqVSWeoy5uTn16tXj2LFjtGvXTtN+7NgxXF1dtfr5+fnh5+eHj48PQ4cOJTs7u8QyYQ/qaYuLix8aj4mJCd27d2f79u1cvnyZJk2a4OTkpHm9ZcuWXLx48YmXggsJCWHgwIG8++672NracuzYMdzc3OjXr5+mz99nbI2MjEo8eOfk5MSuXbuwsrLC3Nz8iWISQugnebhNCFHtNWrUiMLCQtavX096ejqJiYls2rSpzP737t1j1qxZpKSkcPXqVY4ePcrJkyc1JQzDhg3jp59+YtasWZw5c4ZLly6xZ88eZs2aVe4YhwwZwurVq0lKSuLChQssXLiQs2fPEhQUBMC6devYsWMHqampXLx4kd27d2NjY0Pt2rVLnMvKygpTU1MOHDhAZmYmd+7cKfO6/v7+7Nu3jy1btuDv76/12ujRo9m6dSsxMTH897//JTU1lZ07d7JkyRKd7s3NzQ0HBwfNKhSNGjXi1KlTHDhwgIsXLxIZGam1YgZAgwYNOHfuHBcuXCArK4vCwkL8/f2xtLQkJCSEI0eOkJ6eTkpKCnPmzOG3337TKSYhhH6SGV8hRLXn6OjI1KlTWb16NYsXL6ZNmzZMmDCBsLCwUvsrlUqys7MJCwsjMzMTS0tLunfvrnkgy9HRkfXr1xMZGUlgYCBw/wEtPz+/cscYFBRETk4O8+fPJysri2bNmrF8+XLNQ3VmZmasWbOGy5cvo1QqcXFxYdWqVZoZ7L8yNDRk+vTpLFu2jKioKNq0acP69etLvW779u2xsLDg4sWLJRJfT09PVq5cybJly1i9ejWGhoY0bdqUPn366Hx/wcHBTJkyhWHDhhEQEMCZM2cYP348CoWCHj16EBgYqLV8W9++ffnhhx946623yM3NJS4uDnd3dz7//HMWLlzImDFjuHv3Lra2tnTo0EFmgIUQj0Whftrb+AghhBBCCPEMkFIHIYQQQgihFyTxFUIIIYQQekESXyGEEEIIoRck8RVCCCGEEHpBEl8hhBBCCKEXJPEVQgghhBB6QRJfIYQQQgihFyTxFUIIIYQQekESXyGEEEIIoRck8RVCCCGEEHpBEl8hhBBCCKEX/h9VoFDdt/KlrwAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 GradientBoostingClassifier 0.85 0.84 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" GradientBoostingClassifier | \n",
" 0.85 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 31
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = GradientBoostingClassifier\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"sgd_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"sgd_result_df"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"id": "6OgcMJtkDUHU",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"outputId": "fc5051e5-9fb5-45a9-9027-ac41ea757347"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACky0lEQVR4nOzdd3hU1dYG8Hdaeq9CaJKQEAihSAmICkFKgiKCIEgRxEs3SlOiVxBBmgrSi/ihcBVBaaKEXkQ6CIQuxUAIkJ6Qninn+2PISYYUMjCTk2Te3/P4OLPnnJmVOZmwsrP22jJBEAQQEREREVVzcqkDICIiIiKqCEx8iYiIiMgiMPElIiIiIovAxJeIiIiILAITXyIiIiKyCEx8iYiIiMgiMPElIiIiIovAxJeIiIiILAITXyIiIiKyCEx8iaqh0NBQTJ48WeowLM6gQYMwaNAgqcN4rEWLFiEgIAApKSlSh1LpBAQEYNGiRSZ5rjt37iAgIACbNm0yyfMBQHR0NIKCghAXF2ey5zS1cePG4f3335c6DKISKaUOgKiq2bRpEyIjI8X7CoUC7u7ueP755zFu3Dh4e3tLGF3llp2djdWrV2PHjh24ffs2lEolAgIC0LdvX7z22muQyWRSh/hY169fR1RUFF5//XXUqlVL6nAMaLVabNmyBVu2bMHVq1eRnZ0NLy8vtGnTBm+99RaaNGkidYhPbdu2bUhOTsaQIUOkDkVUkTHNnz8f3bt3h4+Pjzg2aNAgnDhxQrxvbW2NunXronfv3hg8eDDk8uJzXKmpqVi5ciX27duHu3fvwtbWFk2aNMHAgQPRsWPHEl87MzMT33//PXbt2oXY2FhotVrUqVMHL730EgYPHiz+7PvPf/6D3r1748qVK2jYsKGJ3wGip8PEl+gJRUREoFatWsjPz8fZs2exefNmnD59Gr///jusra0ljW3Hjh2VLolMSkrCkCFDcOPGDYSHh2PgwIHIy8vDrl278NFHH+HgwYP46quvoFAopA61TNevX8fixYvRunXrYonvd999J1FUQG5uLsaOHYtDhw6hVatWGDFiBJydnREXF4eoqChs3rwZBw4cwDPPPCNZjKbw+++/49q1a2ZLMqOjo43+HiwtJh8fH0RHR0OpNM0/tZcvX8aRI0fw888/F3vsmWeewfjx4wHok9rff/8ds2bNQmpqKsaNG2dw7M2bNzFkyBCkpKSgV69eaNKkCR48eIBt27Zh5MiReOedd/DRRx8ZnBMbG4shQ4bg3r176NatG958802oVCpcvXoVv/76K/bs2YOdO3cCABo1aoSgoCD83//9H+bOnWuSr53IVJj4Ej2hF198UZxB69OnD1xdXfHtt99i7969CA8PlzQ2KyurCn/NvLw8qFSqEmeXAOCjjz7CjRs3sHjxYnTq1EkcHzx4MObMmYP/+7//Q2BgIIYPH15RIQPQz0Lb2dmZ5LmkeN8LzJ07F4cOHUJkZGSxBGzs2LH4/vvvKzQeQRCQl5cHGxubCn3dJ6HT6aBWq2FtbW3SX1plMplJn2/jxo2oWbMmmjVrVuwxR0dHvPbaa+L9/v37IywsDGvXrkVERISYzKvVarz//vt48OABfvzxRzRt2lQ8Z8iQIZg4cSL+7//+D02aNBF/jmk0GowdOxbJyclYs2YNWrZsafDa48aNw7fffmswFhYWhkWLFiErKwv29vameguInhprfIlMpOAfg9jYWIPxGzduICIiAq1bt0aTJk3Qq1cv7N27t9j5Dx48wMyZMxEaGoqgoCC8+OKL+PDDDw3qMPPz87Fw4UJ07twZQUFBeOmllzB37lzk5+cbPFfRGt/z588jICAAmzdvLvaahw4dQkBAAPbv3y+OxcfHIzIyEu3atUNQUBC6d++OX3/91eC848ePIyAgAH/88Qfmz5+PF154AU2bNkVmZmaJ783Zs2fx119/4fXXXzdIegtMmDAB9erVw6pVq5CbmwugsD7yu+++w/fff4+OHTsiODgYAwcOxD///FPsOcrzPm/atAkBAQE4ceIEPvvsM7Rt2xYvvfQSACAuLg6fffYZunbtiuDgYLRp0wYRERG4c+eOwfkFtYuDBw9GQEAAAgICcPz4cQDFa3wL3qft27dj2bJl4i9Lb7/9Nm7dulXsa/jxxx/RqVMnBAcH44033sCpU6fKVTd8//59rF+/Hs8//3yJM6EKhQLDhg0rNtubkZGByZMno2XLlnjuuecQGRmJnJwcg2M2btyIwYMHo23btggKCkJ4eDh++umnYq8RGhqKESNG4NChQ+jVqxeCg4PFmcnyPgcAHDx4EAMHDkTz5s3RokUL9O7dG9u2bRPf3wMHDiAuLk5870NDQ8Vzy/v5CAgIwOeff47ffvsN3bt3R5MmTXDo0CHxsaI1vpmZmfjiiy/Ez2Xbtm0xdOhQXLx48bExlVbje+PGDbz//vsICQlBcHAwunbtivnz55f4fhS1d+9ehISElOuvOdbW1ggKCkJWVhaSk5PF8V27duGff/7Bf/7zH4OkF9B/n3z++edwcnIyeA927dqFK1euYOTIkcWSXgBwcHAoNqvcrl07ZGdn48iRI4+NlagiccaXyEQKFps4OTmJY9euXUP//v3h7e2N//znP7Czs0NUVBTGjBmDRYsWoXPnzgCArKwsDBgwADdu3EDv3r3RqFEjpKamYt++fYiPj4ebmxt0Oh1GjRqF06dPo2/fvvD19cU///yDH374ATExMVi6dGmJcTVp0gS1a9cW61KL2r59O5ydndG+fXsA+nKEvn37QiaTYcCAAXBzc8Off/6JTz75BJmZmcWSqqVLl0KlUmHYsGHIz8+HSqUqMYaCxLpnz54lPq5UKvHKK69g8eLF+Pvvv9GuXTvxsS1btiArKwtvvfUW8vLysHbtWrz99tvYtm0bPDw8jHqfC0ybNg1ubm4YM2YMsrOzAeh/QThz5gy6d++OZ555BnFxcVi3bh0GDx6MP/74A7a2tmjVqhUGDRqEtWvXYuTIkahfvz4AwNfXt8Svq8C3334LmUyGd955B5mZmVi1ahUmTpyIX375RTzmp59+wueff46WLVtiyJAhiIuLw5gxY+Dk5PTY8oQ///wTGo0GPXr0KPO4R33wwQeoVasWxo8fj0uXLuGXX36Bm5sbJk2aJB6zbt06NGjQAKGhoVAqldi/fz+mTZsGQRAwYMAAg+f7999/MWHCBLz55pvo27cvnn32WaOeY9OmTfj444/RoEEDjBgxAo6Ojrh8+TIOHTqEV199FSNHjkRGRgbu378v1tkXzCYa+/k4duwYoqKiMGDAALi6uhrUzBY1depU7Ny5EwMHDoSvry/S0tJw+vRp3LhxA40bNy4zppJcuXIFAwYMgFKpxJtvvgkfHx/cvn0b+/btK5Y8FhUfH4+7d++iUaNGpR7zqLi4OMhkMoOfSfv27QNQ+mfR0dERnTp1wubNm3Hr1i3UrVtX/AWy6Izy4/j5+cHGxgZ///13sc8fkaQEIjLKxo0bBX9/f+HIkSNCcnKycO/ePWHHjh1CSEiIEBQUJNy7d0889u233xZeeeUVIS8vTxzT6XTCm2++KXTp0kUcW7BggeDv7y/s2rWr2OvpdDpBEARhy5YtQsOGDYWTJ08aPL5u3TrB399fOH36tDjWsWNH4aOPPhLvf/3110Ljxo2FtLQ0cSwvL09o2bKlEBkZKY59/PHHwvPPPy+kpKQYvMa4ceOE5557TsjJyREEQRCOHTsm+Pv7C506dRLHyjJ69GjB399fSE9PL/WYXbt2Cf7+/sKaNWsEQRCE2NhYwd/fXwgODhbu378vHnfu3DnB399fmDlzpjhW3ve54Nr1799f0Gg0Bq9f0tdx5swZwd/fX9i8ebM4FhUVJfj7+wvHjh0rdvzAgQOFgQMHivcL3qewsDCD2H744QfB399fuHr1qiAI+mvRunVroXfv3oJarRaP27Rpk+Dv72/wnCWZOXOm4O/vL1y6dKnM4wosXLhQ8Pf3N7j2giAIY8aMEVq3bm0wVtL78s477widOnUyGOvYsaPg7+8v/Pnnn8WOL89zPHjwQGjevLnQp08fITc31+DYgs+AIAjC8OHDhY4dOxZ7PmM+H/7+/kLDhg2Fa9euFXsef39/YeHCheL95557Tpg2bVqx44oqLaaC7+GNGzeKYwMGDBCaN28uxMXFlfo1luTIkSOCv7+/sG/fvmKPDRw4UOjWrZuQnJwsJCcnCzdu3BDmzJkj+Pv7C8OHDzc49rXXXhOee+65Ml9r9erVgr+/v7B3715BEAShZ8+ejz2nJF26dBHeffddo88jMieWOhA9oSFDhoh/Ko+IiICtrS2WLVsmzs6lpaXh2LFjCAsLQ2ZmJlJSUpCSkoLU1FS0b98eMTExiI+PB6D/U2LDhg1LnBkp+LPmjh074Ovri/r164vPlZKSgpCQEAAQ/9xekvDwcKjVauzatUscO3z4MB48eCDW8QmCgF27diE0NBSCIBi8Rvv27ZGRkSH+ebdAz549y1XDmZWVBaDsmbCCxx4tl3j55ZcNOmUEBwejadOmOHjwIADj3ucCffv2LbaAqejXoVarkZqaijp16sDJyQmXLl167NdYll69ehnU/z5aFnPhwgWkpaWhb9++BguhXn31VTg7Oz/2+QveM2NrKfv162dwv2XLlkhLSzO4BkXfl4yMDKSkpKB169aIjY1FRkaGwfm1atXCCy+8UOx1yvMchw8fRlZWFoYPH16sLrY8f9o39vPRqlUr+Pn5PfZ5nZyccO7cuWLfQ08iJSUFJ0+eRO/evVGzZk2Dxx73NaamporxlOTmzZto27Yt2rZti7CwMHz33XcIDQ3FrFmzDI4rT83to5/FzMzMJ6rTdXZ2FuMmqixY6kD0hKZMmYJnn30WGRkZ2LhxI06ePGmQ3Ny+fRuCIGDBggVYsGBBic+RnJwMb29v3L59G126dCnz9W7duoUbN26gbdu2pT5XaRo2bIj69esjKioKffr0AaAvc3B1dRUTg5SUFDx48ADr16/H+vXrS3yeR/u+lredV8E/mllZWaX+w11acly3bt1ix9arVw9RUVEAjHufy4o7NzcXK1aswKZNmxAfHw9BEMTHHk3wjPVoklPwHjx48AAAcPfuXQBAnTp1DI5TKpWl/gm+KAcHBwCF7+HTxpWeni4+5+nTp7Fo0SKcPXu2WP1vRkYGHB0dxfulfT+U5zlu374NAGjQoIFRX0MBYz8f5f3enThxIiZPnowOHTqgcePGeOmll9CzZ0/Url3b6BgLftHx9/c3+twCRb8vi/Lx8cGMGTOg0+lw+/ZtLF++HKmpqcV+ibC3t39sMvroZ9HBwaHY2oXyxlrZussQMfElekLBwcFiV4eXX34Zb731FiZMmIAdO3bA3t4eOp0OAPDOO++UOAsGFE90yqLT6eDv72/QQ7iox9WBhoeHY/ny5UhJSYGDgwP27duH7t27izOMBfH26NGjWC1wgYCAAIP75V2x7+vriz179uDq1ato1apVicdcvXoVAMo1C1fUk7zPJa20nz59OjZt2oS3334bzZo1g6OjI2QyGcaNG1dqslFepXW6eNrnLVBQa3z16lUEBgaaLK7bt29jyJAhqF+/PiZPnowaNWpApVLh4MGD+P7778X3vkBJ3w/GPseTMvbzUd7v3fDwcLRs2RK7d+/G4cOH8d133+Hbb7/FokWLxIWRFcHV1RVA4S9Lj7KzszOojW/RogV69eqF+fPn47///a847uvri8uXL+Pu3bvFfvEp8OhnsX79+rh06RLu3buHGjVqlDvmBw8elPiLK5GUmPgSmYBCocD48eMxePBg/Pjjjxg+fLg4I6RSqQz+QSpJnTp1cO3atccec+XKFbRt2/aJZlHCw8OxePFi7Nq1Cx4eHsjMzET37t3Fx93c3MSE/XHxGqtDhw5YsWIFtmzZUmLiq9VqsW3bNjg7O6NFixYGj5XU/SAmJkacCTXmfS7Lzp070bNnT4Md7/Ly8orN9ppjBqsgAbl9+7Y4Aw/o20gVdAsoy4svvgiFQoFt27aVumjpSezbtw/5+flYtmyZQZJUVlnNkz5HwS8n165dKzNZKu39f9rPR1m8vLwwYMAADBgwAMnJyXj99dexfPlyMfEt7+sVfK+W1JXkcQp+uSnaZaQsDRs2RI8ePfDzzz/jnXfeEd/7Dh064Pfff8eWLVswevToYudlZmZi7969qF+/vngdOnbsiN9//x2//fYbRowYUa7X12g0uHfvnkHXDaLKgDW+RCbSpk0bBAcH44cffkBeXh7c3d3RunVrrF+/HgkJCcWOL1o20KVLF1y5cgW7d+8udlzB7FtYWBji4+OxYcOGYsfk5uaK3QlK4+vrC39/f2zfvh3bt2+Hp6enQRKqUCjQtWtX7Ny5s8R/mJ9me9sWLVqgXbt22LRpk0HrtALz589HTEwM3n333WIzcXv27DGor4yOjsa5c+fw4osvAoBR73NZStq0YO3atdBqtQZjtra2AJ6+/KGooKAguLi4YMOGDdBoNOL4tm3bkJ6e/tjza9SogT59+uCvv/7C2rVriz2u0+nwf//3f7h//75RcRW8J4+WfWzcuNHkz9G+fXvY29tjxYoVyMvLM3is6Lm2trYlvvdP+/koiVarLfZa7u7u8PLyMmiRVlpMj3Jzc0OrVq2wceNGsbylwONm/729vVGjRg1cuHCh3PG/++670Gg0WL16tTjWtWtX+Pn54dtvv8X58+cNjtfpdJg6dSrS09MxduxYg3P8/f2xfPlynDlzptjrZGZmFmvHdv36deTl5aF58+bljpeoInDGl8iEhg0bhvfffx+bNm1C//79MXXqVLz11lt49dVX0bdvX9SuXRtJSUk4e/Ys7t+/j99++008b+fOnXj//ffRu3dvNG7cGOnp6di3bx+mTZuGhg0b4rXXXkNUVBSmTp2K48ePo0WLFtBqtbh58yZ27NiBVatWPXZL2vDwcCxcuBDW1tZ44403iv2pe8KECTh+/Dj69u2LPn36wM/PD+np6bh48SKOHj1qsC2qsebMmYMhQ4Zg9OjReOWVV9CyZUvk5+dj165dOHHiBMLDwzFs2LBi59WpUwf9+/dH//79kZ+fjzVr1sDFxQXvvvuueEx53+eydOjQAVu3boWDgwP8/Pxw9uxZHDlyBC4uLgbHBQYGQqFQ4Ntvv0VGRgasrKwQEhICd3f3J35vrKys8N5772H69Ol4++23ERYWhri4OGzatKnc5TCTJ09GbGwsZsyYgV27dqFjx45wcnLCvXv3sGPHDty8edNghr88nn/+eahUKowcORL9+vVDVlYWfvnlF7i7uyMxMdGkz+Hg4IDIyEj897//xRtvvIFXXnkFTk5OuHLlCnJzczFnzhwAQOPGjbF9+3bMmjULTZo0gZ2dHUJDQ03y+XhUVlYWXnrpJXTt2hUNGzaEnZ0djhw5gvPnzxv8ZaC0mEry3//+F/3798frr7+ON998E7Vq1UJcXBwOHDiArVu3lhlPp06dsHv37nLXzvr5+eGll17Cr7/+itGjR8PV1RVWVlZYuHAh3n77bbz11lvo1asXgoKCkJGRgd9//x0XL17EO++8Y/C9olKpsHjxYgwdOhQDBw5Et27d0KJFC6hUKly7dg2///47nJycDNqxHTlyBLa2tib/6xHR02LiS2RCXbp0QZ06dfB///d/6Nu3L/z8/LBx40YsXrwYmzdvRlpaGtzc3NCoUSOMGTNGPM/e3h4//vgjFi1ahN27d2Pz5s1wd3dH27ZtxUVZcrkcS5Yswffff4+tW7di9+7dsLW1Ra1atTBo0CCxZ2pZwsPD8c033yAnJwdhYWHFHvfw8MAvv/yCJUuWYPfu3Vi3bh1cXFzg5+eHiRMnPtV74+XlhV9++QWrV6/Gjh07sGvXLigUCgQEBGD27Nno2bNnif+Y9+zZE3K5HD/88AOSk5MRHByMTz/9FF5eXuIx5X2fy/LJJ59ALpdj27ZtyMvLQ4sWLbB69WqDBBsAPD09MW3aNKxYsQKffPIJtFot1qxZ81SJLwAMHDgQgiBg9erVmDNnDho2bIhly5ZhxowZ5dr9y9bWFt9++y02bdqELVu2YOnSpcjNzYWXlxfatGmDr776ymCBX3nUr18fCxcuxDfffIM5c+bAw8MD/fv3h5ubGz7++GOTP0efPn3g7u6OlStXYunSpVAqlahfv75B/+i33noLly9fxqZNm/D999/Dx8cHoaGhJvl8PMrGxgb9+/fH4cOHsWvXLgiCgDp16oi/aD0uppI0bNgQGzZswIIFC7Bu3Trk5eWhZs2aJX4eH9W7d2/873//w+nTp0vcSKIkw4YNw4EDB/C///0P7733HgD9X39+++03rFy5Evv27cOmTZtgY2ODoKAgLFu2rMTY69atiy1btuD777/H7t27sXfvXuh0OtStWxd9+vQptsnKjh070LlzZ3GRJFFlIRNMtbqCiMiE7ty5g06dOuHDDz8scSbYEuh0OrRt2xadO3fGjBkzpA6HKoG3334bXl5e+PLLL6UOpVSXL1/G66+/js2bNxu12JKoIrDGl4ioEsjLyytW57llyxakpaWhdevWEkVFlc348eMRFRUl7hRZGa1cuRJdu3Zl0kuVEksdiIgqgbNnz2LWrFno1q0bXFxccOnSJfz666/w9/dHt27dpA6PKommTZsatcBNCo8udCOqTJj4EhFVAj4+PnjmmWewdu1apKenw9nZGa+99homTpxosDEKERE9Odb4EhEREZFFYI0vEREREVkEJr5EREREZBGY+BIRERGRRWDiS0REREQWwWK7OqSkZECnkzoKMjeZDHB3d0Rycga4jLP64/W2LLzeloXX27LI5YCbm6PJn9diE19BAD84FoTX27LwelsWXm/LwuttGcx1jVnqQEREREQWgYkvEREREVkEJr5EREREZBGY+BIRERGRRWDiS0REREQWgYkvEREREVkEJr5EREREZBGY+BIRERGRRWDiS0REREQWgYkvEREREVkEJr5EREREZBGY+BIRERGRRWDiS0REREQWgYkvEREREVkEJr5EREREZBEkTXxPnjyJkSNHon379ggICMCePXsee87x48fx+uuvIygoCJ07d8amTZsqIFIiIiIiquokTXyzs7MREBCAqVOnluv42NhYjBgxAm3atMHWrVvx9ttv47///S8OHTpk5kiJiIiIqKpTSvniL730El566aVyH//zzz+jVq1amDx5MgDA19cXp0+fxvfff48XXnjBXGESERERUQWQ5SZDEX8cN86dh/uwGSZ/fkkTX2OdPXsWbdu2NRhr3749Zs6cafRzyWT6/6h6K7jGvNaWgdfbsvB6WxZe72pIECB/cB2qhONQJR6DMuEYEmPvYuD6njiT6I/4YaZ/ySqV+CYlJcHDw8NgzMPDA5mZmcjNzYWNjU25n8vNzdHU4VEl5u7O621JeL0tC6+3ZeH1rsI0eUD8aeDuYSDuMHD3CJCTKD689UIA3v1lFJKy7OHoaJ4UtUolvqaUkpIBnU7qKMjcZDL9D8nk5AwIgtTRkLnxelsWXm/Lwutd9chyk6FKOA5l4jGoEo5BmXQGMl1eseOy8lSYsK0rVhxrKY55uSnMElOVSnw9PDyQlJRkMJaUlAQHBwejZnsBQBDAD44F4fW2LLzeloXX27LweldSggDFg+v6BLcg0X1wrcxTdFYuOJ7REW8vD8a12MIalrAwXyxY0NUsYVapxLdZs2b4888/DcaOHDmCZs2aSRMQERERkSXS5kKZfBaqBH2Sq0o8DnlectmnOD4LtWcI1F4hyHVvg4U/ZmD27KPQaPR/grezU2L69A4YOLAJFArzFHNLmvhmZWXh9u3b4v07d+7g8uXLcHZ2Rs2aNfH1118jPj4ec+fOBQD069cPP/74I+bOnYvevXvj2LFjiIqKwooVK6T6EoiIiIiqPVlukrgITZVwDMrkM5Dp8ks9XpCroHFrCrVXyMNktw0EW2/x8awsNX78ca2Y9DZt6o3ly8Ph6+tq1q9D0sT3woULGDx4sHh/1qxZAIDXX38ds2fPRmJiIu7duyc+Xrt2baxYsQKzZs3CmjVr8Mwzz2DGjBlsZUZERERkKoIAxYNr+gQ34Zi+48KD62WeorNygdqzDdReIdB4hUDt3gJQ2pZ6vL29CsuXh+PVV9dj1KjnMGlSW1hZmaeutyiZIFhmpUxyMhe3WQKZDPDwcERSEhdDWAJeb8vC621ZeL3NSJsLZdIZcTZXX7aQUuYpGsf6+gT3YemC1tkfkJW+L1pmZj4yMvJQo4ZhV4579zKKjQGAXG6eDh5VqsaXiIiIiJ6OLCcRqsTjD5PcY1Amny1H2UIzfdmCVwjUnm0g2HqV+/VOnryL0aOj4OVlj61b+0KpLEyQS0p6zYmJLxEREVF1JeigSP+nMMlNOAZlxs0yT9FZuULt1QZqz4KyheZlli2URqPRYf7845g37xi0WgG3bqVj0aKTGDeuzZN+NU+NiS8RERFRdaHJgSr5b31tbsIxqBJPQJ6fWvYpjr76BPdh6YLWuUGZZQvlEROThtGjo3DqVOFarVataqJXr4ZP9bxPi4kvERERURUly0kQZ3NVCcegTDkHmU5d6vGC3Aoa9+aF3RY8W0Ow9TRZPIIgYMOGy4iM3IfMTH35hEIhw8SJbfH++60NyhykwMSXiIiIqCoQdFCkXy3SO/cYFBn/lnmKztpNXICm9gqBxr0ZoDBu06/ySkvLxaRJe7B16z/iWN26zli2LAwtW9Y0y2sai4kvERERUWWkyYYq6W+xNldftpBW9ilODfQJbkG3BSc/fUsMM8vIyENo6FrcuZMhjvXr1xgzZ3aEg4OV2V+/vJj4EhEREVUCspx4g9lcZfI5yARNqcfryxZaGHZbsHGvwIgLOTpaIzzcDytXnoGLizW++qozevTwlySWsjDxJSIiIqpogg6KtCuFvXMTjkGRGVPmKTpr9yI7oRWULVhXSLjl8d//voDcXC3GjWsDH5+KbVNWXkx8iYiIiMxNkw1V0mn9ArTEY1Alnnx82YKzf2GS69UGWseKKVt4HEEQsHbteSgUMgwY0EQct7FR4quvXpYwssdj4ktERERkYvLs+/oEN6Gg20L0Y8oWrKHxaFG4EM2ztWRlC2VJSsrG+PG7sWPHDdjaKtGqVU34+1e+OEvDxJeIiIjoaQg6KNIuF2krdvzxZQs2HkW6LbSBxq1ZpSpbKMn+/TF4772dSEjIAgDk5Giwa9dNJr5ERERE1ZY6C6qkU4W9cxNPQa5OL/MUjXPAI2ULvpWibKE8cnM1+OKLv7Bixd/imLu7Lb75pgu6dvWVMDLjMfElIiIiKoM8+64+wU04BlXi8YdlC9pSjxcUNlC7t3i4G1obfbcFa7cKjNh0Ll1KxKhRUbh8OUkcCw2thwULusLb217CyJ4ME18iIiKiAjotFGmXDMsWsm6XfYqNZ5FuCwVlC5Wnd+2TEAQBq1adweefH0Jenj7Jt7ZWYOrUFzFsWDPIqshs9aOY+BIREZHlUmfqyxYKFqElnYJc/aDMUzQugWKSq/YKgc7h2SpTtlBeWVlqLFt2Wkx6GzXywLJl4QgM9JA4sqfDxJeIiIgshjwrrrClWMJxKFPPP6ZswRZqj+ce7obWRt9twdq1AiOWhoODFZYuDcPrr/+Cd99tjk8+aQ8bm6qfNlb9r4CIiIioJDotFGkXi+yGdhyKrNgyT9Haej/c7lc/m6txDa7yZQvlkZWlRna2Gp6eduJYSEgtHD06FPXquUgXmIkx8SUiIqJqQabOgDKxSLeFpFOQqzNKPV6ADFqXQHG7X33ZQr1qV7bwOOfOxWPUqO2oUcMBv/zyBuTywq+/OiW9ABNfIiIiqqLkWXcKa3MTC8oWdKUery9baKlfgFawSYSVS8UFXMlotTosWXIKs2cfgUajw/XrqVi+/DRGj24pdWhmw8SXiIiIKj+dBog/A5t/9urbiiUchyL7TpmnaG2feZjgPixbcAsG5KoKCrhyi4vLwNixUTh8uPA9bNrUu8r15TUWE18iIiKqdPRlCyfF2lxl4klAkwmHUo7Xly00EndCU3uGQOdQ1+LKFspj69armDhxD9LT8wDo36KIiNaYNKktrKwUEkdnXkx8iYiISFqCAHlWrNg7V5lwAsq0C2WXLSjt9GULBbO5nq0sumyhPDIy8vDxx/uxfv0lcczHxxFLlnRDu3a1JYys4jDxJSIiooql00CZev7hbmjHoUo8BkX23TJP0drWgKJ2e2Q6Pwe1Zwg0bk1YtmCEBw/y0KnT/3DrVuHWyj17BmDu3E5wcbGRMLKKxcSXiIiIzEqWn64vW3jYO1eVdAoyTVapxwuQQesaJJYsqL3aQHCoAw9PJ+QmZUAQKjD4asLJyRovvFAbt26lw8HBCrNnh6JPn8AquwPbk2LiS0RERKYjCJBn3TbsnZt6ETKUnq0KSnuoPVoV9s71aAXBysngGAvLz8zi8887ICdHg48+alft2pSVFxNfIiIienI6DZQp0Q9rc49DlXAMipx7ZZ6itfMRZ3M1XiHQuAYBcqYkpiIIAjZsuAyVSo5evRqK4w4OVli2LFzCyKTH7zIiIiIqN33ZwglxNldftpBd6vGCTA6NSxA0D2dz9d0WLGMhlRTS0nIxadIebN36D+ztVWje/Bk8+6yL1GFVGkx8iYiIqGSCAHnmrcLa3IRjUKRdKrNsQad0gMazVWG3BY+WxcoWyDwOH47FmDFRuHs3E4B+G+Jt2/5BRERriSOrPJj4EhERkZ5OrS9bKOidm3AMipz7ZZ6itatVWJvrGQKNa2OWLVSw/Hwt5sw5gsWLT4oL/5ydrfH1153Ro4e/tMFVMvzOJCIislCy/DSoEk+IO6Gpkk8/vmzBtQk0D2dz1V4h0NnXqsCI6VHXr6dg5MjtiI5OEMeef74WFi8Og4+Po4SRVU5MfImIiCyBIECeGVNYm5twDIq0y2WXLagcofFoKdbmajxbQlAxmaoMBEHAmjXnMWXKAeTkaAAAKpUckZHPY/TolpDL2QajJEx8iYiIqiNtPpQp5x4mucehTDwGRU582afY1xZrc9VeIdC6NAbk1XsL26rqwYM8fPnlUTHp9fNzxfLl4QgO9pY4ssqNiS8REVE1IMtLNUhyVUl/Q6bNKfV4QaaAxi0Yas82YumCzt6nAiOmp+HsbIOFC7uiX79NePvtYEyb9hLs7LiT3eMw8SUiIqpqBAHyjJsG3RaU6VfKPEWnctJ3W3hYtqD2eA5QOVRQwPS0cnM1yMlRw9XVVhwLDa2HP/8cjIYNPSSMrGph4ktERFTZafOhTDmrT3IfJrvy3ISyT3Goa1i24BzIsoUq6tKlRIwatR21ajnhf//rabDNMJNe4zDxJSIiqmRkeSmFZQsJx6BK/hsybW6px4tlCwWL0LxCoLOrUYERkznodAJWrTqD6dMPIS9Pi8uXk/H999EYOrSp1KFVWUx8iYiIpCQIUGTcELf7VSUegzL9apmn6FTOhWULXiFQuz8HqOwrKGCqCPHxmYiI2In9+2+JY40aeSAkhHXYT4OJLxERUUXS5hWWLTxsLSbPTSz7FId6+k0iPAu6LQQCMnkFBUwVLSrqOsaP343k5MLFiSNGtMAnn7SHjQ1Tt6fBd4+IiMiMZLnJUCWeKJzNTfobMl1eqccLMmVh2cLD3dB0ds9UYMQklawsNaZOPYg1a6LFMW9veyxa1A0dOtSVMLLqg4kvERGRqQgCFBnXHylb+KfMU3RWLlB7toLm4Wyu2uM5QGlXQQFTZZGWlovw8HW4fj1VHAsL88W8eV3g7m5bxplkDCa+RERET0qbB2XyWTHJ1ZctJJV9ikO9wtpczxBoXRqybIHg4mKD4GBvXL+eCjs7JWbM6IgBA4IMOjjQ02PiS0REVE6y3KSHLcUe9s5NPvP4sgX3ZgZtxQRb7qxFJZszJxS5uRp8+ukL8PV1lTqcaomJLxERUUkEAYoH1/QJbkHZwoPrZZ6iL1vQJ7karxCo3VsASv6ZmorbuvUqrKwUCAvzE8ecnW3w/fc9JIyq+mPiS0REBADaXCiTzjzcIOJh2UJeSpmnaBzr6xPcgm4Lzv4sW6AyZWTk4eOP92P9+ktwcbFG06beqFnTUeqwLAYTXyIiskj6soVjhYvQks9Cpssv9XhBroLGrVmR+tw2EGy9KjBiqupOnryLUaOicPt2OgAgLS0Pv/56GRERrSWOzHIw8SUioupPEKBI/0eczVUmHIMy40aZp+isXMXeufqyheYsW6AnotHoMG/eMcyffxxarQAAcHCwwuzZoejTJ1Di6CwLE18iIqp+tLlQJf0t1uaqEo5Dnp9a5ikaR199glvQbcG5AcsW6KnFxKRh9OgonDp1Txxr1aomli4NQ926zhJGZpmY+BIRUZUny0ksrM1NOAZlylnIdOpSjxfkVg+7LRQtW/CswIipuhMEAevXX0Jk5D5kZem/FxUKGSZMCMEHH7SBUslfqqTAxJeIiKoWQSeWLeDUabjePgRFxs0yT9FZuxW2FPMMgcajOaCwqaCAyRKlpeXis88Oiklv3brOWLYsDC1b1pQ4MsvGxJeIiCo3TQ5UyQ/LFgq6LeSniQ8rSjrFya+wNtcrBFqnBgA3AqAK5Opqi3nzumDIkN/Qr19jzJzZEQ4OVlKHZfGY+BIRUaUiy0ko3Akt4RiUKefKUbbQXJzNVXu1gWDjUYEREwH5+Vrk52sNktvwcD/s3j0ATZty05LKgokvERFJR9BBkX7VoK2YIuPfMk/RWbtD7dkGGu8Q2DcIRbLSH4KcZQsknevXUzBy5HY8+6wLVq7sbrDNMJPeyoWJLxERVRxNNlRJp/UzuYnHoUo8YVC2UOIpzv7iIjSNVxtoHf0AmQwyGWDv4QgkZQBCxYRPVJQgCFiz5jymTDmAnBwNoqMT8PLL9fHmm42kDo1KwcSXiIjMRp59H0qDbgvRkAmaUo8X5NbQeLQo0m2hNQQb9wqMmKh8kpKyMX78buzYUdgP2s/PFYGB/H6tzJj4EhGRaQg6KNIuF6nPPQ5FZkyZp+hsPAqTXK820Lg1AxTWFRIu0ZPaty8GERE7kZCQJY69/XYwpk17CXZ2Kgkjo8dh4ktERE9GnQVV8unC2dzEk5Cr08s8ReMc8EjZgi+7LVCVkZurwRdf/IUVK/4Wx9zdbfHNN13QtauvhJFReTHxJSKicpFn3yuyE9oxKFPOl122oLCB2r3Fw5ZibaD2YNkCVV2pqTno2fMXXL6cJI6FhtbDggVd4e1tL2FkZAwmvkREVJxOC0X65SLdFo5DkXmr7FNsPA1aiunLFti3lKoHFxcb1K3rjMuXk2BtrcDUqS9i2LBmBh0cqPJj4ktERPqyhaRThbO5iSchVz8o8xSNc0OxNlftGQKdY32WLVC1JZPJMH9+F+Tmbse0aS8hMJC9oqsiJr5ERBZInn1Xn+A+nM3Vd1vQlnq8oLCB2uM5aDwLEt3WEKzdKjBiooq1Y8cNWFkpEBpaTxxzd7fFhg29pQuKnhoTXyKi6k6nhSLtkmG3hazbZZ9i4/VwNjdEv1mEW1OWLZBFyMpSY+rUg1izJhoeHnY4eHAwPD3tpA6LTISJLxFRdaPO1JctFHRbSDr1+LIFl0CxNlftFQKdw7MsWyCLc+5cPEaO3I4bN1IB6Hv1rlt3ARERrSWOjEyFiS8RURUnz7pTuBNawnEoU88/pmzBFmqPlvoFaF4hUHu0gmDtWoERE1UuWq0OS5acwuzZR6DR6AAAdnZKTJ/eAQMHNpE4OjIlJr5ERFWJTgtl6oUiu6EdhyL7TpmnaG2f0Se4nvrZXI1bMCBnk30iAIiLy8CYMVE4cqTwc9S0qTeWLw+Hry9/IaxumPgSEVViMnUGlIknxZZiysSTkGsySz1egAxal0aG3RYc6rJsgagEW7dexcSJe5CengdA/zGJiGiNSZPawspKIXF0ZA5MfImIKhF5ZmxhS7GE41CmXYBM0JV6vKC005ctFMzmeraCYOVScQETVVHJyTkYP343MjLyAQA+Po5YsqQb2rWrLXFkZE5MfImIpKLT6MsWinZbyI4r8xStbQ1xu1+1Zwg0bk1YtkD0BNzdbTF3bieMGhWFnj0DMHduJ7i42EgdFpkZE18iogoiy38AZdJJsTZXmXTq8WULro3F2Vy1Vwh09nVYtkD0BDQaHfLztbCzK/xFsXfvQNSs6YiQEB/uwGYhmPgSEZmDIECeFWvYOzft4mPKFuzFbgtqz4KyBecKDJqoeoqJScPo0VFo0MANCxZ0NXisbdtaEkVFUmDiS0RkCjoNlKnnxdpcVeIxKLLvlnmK1q6mPsF92DtX49oEkPPHMpGpCIKADRsuY/LkvcjKUuPUqXvo1OlZ9OjhL3VoJBH+hCUiegKy/HR9t4WHs7mqpFOQabJKPV6QyaF1aSzO5urLFmqzbIHITNLScjFp0h5s3fqPOFa3rjNq1nSQMCqSGhNfIqLHEQTIs26LO6GpEo9DkXoRMgiln6K0h9qjlbgTmsajFQQrpwoMmshyHT4cizFjonD3bmENfb9+jTFzZkc4OHDrbUvGxJeI6FE6NZQp0fq+uQnHoUo4BkXOvTJP0dr5FNbmeoVA4xrEsgWiCpafr8WcOUewePFJCA9/L3VxscZXX3VmeQMBYOJLRARZfhpUiSf0bcUSjkOVfBoyTXapxwsyOTSuTaAx6LbABTJEUkpJyUHfvhsRHZ0gjrVvXxuLF3dDzZqOEkZGlQkTXyKyLIIAeWaMWLKgSjgGRdrlMssWdCpHaDxa6pNczxBoPFtCUPEfUqLKxMXFBm5utgAAlUqOyMjnMXp0S8jlrKOnQkx8iah606mhTDlX2Ds38RgUOfFlnqK1r23QO1fr0hiQc/tSospMLpdh0aKuePfdP/DFFx0QHOwtdUhUCTHxJaLqJTcVqjt7xdpcVdJpyLQ5pR6uL1sIhtqrDTRitwWfCgyYiJ7E/v0xsLFRGvTh9fZ2wLZtb0oYFVV2kie+P/74I7777jskJiaiYcOG+PTTTxEcHFzq8d9//z3WrVuHe/fuwdXVFV27dsWECRNgbW1dgVETUaUgCJBn/ivO5qoSjwFpl1HWlg/6soVW4myu2qMloGJ7I6KqIjdXgxkz/sKKFX+jZk0HHDgwmFsNU7lJmvhu374ds2bNwrRp09C0aVP88MMPGDZsGHbs2AF3d/dix2/btg1ff/01Zs6ciebNmyMmJgaTJ0+GTCZDZGSkBF8BEVUobb6+bOFhba4q4RjkuQlln2Jfx6B3rtalEcsWiKqo8+fj0a/fr7h0KQkAcPduJtasiUZERGuJI6OqQtLEd/Xq1ejbty969+4NAJg2bRoOHDiAjRs3Yvjw4cWOP3PmDFq0aIFXX30VAFCrVi288sorOHfuXIXGTUQVQ5aXAlXiCbE2V1+2kFvq8YJMAZlXM+S4tSrcJMKuZgVGTETmoNMJWLXqDKZPP4S8PC0AwNpagalTX8SwYc2kDY6qFMkS3/z8fFy8eBEjRowQx+RyOdq1a4czZ86UeE7z5s3x22+/ITo6GsHBwYiNjcXBgwfx2muvGf36Mhk3TLIEBdeY17oKEATIM24WLkJLOAZl+pUyT9GpnKDx1JctaLxCoPF8Du7P1EB2cobYw5OXvvri59sy3L+fiYiIndi//5Y41qiRB5YvD0dgoIeEkZE5metzLVnim5qaCq1WW6ykwd3dHTdv3izxnFdffRWpqal46623IAgCNBoN+vXrh5EjRxr9+m5ubEVkSdzdeb0rHW0+EP83cPcwEHdY///ssssW4FQP8HkeqPk84PM85O6NYSVX4NF9mHi9LQuvd/W1desVvPvuNiQlFfbVHjcuBDNndoKNjeTLlKgKqlLfNcePH8eKFSswdepUBAcH4/bt2/jiiy+wZMkSjBkzxqjnSknJgE5npkCp0pDJ9P8oJheZASRpyHKToXxYtqBKOAZl8t+PLVvQuAVD83ARmsYrBDq7GoYHpRhuMsHrbVl4vau3pKRsvPXWJmRnqwEA3t72WLPmdTz3nBcyM3OQmfmYJ6AqTS43zySlZImvq6srFAoFkpOTDcaTk5Ph4VHyny4WLFiAHj16oE+fPgCAgIAAZGdnY8qUKRg1ahTkcnm5X18QwB+UFoTXu4IJAhQZ1wtbiiUegzL9nzJP0amcofZqLbYUU7u3AFT2jzxvuV+e19uC8HpXT+7udpgxowPGj9+Nbt188c03XRAQ4IWkJP6iYwnMdY0lS3ytrKzQuHFjHD16FC+//DIAQKfT4ejRoxg4cGCJ5+Tm5hZLbhUK/epsgZ8CIulo86BMPismuarE45DnJpV9ikO9wpZiniHQujQEZOX/5ZWIqhetVgeNRgdr68LUZMCAINSs6YCOHetxBzYyCUlLHYYOHYqPPvoIQUFBCA4Oxg8//ICcnBz06tULAPDhhx/C29sbEyZMAAB07NgRq1evRqNGjcRShwULFqBjx45iAkxE5ifLTTZoKaZMPgOZLq/U4wWZEhr3pmKnBY1nG+jsnqnAiImoMouLy8DYsVFo2NADs2aFiuMymQyhoc9KGBlVN5ImvuHh4UhJScHChQuRmJiIwMBArFq1Six1uHfvnsEM76hRoyCTyfDNN98gPj4ebm5u6NixI8aNGyfVl0BU/QkCFA+u6xPcxIeJ7oNrZZ6is3KB2rO1vj7XMwRqjxaA0q6CAiaiqmTr1quYOHEP0tPzcPjwHXTqVA8vv1xf6rCompIJFlojkJzMxW2WQCYDPDwcWRNmDG1uYdlCwsOyhbzksk9xfFaczVV7hUDrHCBJ2QKvt2Xh9a7aMjLy8PHH+7F+/SVxzMfHEcuWhSEkpFax43m9LYtcbp6OLVWqqwMRmZ4sN0nc7rewbCG/1OMFuQoat6Ziba7aqw0EW+8KjJiIqrqTJ+9i9Ogo3LqVLo717BmAuXM7cfthMismvkSWRBCgeHBNn+AWdFt4cL3MU/RlC23ElmJq9xaA0raCAiai6kSj0WH+/OOYN+8YtFr9tK2DgxVmzw5Fnz6BkHE3EjIzJr5E1Zk2F8qkM+Jsrr5sIaXMUzSO9Qtrc71CoHX2Z7cFInpqKSk5GDhwC06duieOtWpVE0uXhqFuXWcJIyNLwsSXqBqR5SQWdltIPAZl8tlylC00K9JWrA0EW68KjJiILIWzszWUSv0v0QqFDBMmhOCDD9qIY0QVgYkvUVUl6KBIv1ZYm5twDMqMG2WeorN2Kyxb8GwDtXtzli0QUYVQKORYsiQMQ4f+htmzQ9GyZU2pQyILxMSXqKrQ5ECV/Le+NjfhGFSJJyDPTy37FCc/qD1DxG1/tU4N9EujiYjM7MiRWNjYKNGiReFW47VrO2H37gGs5SXJMPElqqRkOQmFO6ElHIMy5RxkOnWpxwtyK2jcmxt2W7ApeftvIiJzyc/XYu7cI1i06CTq1HHG/v2D4OBgJT7OpJekxMSXqDIQdFCkXy3SO/cYFBn/lnmKvmyhsHeuxr0ZoGAbICKSzvXrKRg5cjuioxMAALdupWP16nN4771WEkdGpMfEl0gKmmyokv7WL0ATyxbSyj7FqcHD2tyCsgU/li0QUaUgCALWrj2PTz89gJwcDQBApZIjMvJ5jB7dUuLoiAox8SWqALKceIPZXGXyOcgETanHC3LrwrKFgm4LNu4VGDERUfkkJWVj/Pjd2LGjcHGtn58rli8PR3AwN7ehyoWJL5GpCToo0q4U9s5NOAZFZkyZp+is3YvU5haULVhXSLhERE9q374YRETsREJCljj29tvBmDbtJdjZqSSMjKhkTHyJnpYmG6qk0/oFaInHoEo8+fiyBWf/wiTXqw20jixbIKKqJSEhC0OGbEVurhYA4O5ui2++6YKuXX0ljoyodEx8iYwkz76vT3ATCrotRD++bMGjReFCNM/WLFsgoirPy8se//3vC/jvfw+gY8e6WLiwG7y97aUOi6hMTHyJyiLooEi7XKSt2PHHly3YeIp1uWqvNtC4NWPZAhFVeTqdAK1WB5VKIY69+25z1KjhgO7dG0Au51+tqPJj4ktUlDoLquTThbO5iSchV6eXeYrGueHDRWhtoPYMgc6xPssWiKhaiY/PxHvv7URQkCemTHlRHJfLZXj1VX8JIyMyDhNfsmjy7Lvidr+qxOMPyxa0pR4vKGyg9njuYUuxNvqyBWu3CoyYiKhiRUVdx7hxu5CSkouDB2+hY8d6eOGFOlKHRfREmPiS5dBpoUi7ZFi2kHW77FNsvAxaimncmgIKqzLPISKqDrKy1Jg69SDWrIkWxzw9WcNLVRsTX6q+1JlQJZ8Crp2BU8xBKBNPQa5+UOYpGpdAcbtftVcIdA7PsmyBiCzOuXPxGDlyO27cSBXHunXzxfz5XeDubithZERPh4kvVRvyrLjClmIJx6FMPS+WLZQ0RysobKH2eO7hbmgFZQuuFRs0EVElotXqsGTJKcyefQQajQ4AYGenxPTpHTBwYBPIOBFAVRwTX6qadFoo0i4W2Q3tOBRZsWWeorX1LqzN9QrRly3I2WCdiAgAkpNz8O6723D48B1xrGlTbyxfHg5fX04KUPXAxJeqBJk6A8rEU+JuaMqkU5CrM0o9XoAMWpdAqL1CYOvbASm2TaG1r8eyBSKiUjg5WSErSw1A/6MyIqI1Jk1qCysrxWPOJKo6mPhSpSTPulOkpVhB2YKu1OP1ZQst9X1zCzaJsHKBTAbYejhCl5QBCBX4BRARVTEqlQLLloXj7be3Yu7cTmjXrrbUIRGZHBNfkp5OA2XqxSK7oR2HIvtOmadobZ95mOAWlC0Es2yBiMgIJ0/eha2tCkFBnuKYr68r/vzzbW5GQdUWE1+qcPqyhZNiba4y8STkmsxSjxcgg9a1sZjkqr1CoLOvw7IFIqInoNHoMH/+ccybdwy+vq7YtWsA7OwKJw6Y9FJ1xsSXzE6eGVtYm5twHMq0C2WXLSjtoPZoJe6EpvFsBcHKuQIjJiKqnmJi0jB6dBROnboHAPjnnxSsXn0OY8a0lDgyoorBxJdMS6eBMvXCw53QCsoW4so8RWtXU5/gFnRbcG0CyPmtSURkKoIgYMOGy4iM3IfMzHwAgEIhw8SJbTFiRAuJoyOqOMwu6KnI8h9AmXhCTHJVSacg02SVery+bCFInM3Vly3UZtkCEZGZpKXlYtKkPdi69R9xrF49ZyxdGoaWLWtKGBlRxWPiS+UnCJBn3TbsnZt6EbIy2iUISvvCsgWvEGg8WkGwcqrAoImILNfhw7EYMyYKd+8WrqPo378xvviiIxwcuP06WR4mvlQ6nQbKlGioEvW1uaqEY1Dk3CvzFK2dT2FtrlcINK5BLFsgIpJAfHwm3nxzE/Lz9TtYurhY46uvOqNHD3+JIyOSDjMSEsny0/VlCw9nc/VlC9mlHi/I5NC4BIm1uWrPEOgc2PeRiKgy8PZ2wMSJIZg58zDat6+NxYu7oWZNR6nDIpIUE19LJQiQZ94qrM1NOAZF2qUyyxZ0SgdoPFsV9s71aMmyBSKiSkIQBOh0AhQKuTj23nutULOmI954I5BtyojAxNdy6NT6soWC3rkJx6DIuV/mKVq7WoW1uZ4h0Lg2ZtkCEVEllJSUjfHjd6NJEy9MmtRWHFco5Ojbt5GEkRFVLsxiqjtBgMPx8bC5ue7xZQuuTaAx2CSiVgUGSkRET2LfvhhEROxEQkIWdu++iQ4d6qJVK3ZrICoJE99qTplyFrb/fFdsXKdyhMaj1cPa3DbQeLaEoGLtFxFRVZGbq8EXX/yFFSv+FsdcXGzEPr1EVBwT32pOmVT4AzHfuz3y6vaE2qsttC6NALlCwsiIiOhJXbqUiFGjonD5cpI41rFjXSxc2A3e3vYSRkZUuTHxreaUKefE21nNp0Lj1UbCaIiI6GnodAJWrTqD6dMPIS9P36bM2lqBKVNewLBhzbmAjegxmPhWcwWJrwCZvqcuERFVSSkpORg1ajv2778ljgUGemD58nAEBnpIGBlR1cHEtzrT5kOZelF/09kfUPHPX0REVZWdnQr37xfuwDZiRAt88kl72Njwn3Ki8pI//hCqqhTpVyDT6Rc5aNyaShwNERE9DRsbJZYtC0edOs5Yv74Xpk/vwKSXyEj8xFRjquSz4m2NezPJ4iAiIuOdOxcPOzsVGjRwE8caNfLEsWNDoVRy3oroSfCTU40pU86KtzVuzSSLg4iIyk+r1WHhwhMIC1uHESP+QF6exuBxJr1ET46fnmpMmVzY0UHj1kTCSIiIqDzi4jLQu/evmDHjL2g0Oly4kIjVq889/kQiKheWOlRXOg2UqRcAABrH+hCsnCUOiIiIyrJ161VMnLgH6el5AACZDIiIaI133mkmbWBE1QgT32pK8eAaZNocACxzICKqzDIy8vDxx/uxfv0lcczHxxFLlnRDu3a1JYyMqPph4ltNKQ0WtrGjAxFRZXTy5F2MHh2FW7fSxbGePQMwd24nuLjYSBgZUfXExLeaKrpjG1uZERFVPvfuZeD1139Bfr5+BzYHByvMnh2KPn0CIZNxBzYic+DitmqKiS8RUeVWo4YjRo9+DgDQqlVN7N8/CH37NmLSS2RGnPGtjgQdlCnRAACtfW0INu4SB0RERIIgAIBBYjtpUlv4+DhhwIAgtikjqgD8lFVDiowbkKszAHC2l4ioMkhLy8Xw4X9g6dLTBuMqlQJvvx3MpJeognDGtxoy6N/LHduIiCR1+HAsxoyJwt27mdi+/TpefLEOmjTxkjosIovExLcaYn0vEZH08vO1mDPnCBYvPomHVQ6wt1chISFL2sCILBgT32qo6IyvmjO+REQV7vr1FIwcuR3R0QniWPv2tbF4cTfUrOkoYWRElo2Jb3UjCFCmnAUAaG2fgWDrLW08REQWRBAErFlzHlOmHEBOjgYAoFLJERn5PEaPbgm5nB0biKT0VIlvXl4erK2tTRULmYA86zbk+WkAWOZARFSRUlNz8P77u7Bjxw1xzM/PFcuXhyM4mJMQRJWB0ctIdTodlixZghdeeAHNmzdHbGwsAOCbb77BL7/8YvIAyTiGC9uY+BIRVRQrKyWuXUsR7w8Z0hR79gxk0ktUiRid+C5duhSbN2/GpEmToFKpxHF/f3/8+uuvJg2OjFdQ5gAAGrdmksVBRGRp7O1VWLYsDM88Y4+1a1/D3LmdYGenevyJRFRhjE58t27diunTp6NHjx6QywtPDwgIwM2bN00aHBlPlXxWvM1SByIi87l0KRExMWkGY82aPYOTJ4eha1dfaYIiojIZnfjGx8ejTp06xcYFQYBGozFJUPSEiixs01m7Q2dfS9p4iIiqIZ1OwMqVf6Nr158walQUNBqdwePW1lw3TlRZGZ34+vn54dSpU8XGd+zYgcDAQJMERU9GnnMP8twkAA9ne7nfOxGRScXHZ6Jfv034738PIC9Pi9On7+H77889/kQiqhSM/rV09OjRmDx5MuLj4yEIAnbt2oV///0XW7ZswYoVK8wRI5UTd2wjIjKfqKjrGDduF1JScsWxESNaYODAJhJGRUTGMDrxffnll7F8+XIsWbIEtra2WLhwIRo1aoTly5fj+eefN0eMVE5FF7apWd9LRGQSWVlqTJ16EGvWRItj3t72WLiwKzp2rCddYERktCcqRGrZsiVWr15t6ljoKbGVGRGRaZ07F4+RI7fjxo1UcSwszBfz5nWBu7uthJER0ZMwusa3U6dOSE1NLTb+4MEDdOrUySRB0ZNRpugTX53KGTqHZyWOhoioaouLy0D37j+LSa+dnRLz5nXG99/3YNJLVEUZnfjGxcVBp9MVG8/Pz0d8fLxJgiLjyXISociOAwBo3IK5sI2I6Cn5+Dhi6FD9X8+aNvXG3r2DMHBgE8j485Woyip3qcPevXvF24cOHYKjo6N4X6fT4ejRo/Dx8TFtdFRuBhtXsMyBiOiJCIJgkNh+8kl7+Pg44p13msHKSiFhZERkCuVOfMeMGQMAkMlkmDx5suGTKJXw8fEpNk4VR5VSpL6XC9uIiIySkZGHjz/ej+bNn8E77zQTx21slBg58jnpAiMikyp34nvlyhUAQGhoKH799Ve4ubmZLSgynuHCtuYSRkJEVLWcPHkXo0ZF4fbtdGzdehXt29eGv7+71GERkRkYXeO7b98+Jr2VUMHCNkFpD60jt8okInocjUaHuXOPoEeP9bh9Ox0AoFQqEBOTLnFkRGQuT9TOLDs7GydPnsTdu3ehVqsNHhs8eLBJAqPyk+WlQpEZAwDQuDYB5KxDIyIqS0xMGkaPjsKpU/fEsVatamLp0jDUressYWREZE5GJ76XLl3C8OHDkZOTg5ycHDg7OyM1NRW2trZwc3Nj4isBZUphU3U1F7YREZVKEASsX38JkZH7kJWln7hRKGSYMCEEH3zQBkql0X8IJaIqxOhP+KxZs9CxY0ecPHkS1tbW2LBhA/bv34/GjRvjo48+MkeM9BhKg4VtzaQLhIioEktPz8Xw4X8gImKnmPTWreuMbdvexMSJbZn0ElkAoz/lly9fxtChQyGXy6FQKJCfn48aNWpg0qRJmDdvnjlipMdQJp8Vb7OVGRFRyWQyGf7++754v1+/xti/fxBatqwpYVREVJGMTnyVSiXkcv1p7u7uuHv3LgDAwcEB9+/fL+tUMpOCHr6C3Bpa5wBpgyEiqqScnKyxZEk3uLvbYtWqV7BwYVc4OFhJHRYRVSCja3wbNWqE8+fPo169emjVqhUWLlyI1NRUbN26FQ0aNDBHjFQGWf4DKB9cBwBoXBsDcpXEERERVQ7Xr6fAzk6FmjULN1wKCamFU6fehb09f1YSWSKjZ3zHjRsHT09P8baTkxM+++wzpKam4vPPPzd5gFQ2ZeoF8bbGvZl0gRARVRKCIOCHH6LRqdP/MHbsDuh0gsHjTHqJLJfRM75NmjQRb7u7u+O7774zaUBkHIOtirmwjYgsXFJSNsaP340dO24AAP76KxZr1kRjyBCufyCiJ5jxLc3FixcxYsQIUz0dlZPhjm38wU5Elmvfvhh06LBWTHoB4O23g9G3byMJoyKiysSoxPfQoUOYM2cO5s2bh9jYWADAjRs3MHr0aLzxxhvQ6XRGB/Djjz8iNDQUTZo0QZ8+fRAdHV3m8Q8ePMC0adPQvn17BAUFoWvXrjh48KDRr1tdiDu2yZTQuPCHOxFZntxcDT799AD69duEhIQsAIC7uy3Wrn0NX375MuzsWNpARHrlLnX45Zdf8Omnn8LZ2RkPHjzAL7/8gsmTJ2PGjBkICwvD77//Dl9f47bK3b59O2bNmoVp06ahadOm+OGHHzBs2DDs2LED7u7F90nPz8/H0KFD4e7ujgULFsDb2xt3796Fk5OTUa9bbWiyoUi/or/p0ghQWEscEBFRxTp/Ph79+v2KS5eSxLGOHeti4cJu8Pa2lzAyIqqMyp34rlmzBhMnTsS7776LnTt34v3338e6deuwbds2PPPMM0/04qtXr0bfvn3Ru3dvAMC0adNw4MABbNy4EcOHDy92/MaNG5Geno6ff/4ZKpX+N/hatWo90WtXB8rUi5AJ+ll2ljkQkaWJjX2Atm1XIy9PCwCwtlZgypQXMGxYc8jlMomjI6LKqNyJb2xsLLp16wYA6NKlC5RKJSZNmvTESW9+fn6xumC5XI527drhzJkzJZ6zb98+NGvWDJ9//jn27t0LNzc3vPLKK/jPf/4DhUJh1OvLZPr/qjJVkR3btO5Nq/zXYw4F7wnfG8vA621Z6tRxwuDBTfHtt3+jUSMPLF8ejsBAD6nDIjPh59uymOs6lzvxzc3Nha2t7cNgZFCpVPDy8nriF05NTYVWqy1W0uDu7o6bN2+WeE5sbCyOHTuGV199FStXrsTt27cxbdo0aDQajB071qjXd3NzfPxBlV3WRfGmQ/12cPCoBl+Tmbi7872xJLzelmP+/K6oW9cZEya0g42N0Y2KqAri55uehlE/JX755RfY2dkBALRaLTZt2gRXV1eDYwYPHmy66B4hCALc3d0xffp0KBQKBAUFIT4+Ht99953RiW9KSgaeYC1epeJy9xSUAASZHMny+kBShtQhVToymf6HZHJyBgTh8cdT1cbrXX1lZakxdepBPPdcDfTv3xhA4fUeObI5MjNzkJkpcZBkVvx8Wxa53DyTlOVOfGvWrIkNGzaI9z08PLB161aDY2QyWbkTX1dXVygUCiQnJxuMJycnw8Oj5D9VeXp6QqlUGpQ11K9fH4mJicjPz4eVVfm3nhQEVO0PjjYPirRL+pvOARAUdkBV/nrMrMpfbzIKr3f1cu5cPEaN2o7r11Px66+X0aaND5591kV8nNfbsvB6WwZzXeNyJ7779u0z6QtbWVmhcePGOHr0KF5++WUAgE6nw9GjRzFw4MASz2nRogV+//136HQ6yOX6TmwxMTHw9PQ0KumtDpRplyHTqQEAGjcubCOi6ker1WHJklOYPfsINBr9n+gEQcCVK0kGiS8RUXmZbAOLJzF06FBs2LABmzdvxo0bN/DZZ58hJycHvXr1AgB8+OGH+Prrr8Xj+/fvj7S0NHzxxRf4999/ceDAAaxYsQIDBgyQ6kuQjLLIwjYmvkRU3cTFZaB3718xY8ZfYtLbtKk39u4dhLAwP4mjI6KqStKVAOHh4UhJScHChQuRmJiIwMBArFq1Six1uHfvnjizCwA1atTAd999h1mzZqFHjx7w9vbG4MGD8Z///EeqL0EyyuSz4m2NezPJ4iAiMrWtW69i4sQ9SE/PA6Cv7YyIaI1Jk9rCysq4Dj5EREXJBMEyK2WSk6v24jaX7aFQJZ0CACT1uwPBykI38XgMmQzw8HBEUhIXQ1gCXu+qLTMzH5GR+7B+/SVxzMfHEUuWdEO7drWLHc/rbVl4vS2LXG6eDh7s/VIV6TRQpl4AAGgcfZn0ElG1kJenxYEDt8T7PXsGYO7cTnBxsZEwKiKqTiSt8aUno0i/Cpk2FwB3bCOi6sPd3RaLFnWDo6MVFi/uhhUrwpn0EpFJPdGM7+3bt7Fx40bExsbik08+gbu7Ow4ePIiaNWuiQYMGpo6RHqFMOSve1rg1kywOIqKnEROTBjs7Fby87MWxDh3q4u+/34WzMxNeIjI9o2d8T5w4gVdffRXR0dHYtWsXsrOzAQBXr17FokWLTB4gFadMZkcHIqq6BEHAzz9fRMeOa/HBB7vw6FITJr1EZC5GJ75ff/01PvjgA6xevRoqlUocDwkJwdmzZ00ZG5VCVbSVGUsdiKgKSUvLxfDhfyAiYieystTYs+dfrFt38fEnEhGZgNGJ7z///CNuOFGUm5sbUlNTTRIUlUHQQZkSDQDQOtSFYO0mcUBEROVz+HAsOnRYg61b/xHH+vVrjB49/CWMiogsidE1vo6OjkhMTETt2oatZS5fvgxvb2+TBUYlUzy4AZkmCwDLHIioasjP12LOnCNYvPik2IbKxcUaX33VmUkvEVUoo2d8u3fvjq+++gqJiYmQyWTQ6XQ4ffo05syZg549e5ohRCrKcGEbE18iqtyuXUtBePg6LFpUmPS2b18bBw4MZtJLRBXO6BnfcePG4fPPP0eHDh2g1WrRvXt3aLVavPLKKxg1apQ5YqQiDBa2sb6XiCqxmJg0vPzy/5CTowEAqFRyREY+j9GjW0Iul0kcHRFZIqMTXysrK8yYMQOjR4/GtWvXkJWVhUaNGqFevXpmCI8epSyysE3NVmZEVInVq+eC8HA/bNx4BX5+rli+PBzBwSyJIyLpGJ34njp1Ci1btkTNmjVRs2ZNc8REpREEMfHV2taAYOslcUBERGWbM6cTatd2wgcftIGdnerxJxARmZHRNb5DhgxBaGgo5s2bh+vXr5sjJiqFPDMG8vw0ACxzIKLKJTdXg08/PYDffvvHYNzJyRoff9yeSS8RVQpGJ75//vkn3nnnHZw4cQKvvPIKXnvtNaxatQr37983R3xURNEyB+7YRkSVxaVLieja9SesWPE3JkzYjbi4DKlDIiIqkdGJr5ubGwYOHIiff/4Zu3fvRrdu3bBlyxaEhoZi8ODB5oiRHlIZLGxrJl0gREQAdDoBK1f+ja5df8Lly0kA9DO/Z89yIoSIKieja3yLql27NoYPH46GDRtiwYIFOHnypKniohKwlRkRVRbx8ZmIiNiJ/ftviWOBgR5YvjwcgYEeEkZGRFS6J058T58+jW3btmHnzp3Iy8tDp06dMH78eFPGRkUVWdims/GAzo4LC4lIGlFR1zF+/G4kJ+eIYyNGtMAnn7SHjc1TzacQEZmV0T+hvv76a/zxxx9ISEjA888/j08++QSdOnWCra2tOeKjh+TZdyHP1f8pUePWFJCxByYRVaysLDWmTj2INWuixTFvb3ssXNgVHTvWky4wIqJyMjrxPXnyJIYNG4awsDC4ubmZIyYqARe2EZHUMjPz8Mcf18T7YWG+mDevC9zdOfFBRFWD0Ynvzz//bI446DGUyWfE22q2MiMiCXh7O2DevM4YNWo7ZszoiAEDgiDjX5+IqAopV+K7d+9evPjii1CpVNi7d2+Zx3bq1MkkgZEhwxlfJr5EZH5xcRmws1PC1bVwRjcszA8nT74LT087CSMjInoy5Up8x4wZg8OHD8Pd3R1jxowp9TiZTIbLly+bLDgqpHzYykxn5QKdQz1pgyGiam/r1quYOHEPXnyxDlatesVgZpdJLxFVVeVKfK9cuVLibaoYspx4KHLuAeDCNiIyr4yMPHz88X6sX38JALBt2zVs3HgFb7wRKHFkRERPz+gNLLZs2YL8/Pxi4/n5+diyZYspYqJHqFjmQEQV4OTJu+jY8X9i0gsAPXsG4OWXn5UwKiIi0zE68Y2MjERGRvHtKLOyshAZGWmSoMiQ0mDHNia+RGRaGo0OX355FD16rMft2+kAAAcHKyxe3A0rVoTDxcVG4giJiEzD6K4OgiCUuIo3Pj4ejo6OJgmKDLGVGRGZS0xMGkaPjsKpU/fEsVatamLp0jDUressYWRERKZX7sS3Z8+ekMlkkMlkePvtt6FUFp6q1Wpx584dvPDCC2YJ0tKJO7YpHaB18pU4GiKqLm7eTMXLL/+IzEx9+ZpCIcOECSH44IM2UCqN/oMgEVGlV+7E9+WXXwYAXL58Ge3bt4e9vb34mEqlgo+PD7p06WL6CC2cLC8FisxbAACtWxNAxn+MiMg0nn3WBS+8UBtRUTdQt64zli0LQ8uW3A6diKqvcie+Y8eOBQD4+PggPDwc1tbWZguKChWt71VzYRsRmZBMJsO8eV1Qu/YxTJ78PBwcrKQOiYjIrIyePnz99deZ9FYgg/peLmwjoieUn6/F9OmHsHv3TYNxd3dbzJjRkUkvEVmEcs34tm7dGjt27ICbmxtatWpV5haVJ06cMFlwBChTzoq3NW7NpQuEiKqs69dTMHLkdkRHJ2Dduos4cGAQvLzsH38iEVE1U67ENzIyEg4ODuJt7s1ecQpKHQSFDbTO/hJHQ0RViSAIWLPmPKZMOYCcHA0AID09FydO3MUrrzSQODoioopXrsT39ddfF2/36tXLbMGQIVn+AygzbgAANK5BgNzo7nNEZKGSkrIxfvxu7NhxQxzz83PF8uXhCA72ljAyIiLpGJ1JXbx4EUqlEgEBAQCAPXv2YNOmTfDz88PYsWNhZcU6MVNRpp4Xb3PHNiIqr337YhARsRMJCVni2JAhTfHZZy/Czk4lYWRERNIyenHblClTEBMTAwCIjY3FuHHjYGtrix07duDLL780dXwWTZl8VrytcW8mWRxEVDXk5mrw6acH0K/fJjHpdXe3xdq1r2Hu3E5MeonI4hmd+MbExCAwMBAAEBUVhdatW+Prr7/GrFmzsGvXLpMHaMkMd2zjjC8RlS0pKRvr1l0U74eG1sOBA4PRtSs3viEiAp4g8RUEATqdDgBw9OhRvPjiiwCAGjVqIDU11bTRWbiCGV9BroLGJVDaYIio0qtVywlz53aCtbUCM2d2xLp1r8Pbm90biIgKGF3jGxQUhGXLlqFt27Y4efIkPvvsMwDAnTt34OHhYer4LJc6C4oH/wAANC6NAAV7JxORofj4TNjZqeDoWPjzoVevhmjTxgc+Po4SRkZEVDkZPeP78ccf49KlS5g+fTpGjhyJunXrAgB27tyJ5s3ZZ9ZUlGkXIBP0M+sscyCiR0VFXUeHDmvx8cf7iz3GpJeIqGRGz/g2bNgQ27ZtKzb+4YcfQi43Oo+mUhTdqpgL24ioQFaWGlOnHsSaNdEAgPXrL6FLl/p49VX2+SYiepwnbgx74cIF3Lih7w/p5+eHxo0bmywo4sI2Iiru3Ll4jBy5HTduFK6nCAvzRbt2tSWMioio6jA68U1OTsYHH3yAkydPwsnJCQDw4MEDtGnTBvPnz4ebm5vJg7RE4o5tMoV+8woislharQ5LlpzC7NlHoNHoS6Ds7JSYMaMjBgwI4m6aRETlZHRtwvTp05GdnY0//vgDJ06cwIkTJ/D7778jMzMTM2bMMEeMlkebB2XaJf1N5wBAaStxQEQklbi4DPTu/StmzPhLTHqbNvXG3r2DMHBgEya9RERGMHrG99ChQ1i9ejV8fQv7Qvr5+WHq1Kl45513TBqcpVKmXYJM0ABgmQORJbtxIxXduv2E9PQ8AIBMBkREtMakSW1hZaWQODoioqrH6BlfnU4Hlar47j9KpVLs70tPx3BhGxNfIkv17LMuaNHiGQD6Tg2bN/fBJ5+0Z9JLRPSEjE58Q0JC8MUXXyA+Pl4ci4+Px6xZs9C2bVuTBmeplClnxdsat2aSxUFE0pLLZVi4sCsGDWqC/fsHcREbEdFTMrrUYcqUKRg1ahQ6deqEZ57Rz0Tcv38fDRo0wJdffmnyAC1RwY5tAKBxayJdIERUYTQaHebPP46QEB+88EIdcdzb2wFff91ZwsiIiKoPoxPfGjVqYPPmzTh69KjYzszX1xft2rUzeXAWSaeGMvUiAEDj5AdBxUb0RNVdTEwaRo+OwqlT91CjhgMOHBgEV1cuaiUiMjWjEt/t27dj7969UKvVaNu2LQYNGmSuuCyWIv0qZDr9QhaWORBVb4IgYMOGy4iM3IfMzHwAQEJCFv76K5YbUhARmUG5E9+ffvoJn3/+OerWrQsbGxvs3r0bt2/fxkcffWTO+CwOd2wjsgxpabmYNGkPtm79RxyrW9cZy5aFoWXLmhJGRkRUfZV7cduPP/6IsWPHYufOndi6dStmz56NdevWmTM2i2S4sI0dHYiqo8OHY9GhwxqDpLdfv8bYv38Qk14iIjMqd+IbGxuLnj17ivdfffVVaDQaJCQkmCMui6UqOuPrFixhJERkavn5WsyYcQi9ev2Cu3czAQDOztZYteoVLFzYFQ4OVhJHSERUvZW71CE/Px92dnbifblcDpVKhby8PLMEZpF0WihTzwMAtA71IFi7ShwQEZnS3bsZWLXqLARBf//552th8eIw+PhwESsRUUUwanHbN998A1vbwpXGarUay5Ytg6Nj4Q/tyMhI00VnYRQPrkOmyQLAMgei6qhePRd88UUHfPjhXkRGPo/Ro1tCLueWw0REFaXciW+rVq3w77//Gow1b94csbGx4n3uGf90DOp7uWMbUZWXnJwDW1sl7OwKd7t8660gtG1bC/Xr8y86REQVrdyJ79q1a80ZBwFQphTW96o540tUpe3bF4OIiJ3o3t0Pc+Z0EsdlMhmTXiIiiRi9ZTGZj0ErM/bwJaqScnM1+PTTA+jXbxMSErKwevU57N59U+qwiIgIT7BzG5mJoBNnfLV2PhBsPSUOiIiMdelSIkaNisLly0niWGhoPQQHe0sYFRERFWDiW0nIM2MgVz8AwIVtRFWNTidg1aozmD79EPLytAAAa2sFpk59EcOGNeP6ByKiSoKJbyVhuGMbE1+iqiI+PhMRETuxf/8tcSww0APLl4cjMNBDwsiIiOhRTHwrCVUK63uJqprr11Pw6qvrkZycI46NGNECn3zSHjY2/PFKRFTZPNHitlOnTmHixIl48803ER8fDwDYsmULTp06ZdLgLIky+Yx4mzO+RFXDs8+6wN/fDQDg7W2P9et7Yfr0Dkx6iYgqKaMT3507d2LYsGGwsbHBpUuXkJ+fDwDIzMzEihUrTB6gRRAEcWGbzsYTOtsaEgdEROWhUMixZEkY+vQJxIEDg9GxYz2pQyIiojIYnfguW7YM06ZNw4wZM6BUFs5qtGjRApcuXTJpcJZCnnUH8rwUAA8XtnEhDFGlo9XqsHDhCZw4cddgvFYtJyxZEgZ3d9tSziQiosrC6L/H/fvvv2jZsmWxcUdHRzx48MAkQVkag40r3JtJFwgRlSguLgNjxkThyJE7qFPHGfv3D4Sjo7XUYRERkZGMnvH18PDA7du3i42fPn0atWvXNklQlsZgq2IubCOqVLZuvYoOHdbgyJE7AIDY2HQcOHDrMWcREVFlZHTi27dvX3zxxRc4d+4cZDIZ4uPj8dtvv2HOnDno37+/OWKs9tjKjKjyycjIw3vv7cB//vMH0tPzAAA+Po7YvLkPXn3VX+LoiIjoSRhd6jB8+HDodDoMGTIEOTk5GDhwIKysrPDOO+9g0KBB5oix2hMXtlm5QGdfR+JoiOjkybsYPToKt26li2M9ewZg7txOcHGxkTAyIiJ6GkYnvjKZDKNGjcKwYcNw+/ZtZGdnw9fXF/b29uaIr9qTZ9+HIuc+gIdlDlzYRiQZjUaH+fOPY968Y9BqBQCAg4MVZs8ORZ8+gdyBjYioinviZpNWVlbw8/MzZSwWqejCNpY5EEkrJiYNCxeeEJPeVq1qYunSMNSt6yxxZEREZApGJ76DBg0qc9ZjzZo1TxWQpTFc2MbEl0hKfn5umDLlBUyZchATJoTggw/aQKl8on1+iIioEjI68Q0MDDS4r9FocPnyZVy7dg09e/Y0VVwWgwvbiKSTlpYLW1slrK0LfxS++25ztG9fB4GBHhJGRkRE5mB04vvxxx+XOL5o0SJkZ2c/dUCWRlzYpnKE1tFX4miILMfhw7EYMyYKPXsG4LPPXhLHZTIZk14iomrKZH/D69GjBzZu3Giqp7MIstxkKLJiAQAat2BAxj+pEplbfr4WM2YcQq9ev+Du3UwsXXoaf/5ZvDc5ERFVP0+8uO1RZ86cgZWVlameziIYLGxjfS+R2V2/noKRI7cjOjpBHGvfvjb8/FwljIqIiCqK0Ynv2LFjDe4LgoDExERcuHABo0ePNllgloCJL1HFEAQBa9acx5QpB5CTowEAqFRyREY+j9GjW0IuZ5syIiJLYHTi6+joaHBfJpPh2WefRUREBNq3b2+ywCyB4cK2ZtIFQlSNJSVlY/z43dix44Y45ufniuXLwxEc7C1hZEREVNGMSny1Wi169eoFf39/ODuzr+XTKmhlJihsoXVqIG0wRNXQ9esp6NnzFyQkZIljQ4Y0xWefvQg7O5WEkRERkRSMWk2lUCjwzjvv4MGDByYN4scff0RoaCiaNGmCPn36IDo6ulzn/fHHHwgICKiSJRay/HQoM24CADSuQYDcZOXWRPRQ3brO8PFxAAC4u9ti7drXMHduJya9REQWyug2Ag0aNMCdO3dMFsD27dsxa9YsjBkzBps3b0bDhg0xbNgwJCcnl3nenTt3MGfOHLRs2dJksVQkZUphcs/+vUTmoVIpsGxZOLp398OBA4PRtStbBhIRWTKjE98PPvgAc+bMwf79+5GQkIDMzEyD/4y1evVq9O3bF71794afnx+mTZsGGxubMlujabVaTJw4Ee+99x5q165t9GtWBoYL25pJFwhRNaHTCVi58m+cOXPPYLx+fVesXt0D3t72EkVGRESVRbn/vr548WK88847GD58OABg1KhRBlsXC4IAmUyGy5cvl/vF8/PzcfHiRYwYMUIck8vlaNeuHc6cOVPqeUuWLIG7uzv69OmD06dPl/v1ipLJ9P9JxWCrYvemksZSnRW8r3x/q7f79zMREbET+/ffwtq1F7BrV3/Y2rKcobrj59uy8HpbFnNd53InvkuWLEH//v2xZs0ak714amoqtFot3N3dDcbd3d1x8+bNEs85deoUfv31V2zZsuWpXtvNzfHxB5lT2nn9/xVWcPVrDSjYA9mc3N0lvt5kNlu3XsG7725DUpJ+58grV5Jw4sR99O7dSOLIqKLw821ZeL3paZQ78RUEAQDQunVrswXzOJmZmfjwww8xffp0uLm5PdVzpaRkQKczUWDGUmfBPeUKZADULo2RnpoHIE+iYKo3mUz/QzI5OQMPv4WpmsjKUmPq1IP44YfCenlvb3usWfM6nnvOC0lJGRJGRxWBn2/LwuttWeRy80xSGtVKQGbieWdXV1coFIpiC9mSk5Ph4eFR7PjY2FjExcVh1KhR4pjuYfbaqFEj7NixA3Xq1CnXawsCJPvgKFMuQAb9i2vcmvIDXAGkvN5keufOxWPkyO24cSNVHAsL88X8+V0QEKBPenm9LQc/35aF19symOsaG5X4du3a9bHJ74kTJ8r9fFZWVmjcuDGOHj2Kl19+GYA+kT169CgGDhxY7Pj69etj27ZtBmPffPMNsrKy8Mknn+CZZ54p92tLyaC+lzu2EZWbVqvDkiWnMHv2EWg0+l967eyUmD69AwYObMId2IiIqExGJb7vvfdesZ3bntbQoUPx0UcfISgoCMHBwfjhhx+Qk5ODXr16AQA+/PBDeHt7Y8KECbC2toa/v7/B+U5OTgBQbLwyM9yxjYkvUXldu5ZikPQ2beqN5cvD4evrKnFkRERUFRiV+Hbv3r3YQrSnFR4ejpSUFCxcuBCJiYkIDAzEqlWrxFKHe/fuQS43uutapaYq2LFNpoDGpbG0wRBVIQ0bemDy5Hb44ou/EBHRGpMmtYWVlULqsIiIqIqQCUL5qigCAwPx119/mTzxlUpyskSL27S58PipBmSCFhqXxkjtcVSCICyHTAZ4eDiy5rOKyszMh42NEkpl4S+/Wq0O588noFmz4qVNvN6WhdfbsvB6Wxa53DwdPMo9lVrO/JgeQ5l6ETJBC4BlDkRlOXnyLjp2XIt5844ZjCsU8hKTXiIioscpd+J75cqVajPbK6WiO7apuWMbUTEajQ5ffnkUPXqsx61b6Zg37zhOnLgrdVhERFQNGFXjS0/PcGFbM+kCIaqEYmLSMHp0FE6dKtx2+LnnanC7YSIiMgkmvhWsoJWZABk0rkHSBkNUSQiCgA0bLiMych8yM/MBAAqFDBMmhOCDD9oY1PgSERE9KSa+FUmnhjL1IgBA69wAUDlIHBCR9NLScvHhh3uxZctVcaxuXWcsWxaGli1rShgZERFVN0x8K5Ai7QpkOv1sFjeuIAKuX09Bnz4bERdXuL1wv36NMXNmRzg4WEkYGRERVUdMfCuQKvmseFvDhW1EqFXLCU5O1oiLy4CLizW++qozevSoOpvREBFR1cLCuQpksFUxW5kRwcZGieXLw/Hyy8/iwIHBTHqJiMismPhWoKKtzDRuwRJGQlTxBEHAmjXRuHo12WA8MNADP/30OmrWNH2jciIioqJY6lBRdFooU84DALQO9SBYuUgbD1EFSkrKxvjxu7Fjxw00buyJHTv6w9qaP36IiKhicca3gigeXINMmwMAULs3lzgaooqzb18MOnRYix07bgAALl5MxK5dNyWOioiILBGnXCqIQX0vOzqQBcjN1WDGjENYufKMOObubotvvumCrl19JYyMiIgsFRPfCmK4YxsTX6reLl1KxKhR23H5cmE9b8eOdbFwYTfuwkZERJJh4ltBDBe2MfGl6kmnE7Bq1RlMn34IeXlaAIC1tQJTpryAYcOaQy6XSRwhERFZMia+FUHQQZkSDQDQ2tWCYOMhcUBE5nHpUhKmTDkInU4AoO/YsHx5OAID+T1PRETS4+K2CqDIuAm5+gEAljlQ9RYU5IkPPmgNABgxogV27nyLSS8REVUanPGtAAb1vSxzoGokO1sNGxulQQnDhAkh6NChLkJCakkYGRERUXGc8a0ABvW9nPGlauLcuXh06vQ/LF16ymBcpVIw6SUiokqJiW8FMFzY1ky6QIhMQKvVYeHCEwgLW4cbN1Ixa9ZhREfHSx0WERHRY7HUwdwEAcrkswAAra03dHY1pI2H6CnExWVgzJgoHDlyRxxr1MgT9vZWEkZFRERUPkx8zUyeFQt5fioA1vdS1bZ161VMnLgH6el5AACZDIiIaI1Jk9rCykohcXRERESPx8TXzNi/l6q6jIw8fPzxfqxff0kc8/FxxJIl3dCuXW0JIyMiIjIOE18zKyhzAACNezPJ4iB6Etevp6B//824dStdHOvZMwBfftkJzs42EkZGRERkPCa+ZqZMOSve5owvVTU1ajhCqdSvgXVwsMLs2aHo0ycQMhl3YCMioqqHXR3MSRCgejjjq7Nyhc6efxamqsXeXoXly8Px/PO1sH//IPTt24hJLxERVVlMfM1InnMf8txEAA/LHJgwUCUmCALWr7+Ef/9NMxhv2tQbmzb1Qd26ztIERkREZCJMfM2IZQ5UVaSl5WL48D/w3ns7MHr0dqjVWoPHOctLRETVARNfMzLYqpgL26iSOnw4Fh06rMHWrf8AAE6fvo9du25KHBUREZHpcXGbGRVtZabmjC9VMvn5WsyZcwSLF5+EIOjHXFys8fXXndG9ewNpgyMiIjIDJr5mVDDjq1M5Qef4rMTREBW6fj0FI0duR3R0gjjWvn1tLF7cDTVrOkoYGRERkfkw8TUTWW4SFNn6bV01bsGAjFUlJD1BELBmzXlMmXIAOTkaAIBKJUdk5PMYPbol5HLW8hIRUfXFxNdMuGMbVUbnzydg0qQ94n0/P1csXx6O4GBvCaMiIiKqGJyGNBPDHduY+FLlEBzsjZEjnwMADBnSFHv2DGTSS0REFoMzvmaiMpjxbSZdIGTR8vI0sLJSGLQj++ST5xEaWg8dOtSVMDIiIqKKxxlfMymY8RUUttA6cYU8VbxLlxLRpcuPWL36nMG4tbWSSS8REVkkJr5mIMtLhSIzBgCgcWsCyBXSBkQWRacTsHLl3+ja9SdcvpyMzz47iKtXk6UOi4iISHIsdTADZep58TbLHKgixcdnIiJiJ/bvvyWOPfusq4QRERERVR5MfM2g6I5tau7YRhUkKuo6xo/fjeTkHHFsxIgW+OST9rCx4UediIiI/xqagTLlrHibrczI3LKy1Jg69SDWrIkWx7y97bFwYVd07FhPusCIiIgqGSa+ZlDQw1eQW0Hr0lDiaKg6u3EjFQMHbsGNG6niWFiYL+bN6wJ3d1sJIyMiIqp8mPiamEydAUX6NQCAxrUxIFdJHBFVZ56edlCrtQAAOzslZszoiAEDggzalxEREZEeuzqYmCLlAmQQAHBhG5mfk5M1liwJw3PPPYO9ewdh4MAmTHqJiIhKwcTXxFRF63u5YxuZ2G+//YO4uAyDsTZtfLB9e3/4+rJ7AxERUVmY+JqY0mDHNia+ZBoZGXl4770dePfd3zF2bBS0Wp3B45zlJSIiejwmviZW0MpMkCn1Nb5ET+nkybsIDf0f1q+/BAA4fPgOdu26KXFUREREVQ8Xt5mSJgeK9CsAAK1LIKCwkTggqso0Gh3mzz+OefOOQavV1407OFhh9uxQdOvmK3F0REREVQ8TXxNSpl2ETNCvsFezzIGeQkxMGkaPjsKpU/fEsVatamLp0jDUressYWRERERVFxNfEyq6YxsXttGTEAQBGzZcRmTkPmRm5gMAFAoZJkwIwQcftIFSyeokIiKiJ8XE14SUyWfF22xlRk/i7Nl4vPfeDvF+3brOWLYsDC1b1pQwKiIiouqB00cmJO7YBhk0rkESR0NVUfPmz2Dw4GAAQL9+jbF//yAmvURERCbCGV9T0eZDmXZRf9PZH1DZSxwQVQVqtRZKpdygHdm0aS/h5Zef5QI2IiIiE+OMr4ko0y5DplMDYP9eKp/r11MQFrZObFNWwN5exaSXiIjIDJj4mojBxhXuzaQLhCo9QRDwww/R6NTpf4iOTkBk5D7cvJkqdVhERETVHksdTERZdKtiLmyjUiQlZWP8+N3YseOGOFajhgNyczUSRkVERGQZmPiaiEErM7cmEkZCldW+fTGIiNiJhIQsceztt4MxbdpLsLNTSRgZERGRZWDiawo6DZSpFwAAGsf6EKy4wQAVys3V4Isv/sKKFX+LY+7utvjmmy7o2pW1vERERBWFia8JKB5cg0ybA4BlDmTo5s1UDB26DZcvJ4ljoaH1sGBBV3h7s/MHERFRRWLiawLK5DPibe7YRkW5uNggNVX/S5G1tQJTp76IYcOaGbQvIyIioorBrg4mYNDRga3MqAg3N1ssXNgNjRt7YteuAXj33eZMeomIiCTCxNcEDBe2MfG1ZDt33kB8fJbBWIcOdbFnzwAEBnpIFBUREREBTHyfnqCDMiUaAKC1rw3Bxl3igEgKWVlqTJy4B4MGbcUHH+yEIAgGjysU/KgRERFJjf8aPyVFxg3INZkAONtrqc6di8fLL/8Pa9bofwHauzcGu3bdlDgqIiIiehQXtz0lgzIH7thmUbRaHZYsOYXZs49Ao9EBAOzslJgxoyO6dKkvcXRERET0KCa+T4kL2yxTXFwGxoyJwpEjd8Sxpk29sXx5OHx9XSWMjIiIiErDxPcpFZ3xVXPG1yJs2XIVkybtQXp6HgBAJgMiIlpj0qS2sLJSSBwdERERlYaJ79MQBChTzgIAtLbPQLD1ljYeMrtTp+5i+PA/xPs+Po5YsqQb2rWrLWFUREREVB5c3PYU5Jm3IM9PA8AyB0vRsmVN9OkTCADo2TMA+/cPYtJLRERURXDG9ykY1Pdyx7ZqSacTIJcbbjgxe3YoOneuj9de8+dmFERERFUIZ3yfguHCtmbSBUJmEROThlde+Rlbt141GHd0tEbPngFMeomIiKoYzvg+BVXyWfE2Sx2qD0EQsGHDZURG7kNmZj6uXduDli1rwsfHUerQiIiI6Ckw8X1SRRa26azdobOvJW08ZBJpabmYNGkPtm79RxxzcbFBSkoOE18iIqIqjonvE5Ln3IM8NwnAw9le/tm7yjt8OBZjxkTh7t1Mcaxfv8aYObMjHBysJIyMiIiITIGJ7xPijm3VR36+FnPmHMHixSchCPoxZ2drfP11Z/To4S9tcERERGQyTHyfUEGZAwCoWd9bZcXEpOHdd39HdHSCOPb887WweHEYSxuIiIiqGSa+T0hZdGEbW5lVWba2SsTFZQAAVCo5IiOfx+jRLYu1MCMiIqKqj+3MnlBBKzOdyhk6h2cljoaelLe3A+bP74IGDdwQFdUfY8e2YtJLRERUTXHG9wnIchKgyL4LANC4BXNhWxVy8OAtNGniBTc3W3GsWzdfdOpUDyqVQsLIiIiIyNwqxYzvjz/+iNDQUDRp0gR9+vRBdHR0qcdu2LABb731Flq1aoVWrVphyJAhZR5vDtyxrerJzdXg008PoE+fjZg4cQ+EglVsDzHpJSIiqv4kT3y3b9+OWbNmYcyYMdi8eTMaNmyIYcOGITk5ucTjjx8/ju7du2PNmjX4+eefUaNGDbzzzjuIj4+vsJhVBju2MfGt7M6fj0fXrj9hxYq/AQC//34N+/bFSBsUERERVTjJE9/Vq1ejb9++6N27N/z8/DBt2jTY2Nhg48aNJR7/9ddfY8CAAQgMDISvry9mzJgBnU6Ho0ePVljMhq3MmlfY65JxdDoBK1b8jVatvsWlS/qey9bWCsyc2RGhofWkDY6IiIgqnKQ1vvn5+bh48SJGjBghjsnlcrRr1w5nzpwp13Pk5ORAo9HA2dnZqNeWyZ68NLeg1EFQ2kPn5MsS30ro/v1MRETsxP79t8SxRo08sHx5OAIDPSSMjMyp4LPIz6Rl4PW2LLzelsVc11nSxDc1NRVarRbu7u4G4+7u7rh582a5nuOrr76Cl5cX2rVrZ9Rru7k9YY/W3FQgMwYAIPNqBg8vlyd7HjKb3367imHDfkNSUrY4Nm5cCGbO7AQbG67ntATu7uzBbEl4vS0Lrzc9jSqdBaxcuRLbt2/HmjVrYG1tbdS5KSkZ0OmMf03Vvb9QMLec4xSErKQM45+EzOb48Ti89tp68b6Xlz3Wrn0dzz3nhczMHGRmlnEyVXkymf4fxeTkDDyyfpGqIV5vy8LrbVnk8qeYpCyDpImvq6srFApFsYVsycnJ8PAo+8/R3333HVauXInVq1ejYcOGRr+2IOCJPjiKpML6XrVbM374KplWrWoiPNwP27dfR7duvvjmmy4ICPBCUhJ/UFqSJ/18U9XE621ZeL0tg7musaSL26ysrNC4cWODhWkFC9WaNy990di3336LpUuXYtWqVWjSpElFhCoqulUxW5lJ79G2ZDKZDPPmdcbChV3xww894O5uW8qZREREZGkk7+owdOhQbNiwAZs3b8aNGzfw2WefIScnB7169QIAfPjhh/j666/F41euXIkFCxZg5syZ8PHxQWJiIhITE5GVlVUh8YoL2+TW0DoHVMhrUsni4jLQq9cv2LXLsB7czc0W/fo1howrIIiIiKgIyWt8w8PDkZKSgoULFyIxMRGBgYFYtWqVWOpw7949yOWF+fnPP/8MtVqNiIgIg+cZO3Ys3nvvPbPGKst/AOWD6wAAjWtjQK4y6+tR6bZuvYqJE/cgPT0PV68mY//+wfD2tpc6LCIiIqrEJE98AWDgwIEYOHBgiY+tXbvW4P6+ffsqIqQSKVMviLfZv1caGRl5+Pjj/Vi//pI4Zm2tRHx8JhNfIiIiKlOlSHyrCoP6Xu7YVuFOnryLUaOicPt2ujjWs2cA5s7tBBcXGwkjIyIioqqAia8RDHdsY+JbUTQaHebNO4b5849Dq9UvZnNwsMLs2aHo0yeQtbxERERULkx8jSAubJMpoXFpJHE0luH27XSMHLkdp07dE8dataqJpUvDULeucbv1ERERkWVj4ltemmwo0q/ob7o0AhTGbZhBT0Yul+Gff1IAAAqFDBMmhOCDD9pAqZS8IQkRERFVMcweykmZegEyQb/VG8scKk6tWk748stOqFvXGdu2vYmJE9sy6SUiIqInwhnfcjKo7+XCNrM5duwOGjf2hKNj4Yz66683RFiYH2xs+O1KRERET45TZ+VUUN8LcMbXHPLztZg+/RBee20DIiP3F3ucSS8RERE9LSa+5VS4sE0OjWvFbpNc3V2/noLw8HVYtOgkBAHYsOES9u+PkTosIiIiqmY4jVYe2jwo0/QbJmidAwClncQBVQ+CIGDNmvOYMuUAcnI0AACVSo7IyOfx0kt1JY6OiIiIqhsmvuWgTLsMmU4NgPW9ppKUlI3x43djx44b4pifnyuWLw9HcLC3hJERERFRdcXEtxwM6nuZ+D61fftiEBGxEwkJWeLYkCFN8dlnL8LOTiVhZERERFSdMfEtB2XyWfG2xr2ZZHFUB8eO3UG/fpvE++7utvjmmy7o2tVXwqiIiIjIEnBxWzkoU86Kt7mw7em0aeOD0NB6AIDQ0Ho4cGAwk14iIiKqEJzxfRydGsqUCwAAjaMvBCsniQOq2mQyGRYs6Irt269jyJBgyGQyqUMiIiIiC8EZ38dQpP8DmS4PAPv3Gis+PgtvvbUZf/5522Dc29seQ4c2ZdJLREREFYozvo9hUObg1kyyOKqaHTtuYNy4XUhOzsHFi4nYv38Q3NxspQ6LiIiILBgT38cw2KqYC9seKytLjalTD2LNmmhxTKcTEBv7gIkvERERSYqJ72OoDFqZBUsYSeV37lw8Ro3ajuvXU8WxsDBfzJvXBe7uTHqJiIhIWkx8yyLooEzRz1xqHepCsHaTOKDKSavVYcmSU5g9+wg0Gh0AwM5OiRkzOmLAgCDW8hIREVGlwMS3DIoHNyDT6DdZ4MYVJbt7NwNjxkTh8OE74ljTpt5Yvjwcvr6uEkZGREREZIiJbxmUyWfE20x8S5abq8GZM/EAAJkMiIhojUmT2sLKSiFxZERERESG2M6sDAZbFbOVWYnq13fFzJkd4ePjiM2b++CTT9oz6SUiIqJKiTO+ZSia+KrZygwA8Pff99CwoQfs7FTiWP/+jdGjhz8cHKwkjIyIiIiobJzxLY0giK3MtLY1INh6SRyQtDQaHb788ii6d/8Zn332p8FjMpmMSS8RERFVekx8SyHPjIFcnQ6AZQ4xMWno0WM9vvzyKLRaAd9/fw5//XX78ScSERERVSIsdSiFQX2vhZY5CIKADRsuIzJyHzIz8wEACoUMEyaEICSklsTRERERERmHiW8pVBa+Y1taWi4+/HAvtmy5Ko7VreuMZcvC0LJlTQkjIyIiInoyTHxLoUw5K962tFZmR47EYsyYHYiLyxDH+vVrjJkzO7KWl4iIiKosJr4lEQQok88CAHQ2HtDZWc4M55EjsXj99V8gCPr7Li7W+OqrzujRw1/awIiIiIieEhe3lUCeHQd5XjKAh7O9FrTlbps2PmjbVl+/2759bRw4MJhJLxEREVULnPEtgTLZche2KRRyLFkSht9++wcjRrSAXG45ST8RERFVb5zxLUHR+l51NW5llpSUjaFDf8Px43EG4z4+jhg16jkmvURERFStcMa3BIatzKpn4rtvXwwiInYiISEL588nYP/+QXB0tJY6LCIiIiKz4YxvCQpKHXRWLtA51JM2GBPLzdXgv//dj379NiEhIQsAkJWlxo0bqRJHRkRERGRenPF9hCwnHoqcewCq38K2S5cSMWrUdly+nCyOhYbWw4IFXeHtbS9hZERERETmx8T3EapqWOag0wlYteoMpk8/hLw8LQDA2lqBqVNfxLBhzSCrRsk9ERERUWmY+D6ioH8vAGiqwcK2+PhMRETsxP79t8SxwEAPLF8ejsBADwkjIyIiIqpYTHwfYbiwrZl0gZhIamoujhy5I94fMaIFPvmkPWxseOmJiIjIsnBx2yPEhW1KB2idfCWO5uk1bOiBqVNfhJeXPdav74Xp0zsw6SUiIiKLxAyoCFluMhRZtwEAWrcmgKzq/V5w4UIiGjRwhbV14aUdNqwZ3ngjEC4uNhJGRkRERCStqpfZmZEyJVq8ra5iC9u0Wh0WLjyBLl1+xMyZhw0ek8lkTHqJiIjI4jHxLcKgvrcKLWyLi8tA796/YsaMv6DR6LBs2WkcOxb3+BOJiIiILAhLHYooulWxxq25dIEYYevWq5g4cQ/S0/MA6NsOR0S0RosWz0gcGREREVHlwsS3iIKFbYLCBlpnf4mjKVtGRh4+/ng/1q+/JI75+DhiyZJuaNeutoSREREREVVOTHwfkuU/gDLjBgBA4xoEyCvvW3Py5F2MHh2FW7fSxbGePQMwd24n1vISERERlaLyZncVrOjCtsq8Y9vhw7F4441fodUKAAAHByvMnh2KPn0CuQMbERERURm4uO0hg/pe92aSxfE4rVvXRNOm3gCAVq1qYv/+QejbtxGTXiIiIqLH4IzvQ4Y7tlXeGV+VSoGlS8Owdes/eO+9VlAq+bsLERERUXkw8X1IXNgmV0HjEihxNHppabmYPHkfRo16TpzlBYD69V0xblwbCSMjIqq+BEGATqeFTqeTOhQqQiYDcnNzoVbnQxCkjoZMQaFQQi6v2Ak8Jr4AoM6C4sE/AACNSyNAYS1xQPpa3jFjonD3biaio+OxZ89A2NmppA6LiKha02jUSE9PgVqdK3UoVIKUFDl/IalWZHB19YS1tW2FvSITXwDKtAuQCfoPktRlDvn5WsyZcwSLF58Uf6NNSsrG1avJaN6cvXmJiMxFEAQkJ9+HXC6Hs7MHFAol109UMgqFTFzcTVWbIAjIzExHamoivLxqVdjMLxNfFJY5ANIubLt+PQUjR25HdHSCONa+fW0sXtwNNWs6ShYXEZEl0GjUEAQdnJ09YWXF1pCVkVIph0bDGd/qwsHBGSkpOdBqNZDLrSrkNZn4QvqFbYIgYM2a85gy5QBycjQAAJVKjsjI5zF6dEvI5ZxxICKqKDIZFw0TVQQp/qLCxBeAKvksAECQKfSbV1SgpKRsjB+/Gzt23BDH/PxcsXx5OIKDvcs4k4iIiIiMwV9rtblQpF3W33QOAJQVV2ANAHfvZmDPnn/F+0OGNMWePQOZ9BIRERGZmMUnvsrUS5AJ+vICKcocgoO9MXlyO7i722Lt2tcwd24ndm8gIiKqILdvx6BHj67Izs6SOpRqRa1W4403XsWVK5ekDsWAxZc6GNT3ups/8b12LQX16jlDpVKIY2PGtET//kHw9LQz++sTEVH188UXnyEq6ncAgEKhgJeXNzp27IRhw0bC2tqwRefhw4ewbt1aXL16BTqdFs8+64tevfogPPzVYs974MBe/Prrely7dhU6nQ41a/qgQ4dO6N27L5ycnCvkazO35cuXoHfvvrCzs5c6FLPZuHED1q1bi5SUZPj6NsC4cZPQqFHZpZ0bNvyEzZt/RXx8PFxcXNChQyhGjBhr8P1U1vOqVCr07z8Qy5YtwoIFy8z69RmDM74GC9uame11dDoBK1f+jdDQtZg377jBYwqFnEkvERE9lTZt2mHr1h3YsGEr3ntvPLZu3YTvvlthcMyvv/6MyMgJaNKkKVau/B4//PAzOnXqgq++moXFi78xOHbFiiWYOvVjBAY2xldfLcSaNesxduwHuH79H+zYsb3Cvi61Wm22575//z6OHDlUYtJvDHPG+LT27t2FxYvnY+jQ/+C77/4HPz9/jB//HlJTU0o9Z9euHVi+fDGGDh2OH3/8BZMnf4q9e3dj5colRj1v585hiI4+i5s3b5T0MpLgjG/BwjbIoHFrYpbXiI/PRETETuzffwsAMH/+cXTu/CxatKhhltcjIiLLY2Wlgru7BwDA2/sZ7NzZGqdOFU60xMffx+LF36BPn/4YMWKMON6//0CoVEp8881X6NjxZTRuHIRLly5g7drViIiYgL59+4vH1qhRE61ahSAjI6PUOBIS4rFkyQKcOHEManU+6tZ9FuPHf4TGjYPwxRefITMzA7NmfS0ev2DB17h27SoWL14JABg7djjq1/eFQqHErl3bUb++H9zdPaDT6TBz5hzxPI1Gg9de64qxY8chLOwV6HQ6/PjjD/jtt81ITk5G7dp1MGTIMHTs+HKpse7btxt+fv7w9PQSx9LT0zBv3lycO3cGGRkP4ONTC4MGDUXnzt3EY0qKcdGiFbh58zqWLFmI6OgzsLGxRevWbfDeexPg4uICADh27Ah++OE7/PvvDcjlCgQFNcH770+Ej0+tUmN8Wj///CNefbUnunfvAQCYNCkSR4/+hd9//w2DBg0p8ZwLF86hSZOm6NJF/zXXqFETL7/cFZcuXTDqeZ2cnNCkSVPs3bsL9euPMtvXaAzLTnx1aihTLwIAtE5+EFSm75UbFXUd48fvRnJyjjj2n/80R6NGniZ/LSIiMj2rmM2wP/cFZOrMCntNQeWArGb/RX7dnk90/s2b13HhQjS8vQsnWA4c2AuNRoP+/QcVO/6113pjxYql2LNnJxo3DsKuXTtga2uHXr36lPj8jo4l/3uZnZ2NsWOHw9PTC7Nnz4O7uzuuXr0CQTCu925U1B94/fXeWLbsOwDAnTt38OmnHyE7O1vssXz8+FHk5ubipZc6AgDWrl2NXbuiMHFiJGrVqo1z585g+vQpcHFxRfPmz5X4OtHRZ9CwYaDBWH5+PgICAjFw4Nuws7PH0aN/YcaMqfDxqWVQHvBojBkZGYiIGIVXX+2JiIjxyMvLxbJlizBlymQsXLgcAJCbm4N+/QbA17cBcnKysWrVcnz88USsXv1TqRs4rFnzf1i7dnWZ79fatb/gmWeKb3KlVqvxzz9XMGjQUHFMLpejZcvWuHgxutTnCwpqil27onDp0gU0ahSEuLg7OHbsMLp2DTf6eQMDG+PcuTNlxl+RLDrxVaRfhUyXB8D0C9uystSYOvUg1qwp/Abw8rLHokVd0bFjPZO+FhERmY/dxQVQpv8jyesak/geOfIXOnd+AVqtFvn5+ZDL5Rg37kPx8djY23BwcICHh0exc1UqFWrW9EFsrP4vk3fu3EbNmj5QKo1LE3bv3oG0tDSsWrVGrAGuVau2Uc8BALVr18bo0e+L92vWrAVbW1scPLgPnTuHi6/Vvv2LsLOzR35+PtauXY1vvlmKoKBgAICPTy1ER5/F1q2bSk1879+/j4YNGxmMeXp64a23Cn85eOONfjhx4hj27dtjkPg+GuP336+Cv3+AwWx6ZOQU9OrVHbdv30KdOnXRoUMng9eKjJyKV155GTExN1G/vl+JMfbs2RuhoZ3LfL9KuqaAfvZaq9XCzc3NYNzNzQ23bsWU+nxdunRDenoaRo9+F4IgQKvVomfP3hg8+B2jn9fDwxPx8ffLjL8iWXTia64d286di8fIkdtx40aqONatmy/mz+8Cd/eKbZdGRERPJzvoA9ifnVHhM77Zjd9//IFFNG/+HCZOjEROTg42bPgJCoWiWKJV7td/wl2Br137B/7+AU+98C0gwHAWVqlUomPHzti5MwqdO4cjJycHf/11EJ99NhMAcOdOLHJzczFu3BiD89RqNRo0CCj1dfLycmFlZbhjmFarxdq1q7Fv324kJiZCo1EjPz8f1taGu/k9GuP169fw99+n0LnzC8VeJy7uDurUqYvY2NtYtWo5Ll26iPT0NHEmPD7+fqmJr5OTc4UvJPz771NYu3Y1JkyYjEaNgnDnTiwWLPgK33+/CkOGvGvUc1lbWyM3N9dMkRrPohNfVXLh1LupZnwPHbqNN9/cJG6paGenxPTpHTBwYBPu+U5EVAXl1+35xCUHFcnW1lacXY2MnIIhQ/rj99+34JVXegIAateug8zMTCQlJcLDw7DcTq1W4+7dO2jRoqV4bHT0WWg0GqNmfR/tIPEomUwG4ZGsWqPRFDvOxqb4JFGXLt0wduwIpKam4OTJ47C2tkZISDsAQE6Ovpxw7txvDOp1Af1sdmlcXFyK1Sv/9NNa/PLLOkRETED9+n6wtbXFwoVfQ6MxXMD2aIw5/9/enUdFXfUPHH/PsBoo4ohgZooWkIiJqaSChqQYhj1aGpkiamq4hcsjmpa4YomKLCouWZrpYwq4gT2PejRNJZfMJcxfCLJoBiIpgmwzvz88jhG4DLLFfF7ncE5z536/38/l09RnLvd7v/n5dOvmhr//xDLXub/2OjBwEjY2TQkMnEnjxlao1Wp8fd+lqKjs7+C+p1nqYGHREAMDA7KzS9/Ilp2djUqleuj51q5dhaenF97e/wKgdesXuHs3n88/X4Cv7widznvr1p/aNc61gV4XvqV3dGhXKefs3PlZ7Owa8csvWbz8sjWrVnnRurVlpZxbCCGEeBJKpZKhQ4cTEbGMXr36YGJiSo8eHqxcGc7mzV8zYcKkUv1jY7eTn5/P6697AtCrVx+2bdtCdPS3pW5uu+/27dvlrvN94YUX2b07llu3/ix3lrJhQ0uSk0vf4f/bb79iYPD4csTJ6WWsra3Zv/+/HD9+FHf317VFua2tLcbGxly//vtDlzWU58UX7UlJuVyq7dy5n3F17aFdz6pWq0lNTcXW1vaR57Kzs+fQoQPY2DQt98vCn3/mkJp6hcDAWbz8sjMAP/985rExPs1SByMjI+zsHDh16ke6d39NO55Tp04wYMCgh57v7t27ZSbr7q9B1mg0Op03OTkJO7uHz7pXN/3dzkxdguHNcwCUmLdEY1I5xamJiSGrVnkxaZILe/b4SNErhBCiRri7v45SacD27d8CYGNjw9ixE/n2281ERUVy5UoKGRnpbNnyNStXhuHjMwRHx3trWB0d2zJ4sC+RkaGsWLGc8+fP8vvv1zh58kdmzQrU7hn8d6+/7kmjRipmzJjK2bNnyMhI5+DB/Zw/f+9+l1de6cTFi4nEx+8mLS2VdeuidNrqqnfvPsTGRnPiRAK9er2hbX/mGTN8fIYQHr6U+PjdZGSk8+uvF9m2bctDYwXo3LkL58+fo6SkRNvWvHlzTpxI4Ny5n0lJSWbx4oXcvHnjsbG9/fYgbt26RVDQTBITL5CRkU5CwjEWLpxDSUkJ9es3wMLCgp07o0lPT+PUqRNERCx97HkbNLDgueeaP/LnUbPyPj7vs2tXLPHxu0lJSSYkJJj8/Hz69n2whdu8eZ+yalWE9nW3bm7Exm5n377vuHo1gxMnjrN27Sq6deuOgYHBE58X7hX3nTq9+thxVhe9nfFV3rqMojgPqPgyh9u3C5g9+xCjR3fAweHBty0Hh8bMmFH+ty8hhBCiOhgaGjJgwCC++WYD/fu/Q7169Rg0aDDPPtuMzZu/Ztu2LZSUqLG1bcWUKdO121LdN3bsROztXyIm5ltiY6PRaNQ8++xzuLt78MYbb5Z7TSMjI5YtiyQiYhn//vdHlJSU0LJlKyZPvneTnYtLF/z8PmDlynAKCwvo27cfffr0JSnptycak6fnG3z55TpsbJrSrl3p/3ePGuVPw4aWbNy4nqtXMzA3r4+dnQO+vsMfcjZ49dWuGBgYcPLkj7i4dAFg2LCRXL2aweTJEzA1NaVfv/64ub3GnTuPXuPduLEVK1euY+XKcCZNGk9RUSE2Nk1xcemCUqlEoVAQFLSQ5ctD8PV9l+bNWxAQMJUJE8Y80dgrysOjNzk5N1m7dhXZ2Td44QU7liwJp1GjB0sSrl//vdSuEsOGjUShULBmzUoyMzNp2LAh3bp1Z/TosTqd9/z5s+Tm5uLuXrG15lVBofn7Yhs9cfvkV9Q/5AfAHedPyXOaqtPxJ05cZezYeK5c+ZM2bRrz3XeDMTHR2+8RtZZCAY0b1ycr63aFb9YQ/xySb/1S2fkuKirkxo1rqFRNMTIyfvwBotoZGiq199BUlu3bt/LDD9+zdGnE4zsLnXz66QxeeOFF7W4Qf/eoz5xSCSpV5W8zq7dLHQxvPtiEuUiHGd/iYjWLFx+jX7//cOXKnwCkpt7il1+yKj1GIYQQQlStt94awMsvO5OXd6emQ6lTioqKaNWqNe++O7imQylFb6coDbLPaf/5SR9VnJKSw9ix8Zw8eU3b1qnTs6xY8QYtWtSNZ5YLIYQQ+sTQ0JBhw0bWdBh1jpGRkc5bn1UHvS1878/4ljzTDE29Rz9FTaPRsHVrIjNmHCA3txAAAwMFU6a8SkCAC4aGejtxLoQQQgjxj6G3ha+y6Bbw+BvbcnLuMm3afmJjf9W2tWhhwcqVb9Cx47NVGqMQQgghhKg8elv43lesenThe+lSNjt3PnhUpY+PIwsXumNuLjc+CCFEXaSn93wLUe1q4rOm93+jf9z63s6dnyUgoDMWFiasXfsmYWGeUvQKIUQddH9/0sLCghqORAj9UFJy74l1f91KrarJjO/fZnyvXPmT556rj4HBgyRMmfIqw4a1o2nTyt9WQwghRO2gVBpQr545ubk3ATA2NpFHzdcyarWCkhKZka8LNBo1t2/nYGxsilJpUG3X1evCV21qhbpeU+DedPuGDef49NODTJnyKhMndtb2MzIykKJXCCH0QIMGjQC0xa+oXZRKJWp15e7jK2qOQqGkQYNG1foFU68L3+JGL4NCQVZWHpMn/4+9e+89NnHRoqO4u7fEyalJDUcohBCiOikUCiwsVNSvb6n9M6yoHRQKsLQ04+bNO/KAmjrC0NCo2v+qoteFb5GqPQcOpDBx4nf88ceDjavff78trVtb1mBkQgghapJSqUSplPs5ahOFAkxNTTEyKpLCV1RYrbi5bdOmTfTs2RMnJycGDhzI2bNnH9k/Pj6ePn364OTkhLe3N4cOHdL5mneLDJm6vhk+PtHaolelqsfGjW+xePHrPPOMUYXGIoQQQgghaqcaL3zj4uIIDg5m3LhxxMTE4ODgwMiRI7lx40a5/U+fPs2UKVN45513iI2NxcPDg3HjxnHp0qVy+z/Mayv9WLXlT+3rnj1bcvCgL56erZ9qPEIIIYQQonaq8cJ3/fr1DBo0iLfffpsXXniBOXPmYGpqyvbt28vtv2HDBtzc3Pjggw9o3bo1AQEBtGnThq+//lqn6/5y/d7T2kxMDFi40J3Nm/tjbW321OMRQgghhBC1U42u8S0sLOTChQuMGTNG26ZUKunatSs//fRTucecOXMGPz+/Um2urq7s27dPp2vXr2+Mg4OK0NDe2NurdI5d/DPcXzOvVCJrwvSA5Fu/SL71i+Rbv1TVPW81WvjevHmTkpISVKrShadKpeLy5cvlHpOVlUXjxo3L9M/KytLp2hkZU3QLVvyjNWok29HpE8m3fpF86xfJt3gaNb7UQQghhBBCiOpQo4WvpaUlBgYGZW5ku3HjRplZ3fsaN25cZnb3Uf2FEEIIIYSAGi58jY2NcXR05NixY9o2tVrNsWPHcHZ2LveY9u3bc/z48VJtR48epX379lUZqhBCCCGE+Ier8aUOw4cPZ+vWrcTExJCUlERQUBD5+fkMGDAAgGnTprFkyRJtf19fXw4fPswXX3xBUlIS4eHhnD9/niFDhtTUEIQQQgghxD9AjT+5zcvLi+zsbMLCwsjMzOSll15i7dq12qUL165dQ6l8UJ936NCBkJAQQkNDWbp0KS1btiQyMhI7O7uaGoIQQgghhPgHUGg0simIEEIIIYSo+2p8qYMQQgghhBDVQQpfIYQQQgihF6TwFUIIIYQQekEKXyGEEEIIoRfqZOG7adMmevbsiZOTEwMHDuTs2bOP7B8fH0+fPn1wcnLC29ubQ4cOVVOkojLoku+tW7cyePBgOnXqRKdOnfDz83vsvx+idtH1833fnj17sLe3Z+zYsVUcoahMuub71q1bzJkzB1dXV9q2bYunp6f8N/0fRNd8f/nll3h6etKuXTt69OjBwoULKSgoqKZoxdM4ceIEH374Ia6urtjb27Nv377HHpOQkED//v1p27YtvXr1Ijo6Wufr1rnCNy4ujuDgYMaNG0dMTAwODg6MHDmyzNPh7jt9+jRTpkzhnXfeITY2Fg8PD8aNG8elS5eqOXJREbrmOyEhgb59+7Jhwwa2bNlC06ZNGTFiBNevX6/myEVF6Jrv+9LT0/nss8/o2LFjNUUqKoOu+S4sLGT48OFkZGSwfPly9u7dy7x587C2tq7myEVF6JrvXbt2sWTJEsaPH09cXBwLFiwgLi6OpUuXVnPkoiLy8vKwt7dn9uzZT9Q/LS2NMWPG4OLiwo4dOxg2bBizZs3i8OHDul1YU8e88847mjlz5mhfl5SUaFxdXTVRUVHl9v/oo480o0ePLtU2cOBAzSeffFKlcYrKoWu+/664uFjj7OysiYmJqaIIRWWqSL6Li4s17777rmbr1q2awMBAjb+/f3WEKiqBrvn+5ptvNB4eHprCwsLqClFUIl3zPWfOHI2vr2+ptuDgYI2Pj0+Vxikqn52dneZ///vfI/t8/vnnmr59+5ZqCwgI0IwYMUKna9WpGd/CwkIuXLhA165dtW1KpZKuXbvy008/lXvMmTNn6NKlS6k2V1dXzpw5U5WhikpQkXz/XX5+PsXFxVhYWFRVmKKSVDTfkZGRqFQqBg4cWB1hikpSkXwfOHCA9u3bM3fuXLp27cqbb77JqlWrKCkpqa6wRQVVJN/Ozs5cuHBBuxwiLS2NQ4cO0aNHj2qJWVSvyqrXavzJbZXp5s2blJSUoFKpSrWrVCouX75c7jFZWVnap8T9tX9WVlaVxSkqR0Xy/XchISE0adKk1H9sRe1UkXyfPHmSbdu2ERsbWw0RispUkXynpaVx/PhxvL29Wb16NampqcyZM4fi4mLGjx9fHWGLCqpIvr29vbl58yaDBw9Go9FQXFyMj48PH374YXWELKpZefVa48aNyc3N5e7du5iamj7ReerUjK8Quli9ejVxcXFERERgYmJS0+GISpabm8u0adOYN28ejRo1qulwRDXQaDSoVCrmzZtH27Zt8fLy4sMPP2TLli01HZqoAgkJCURFRTF79myio6OJiIjg0KFDREZG1nRooharUzO+lpaWGBgYlFkIf+PGjTLfEu5r3LhxmdndR/UXtUdF8n3funXrWL16NevXr8fBwaEqwxSVRNd8p6WlkZGRgb+/v7ZNrVYD0KZNG/bu3cvzzz9ftUGLCqvI59vKygpDQ0MMDAy0ba1atSIzM5PCwkKMjY2rNGZRcRXJ9/Lly+nXr592GZO9vT15eXl8+umn+Pv7o1TK3F5dUl69lpWVhbm5+RPP9kIdm/E1NjbG0dGRY8eOadvUajXHjh3D2dm53GPat2/P8ePHS7UdPXqU9u3bV2WoohJUJN8Aa9asYcWKFaxduxYnJ6fqCFVUAl3z3apVK3bt2kVsbKz2p2fPnri4uBAbG4uNjU11hi90VJHPd4cOHUhNTdV+wQFISUnByspKit5ariL5vnv3bpni9v6XHo1GU3XBihpRWfVanSp8AYYPH87WrVuJiYkhKSmJoKAg8vPzGTBgAADTpk1jyZIl2v6+vr4cPnyYL774gqSkJMLDwzl//jxDhgypqSEIHeia79WrV7N8+XIWLlxIs2bNyMzMJDMzkzt37tTUEIQOdMm3iYkJdnZ2pX4aNGiAmZkZdnZ2Ugj9A+j6+X7vvffIyclhwYIFJCcnc/DgQaKionj//fdraghCB7rm293dnc2bN7Nnzx7S0tL44YcfWL58Oe7u7qVm/UXtdOfOHRITE0lMTATubTuZmJjI1atXAViyZAnTpk3T9vfx8SEtLY3PP/+cpKQkNm3aRHx8PH5+fjpdt04tdQDw8vIiOzubsLAwMjMzeemll1i7dq32TyXXrl0r9Q2xQ4cOhISEEBoaytKlS2nZsiWRkZHY2dnV1BCEDnTN95YtWygqKmLixImlzjN+/HgmTJhQrbEL3emab/HPpmu+mzZtyrp16wgODqZfv35YW1vj6+vLqFGjamoIQge65tvf3x+FQkFoaCjXr1+nUaNGuLu7M2nSpJoagtDB+fPn8fX11b4ODg4GoH///ixatIjMzEyuXbumfb958+ZERUURHBzMhg0bsLGxYf78+bi5uel0XYVG/h4ghBBCCCH0gEyNCCGEEEIIvSCFrxBCCCGE0AtS+AohhBBCCL0gha8QQgghhNALUvgKIYQQQgi9IIWvEEIIIYTQC1L4CiGEEEIIvSCFrxBCCCGE0AtS+AohBBAdHU3Hjh1rOowKs7e3Z9++fY/sM336dMaOHVtNEQkhRO1T5x5ZLITQX9OnTycmJqZM+3//+19atGhRAxE9EB0dzYwZMwBQKBQ0adKEbt26MXXqVFQq1VOf/8iRI1hYWAD3nnnv4eFBbGwsL730krbPzJkzqeqHdYaHhxMREQGAUqmkSZMmdO/enSlTptCwYcMnPs/06dO5desWK1asqKJIhRD6SApfIUSd4ubmpn3m+32NGjWqoWhKMzc3Z+/evajVai5evMjHH3/MH3/8wbp165763FZWVo/tU79+/ae+zpN48cUXWb9+PWq1mqSkJD7++GNu375NaGhotVxfCCEeRpY6CCHqFGNjY6ysrEr9GBgYsH79ery9vWnfvj09evQgKCiIO3fuPPQ8Fy9eZOjQoTg7O9OhQwcGDBjAuXPntO+fPHmSwYMH065dO3r06MH8+fPJy8t7ZGwKhQIrKyusra3p0aMHQ4cO5ejRo9y9exe1Wk1ERATdu3enbdu2vPXWW3z//ffaYwsLC5k7dy6urq44OTnh7u5OVFSU9v2/LnXw8PAA4F//+hf29vYMHToUKL3U4T//+Q+urq6o1epSMfr7+2tnpgH27dtH//79cXJywsPDg4iICIqLix85TgMDA+04u3btSp8+fTh69Kj2/ZKSEj7++GN69uxJu3bt8PT05KuvvtK+Hx4eTkxMDPv378fe3h57e3sSEhIAuHbtGh999BEdO3akc+fO+Pv7k56e/sh4hBDiPil8hRB6QaFQMHPmTHbv3s2iRYs4fvw4ixcvfmj/qVOnYmNjw7Zt24iOjmbUqFEYGRkBkJqayqhRo+jduzc7d+5k2bJlnDp1innz5ukUk6mpKWq1muLiYjZs2MD69esJDAxk586duLq6MnbsWFJSUgDYuHEjBw4cIDQ0lL1797J48WKaNWtW7nm//fZbAL788kuOHDlCeHh4mT59+vQhJydHW1AC5OTkcPjwYfr16wfcK+4DAwPx9fUlLi6OuXPnEh0dzapVq554jOnp6Rw5ckT7uwNQq9XY2NiwfPly9uzZw7hx41i2bBlxcXEAjBgxgjfeeAM3NzeOHDnCkSNHcHZ2pqioiJEjR2JmZsamTZvYvHkzzzzzDB988AGFhYVPHJMQQn/JUgchRJ1y8OBBnJ2dta/d3NwICwvDz89P2/bcc88REBDA7NmzCQoKKvc8V69eZeTIkbRu3RqAli1bat+LiorC29tbe86WLVsyc+ZMhg4dSlBQECYmJo+NMyUlhc2bN9O2bVvMzc1Zt24do0aNom/fvgD8+9//JiEhga+++orZs2dz7do1WrRowSuvvIJCoXho0QsPlnY0bNjwoUsgLCws6N69O7t27aJLly4AfPfdd1haWuLi4gJAREQEo0ePpn///gA0b96cjz76iMWLFzN+/PiHXv/SpUs4OztTUlJCQUEBQKlZZCMjIyZOnKh93bx5c86cOcPevXvx8vLCzMwMU1NTCgsLS8W/Y8cO1Go1CxYsQKFQABAcHEynTp348ccfcXV1fWhMQggBUvgKIeoYFxeXUsVsvXr1ADh69ChRUVFcvnyZ3NxcbVGWn5+v7fNXw4cPZ9asWezYsUP75/rnn38euLcM4tdff2XXrl3a/hqNBrVaTXp6urZY/rvbt2/j7OyMWq2moKCAV155hfnz55Obm8sff/xBhw4dSvXv0KEDFy9eBKB///6MGDGCPn364ObmxmuvvfbUhZ63tzeffPIJQUFBGBsbs2vXLvr27YtSqdSO8/Tp06VmeB/3ewOwtbVl5cqVFBQUsHPnThITExkyZEipPps2bWL79u1cvXqVgoICioqKcHBweGS8Fy9eJDU1tczvqaCggNTU1Ir8CoQQekYKXyFEnVKvXr0yOzikp6czZswY3nvvPSZNmoSFhQWnTp1i5syZFBUVlVvATZgwgTfffJNDhw7x/fffExYWxrJly+jVqxd5eXn4+Pho187+VdOmTR8am5mZGTExMSiVSqysrDA1NQUgNzf3seNydHRk//79fP/99xw9epSAgAC6du1KWFjYY499mJ49ezJr1iwOHjyIk5MTJ0+eLDUzm5eXx4QJE+jdu3eZYx81q21kZKTNwdSpUxk9ejQREREEBAQAsGfPHj777DMCAwNxdnbGzMyMdevW8fPPPz8y3ry8PBwdHQkJCSnzXm25gVEIUbtJ4SuEqPMuXLiARqNh+vTp2tnM+Pj4xx5na2uLra0tfn5+TJ48me3bt9OrVy/atGnDb7/9pvMWaUqlstxjzM3NadKkCadPn6Zz587a9tOnT9OuXbtS/by8vPDy8sLT05MPPviAnJycMtuE3V9PW1JS8sh4TExM6N27N7t27eLKlSvY2tri6Oiofb9NmzYkJyc/9VZw/v7+DBs2jPfeew9ra2tOnz6Ns7Mz77//vrbP32dsjYyMytx45+joSHx8PCqVCnNz86eKSQihn+TmNiFEndeiRQuKiorYuHEjaWlpxMbGsmXLlof2v3v3LnPnziUhIYGMjAxOnTrFuXPntEsYRo0axU8//cTcuXNJTEwkJSWFffv2MXfu3ArHOHLkSNasWUNcXByXL18mJCSEixcv4uvrC8D69evZvXs3SUlJJCcns3fvXqysrGjQoEGZc6lUKkxNTTl8+DBZWVncvn37odf19vbm4MGDbN++HW9v71LvjRs3jh07dhAREcH//d//kZSUxJ49e1i2bJlOY3N2dsbe3l67C0WLFi04f/48hw8fJjk5mdDQ0FI7ZgA0a9aMX3/9lcuXL5OdnU1RURHe3t5YWlri7+/PyZMnSUtLIyEhgfnz5/P777/rFJMQQj/JjK8Qos5zcHBgxowZrFmzhqVLl9KxY0cmT55MYGBguf2VSiU5OTkEBgaSlZWFpaUlvXv31t6Q5eDgwMaNGwkNDWXw4MHAvRu0vLy8Khyjr68vubm5LFq0iOzsbFq3bs2KFSu0N9WZmZmxdu1arly5glKpxMnJidWrV2tnsP/K0NCQWbNmERkZSVhYGB07dmTjxo3lXvfVV1/FwsKC5OTkMoWvm5sbq1atIjIykjVr1mBoaEirVq0YOHCgzuPz8/Nj+vTpjBo1Ch8fHxITE5k0aRIKhYK+ffsyePDgUtu3DRo0iB9//JG3336bvLw8NmzYgIuLC19//TUhISGMHz+eO3fuYG1tTZcuXWQGWAjxRBSaqn6MjxBCCCGEELWALHUQQgghhBB6QQpfIYQQQgihF6TwFUIIIYQQekEKXyGEEEIIoRek8BVCCCGEEHpBCl8hhBBCCKEXpPAVQgghhBB6QQpfIYQQQgihF6TwFUIIIYQQekEKXyGEEEIIoRek8BVCCCGEEHrh/wG/PW8bKqzOmAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 RandomForestClassifier 0.78 0.8 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" RandomForestClassifier | \n",
" 0.78 | \n",
" 0.8 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 32
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = RandomForestClassifier\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"rf_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"rf_result_df"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"id": "xXLQQSwhDjBP",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"outputId": "5554ff16-f03e-41e0-a6c2-a2a89cab5c76"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjc0lEQVR4nOzdeVhUZfsH8O/MMDOAIAgoCqImBOKa5q6l4IKgmUua5pJpr3uUW0W9Zaa5VZr7kv0sfcu0XEgDREXN3DXTSjOXlE1RVllnmJnz+wM5MoIKOsOZYb6f6/Jy5plz5tzMYeDmmfvcj0wQBAFERERERFWcXOoAiIiIiIgqAxNfIiIiIrIJTHyJiIiIyCYw8SUiIiIim8DEl4iIiIhsAhNfIiIiIrIJTHyJiIiIyCYw8SUiIiIim8DEl4iIiIhsAhNfoiooODgY7777rtRh2JwRI0ZgxIgRUofxSMuWLUNAQADS09OlDsXiBAQEYNmyZSZ5rsTERAQEBGDbtm0meT4AOHfuHJo2bYqkpCSTPaepTZkyBW+++abUYRCVyU7qAIiszbZt2xARESHeVygUcHd3R6dOnTBlyhR4enpKGJ1ly8vLw/r16xETE4P4+HjY2dkhICAAgwcPxosvvgiZTCZ1iI90+fJlREdHo3///qhbt67U4RjR6/XYsWMHduzYgYsXLyIvLw+1atVCu3bt8Morr6BZs2ZSh/jEdu7cibS0NIwaNUrqUESVGdPixYvRu3dveHt7i2MjRozAiRMnxPtqtRr169fHwIEDMXLkSMjlpee4MjIysHbtWsTFxSE5ORkODg5o1qwZhg8fjqCgoDKPnZOTg6+//hqxsbFISEiAXq9HvXr10KVLF4wcOVL82fef//wHAwcOxN9//41GjRqZ+BUgejJMfIkeU3h4OOrWrQutVovff/8d27dvx+nTp7Fr1y6o1WpJY4uJibG4JDI1NRWjRo3ClStXEBYWhuHDh0Oj0SA2NhbvvPMODh48iM8++wwKhULqUB/q8uXLWL58Odq2bVsq8f3qq68kigooKCjA5MmTcejQIbRp0wbjxo2Di4sLkpKSEB0dje3bt+PAgQOoXbu2ZDGawq5du3Dp0iWzJZnnzp2r8Pfgg2Ly9vbGuXPnYGdnml+1Fy5cwJEjR/D999+Xeqx27dqYOnUqgKKkdteuXZg3bx4yMjIwZcoUo22vXr2KUaNGIT09HQMGDECzZs1w584d7Ny5E+PHj8fo0aPxzjvvGO2TkJCAUaNG4caNG+jVqxdefvllKJVKXLx4ET/++CP27t2L3bt3AwAaN26Mpk2b4v/+7/+wcOFCk3ztRKbCxJfoMT3//PPiDNqgQYNQo0YNfPnll9i3bx/CwsIkjU2lUlX6MTUaDZRKZZmzSwDwzjvv4MqVK1i+fDm6desmjo8cORILFizA//3f/yEwMBBjx46trJABFM1COzo6muS5pHjdiy1cuBCHDh1CREREqQRs8uTJ+Prrrys1HkEQoNFoYG9vX6nHfRwGgwGFhYVQq9Um/aNVJpOZ9Pm2bt0KLy8vPPPMM6Uec3Z2xosvvijeHzp0KEJDQ7Fx40aEh4eLyXxhYSHefPNN3LlzB99++y1atGgh7jNq1ChMnz4d//d//4dmzZqJP8d0Oh0mT56MtLQ0bNiwAa1btzY69pQpU/Dll18ajYWGhmLZsmXIzc1FtWrVTPUSED0x1vgSmUjxL4OEhASj8StXriA8PBxt27ZFs2bNMGDAAOzbt6/U/nfu3MHcuXMRHByMpk2b4vnnn8fbb79tVIep1WqxdOlS9OjRA02bNkWXLl2wcOFCaLVao+cqWeP7xx9/ICAgANu3by91zEOHDiEgIAD79+8Xx1JSUhAREYGOHTuiadOm6N27N3788Uej/Y4fP46AgAD8/PPPWLx4MZ577jm0aNECOTk5Zb42v//+O3799Vf079/fKOktNm3aNDRo0ADr1q1DQUEBgHv1kV999RW+/vprBAUFoXnz5hg+fDj++eefUs9Rntd527ZtCAgIwIkTJ/DRRx+hQ4cO6NKlCwAgKSkJH330EUJCQtC8eXO0a9cO4eHhSExMNNq/uHZx5MiRCAgIQEBAAI4fPw6gdI1v8esUFRWFVatWiX8svfrqq7h+/Xqpr+Hbb79Ft27d0Lx5c7z00ks4depUueqGb968ic2bN6NTp05lzoQqFAqMGTOm1GxvdnY23n33XbRu3RrPPvssIiIikJ+fb7TN1q1bMXLkSHTo0AFNmzZFWFgYvvvuu1LHCA4Oxrhx43Do0CEMGDAAzZs3F2cmy/scAHDw4EEMHz4cLVu2RKtWrTBw4EDs3LlTfH0PHDiApKQk8bUPDg4W9y3v+yMgIAAff/wxfvrpJ/Tu3RvNmjXDoUOHxMdK1vjm5OTgk08+Ed+XHTp0wGuvvYa//vrrkTE9qMb3ypUrePPNN9G+fXs0b94cISEhWLx4cZmvR0n79u1D+/bty/VpjlqtRtOmTZGbm4u0tDRxPDY2Fv/88w/+85//GCW9QNH3yccff4zq1asbvQaxsbH4+++/MX78+FJJLwA4OTmVmlXu2LEj8vLycOTIkUfGSlSZOONLZCLFF5tUr15dHLt06RKGDh0KT09P/Oc//4GjoyOio6MxadIkLFu2DD169AAA5ObmYtiwYbhy5QoGDhyIxo0bIyMjA3FxcUhJSYGbmxsMBgMmTJiA06dPY/DgwfD19cU///yDb775BteuXcPKlSvLjKtZs2bw8fER61JLioqKgouLCzp37gygqBxh8ODBkMlkGDZsGNzc3PDLL7/g/fffR05OTqmkauXKlVAqlRgzZgy0Wi2USmWZMRQn1v369SvzcTs7O/Tp0wfLly/Hb7/9ho4dO4qP7dixA7m5uXjllVeg0WiwceNGvPrqq9i5cyc8PDwq9DoXmzVrFtzc3DBp0iTk5eUBKPoD4cyZM+jduzdq166NpKQkbNq0CSNHjsTPP/8MBwcHtGnTBiNGjMDGjRsxfvx4NGzYEADg6+tb5tdV7Msvv4RMJsPo0aORk5ODdevWYfr06fjhhx/Ebb777jt8/PHHaN26NUaNGoWkpCRMmjQJ1atXf2R5wi+//AKdToe+ffs+dLv7vfXWW6hbty6mTp2K8+fP44cffoCbmxtmzJghbrNp0yY8/fTTCA4Ohp2dHfbv349Zs2ZBEAQMGzbM6Pn+/fdfTJs2DS+//DIGDx6Mp556qkLPsW3bNrz33nt4+umnMW7cODg7O+PChQs4dOgQXnjhBYwfPx7Z2dm4efOmWGdfPJtY0ffHsWPHEB0djWHDhqFGjRpGNbMlzZw5E7t378bw4cPh6+uLzMxMnD59GleuXEGTJk0eGlNZ/v77bwwbNgx2dnZ4+eWX4e3tjfj4eMTFxZVKHktKSUlBcnIyGjdu/MBt7peUlASZTGb0MykuLg7Ag9+Lzs7O6NatG7Zv347r16+jfv364h+QJWeUH8XPzw/29vb47bffSr3/iCQlEFGFbN26VfD39xeOHDkipKWlCTdu3BBiYmKE9u3bC02bNhVu3Lghbvvqq68Kffr0ETQajThmMBiEl19+WejZs6c4tmTJEsHf31+IjY0tdTyDwSAIgiDs2LFDaNSokXDy5Emjxzdt2iT4+/sLp0+fFseCgoKEd955R7z/+eefC02aNBEyMzPFMY1GI7Ru3VqIiIgQx9577z2hU6dOQnp6utExpkyZIjz77LNCfn6+IAiCcOzYMcHf31/o1q2bOPYwEydOFPz9/YWsrKwHbhMbGyv4+/sLGzZsEARBEBISEgR/f3+hefPmws2bN8Xtzp49K/j7+wtz584Vx8r7Ohefu6FDhwo6nc7o+GV9HWfOnBH8/f2F7du3i2PR0dGCv7+/cOzYsVLbDx8+XBg+fLh4v/h1Cg0NNYrtm2++Efz9/YWLFy8KglB0Ltq2bSsMHDhQKCwsFLfbtm2b4O/vb/ScZZk7d67g7+8vnD9//qHbFVu6dKng7+9vdO4FQRAmTZoktG3b1misrNdl9OjRQrdu3YzGgoKCBH9/f+GXX34ptX15nuPOnTtCy5YthUGDBgkFBQVG2xa/BwRBEMaOHSsEBQWVer6KvD/8/f2FRo0aCZcuXSr1PP7+/sLSpUvF+88++6wwa9asUtuV9KCYir+Ht27dKo4NGzZMaNmypZCUlPTAr7EsR44cEfz9/YW4uLhSjw0fPlzo1auXkJaWJqSlpQlXrlwRFixYIPj7+wtjx4412vbFF18Unn322Ycea/369YK/v7+wb98+QRAEoV+/fo/cpyw9e/YUXn/99QrvR2ROLHUgekyjRo0SPyoPDw+Hg4MDVq1aJc7OZWZm4tixYwgNDUVOTg7S09ORnp6OjIwMdO7cGdeuXUNKSgqAoo8SGzVqVObMSPHHmjExMfD19UXDhg3F50pPT0f79u0BQPy4vSxhYWEoLCxEbGysOHb48GHcuXNHrOMTBAGxsbEIDg6GIAhGx+jcuTOys7PFj3eL9evXr1w1nLm5uQAePhNW/Nj95RLdu3c36pTRvHlztGjRAgcPHgRQsde52ODBg0tdwFTy6ygsLERGRgbq1auH6tWr4/z584/8Gh9mwIABRvW/95fF/Pnnn8jMzMTgwYONLoR64YUX4OLi8sjnL37NKlpLOWTIEKP7rVu3RmZmptE5KPm6ZGdnIz09HW3btkVCQgKys7ON9q9bty6ee+65Uscpz3McPnwYubm5GDt2bKm62PJ8tF/R90ebNm3g5+f3yOetXr06zp49W+p76HGkp6fj5MmTGDhwILy8vIwee9TXmJGRIcZTlqtXr6JDhw7o0KEDQkND8dVXXyE4OBjz5s0z2q48Nbf3vxdzcnIeq07XxcVFjJvIUrDUgegxffjhh3jqqaeQnZ2NrVu34uTJk0bJTXx8PARBwJIlS7BkyZIynyMtLQ2enp6Ij49Hz549H3q869ev48qVK+jQocMDn+tBGjVqhIYNGyI6OhqDBg0CUFTmUKNGDTExSE9Px507d7B582Zs3ry5zOe5v+9redt5Ff/SzM3NfeAv7gclx/Xr1y+1bYMGDRAdHQ2gYq/zw+IuKCjAmjVrsG3bNqSkpEAQBPGx+xO8iro/ySl+De7cuQMASE5OBgDUq1fPaDs7O7sHfgRfkpOTE4B7r+GTxpWVlSU+5+nTp7Fs2TL8/vvvpep/s7Oz4ezsLN5/0PdDeZ4jPj4eAPD0009X6GsoVtH3R3m/d6dPn453330XXbt2RZMmTdClSxf069cPPj4+FY6x+A8df3//Cu9brOT3ZUne3t6YM2cODAYD4uPjsXr1amRkZJT6I6JatWqPTEbvfy86OTmVunahvLFaWncZIia+RI+pefPmYleH7t2745VXXsG0adMQExODatWqwWAwAABGjx5d5iwYUDrReRiDwQB/f3+jHsIlPaoONCwsDKtXr0Z6ejqcnJwQFxeH3r17izOMxfH27du3VC1wsYCAAKP75b1i39fXF3v37sXFixfRpk2bMre5ePEiAJRrFq6kx3mdy7rSfvbs2di2bRteffVVPPPMM3B2doZMJsOUKVMemGyU14M6XTzp8xYrrjW+ePEiAgMDTRZXfHw8Ro0ahYYNG+Ldd99FnTp1oFQqcfDgQXz99dfia1+srO+Hij7H46ro+6O837thYWFo3bo19uzZg8OHD+Orr77Cl19+iWXLlokXRlaGGjVqALj3x9L9HB0djWrjW7VqhQEDBmDx4sX473//K477+vriwoULSE5OLvWHT7H734sNGzbE+fPncePGDdSpU6fcMd+5c6fMP1yJpMTEl8gEFAoFpk6dipEjR+Lbb7/F2LFjxRkhpVJp9AupLPXq1cOlS5ceuc3ff/+NDh06PNYsSlhYGJYvX47Y2Fh4eHggJycHvXv3Fh93c3MTE/ZHxVtRXbt2xZo1a7Bjx44yE1+9Xo+dO3fCxcUFrVq1MnqsrO4H165dE2dCK/I6P8zu3bvRr18/oxXvNBpNqdlec8xgFScg8fHx4gw8UNRGqrhbwMM8//zzUCgU2Llz5wMvWnoccXFx0Gq1WLVqlVGS9LCymsd9juI/Ti5duvTQZOlBr/+Tvj8eplatWhg2bBiGDRuGtLQ09O/fH6tXrxYT3/Ier/h7tayuJI9S/MdNyS4jD9OoUSP07dsX33//PUaPHi2+9l27dsWuXbuwY8cOTJw4sdR+OTk52LdvHxo2bCieh6CgIOzatQs//fQTxo0bV67j63Q63Lhxw6jrBpElYI0vkYm0a9cOzZs3xzfffAONRgN3d3e0bdsWmzdvxq1bt0ptX7JsoGfPnvj777+xZ8+eUtsVz76FhoYiJSUFW7ZsKbVNQUGB2J3gQXx9feHv74+oqChERUWhZs2aRkmoQqFASEgIdu/eXeYv5idZ3rZVq1bo2LEjtm3bZtQ6rdjixYtx7do1vP7666Vm4vbu3WtUX3nu3DmcPXsWzz//PABU6HV+mLIWLdi4cSP0er3RmIODA4AnL38oqWnTpnB1dcWWLVug0+nE8Z07dyIrK+uR+9epUweDBg3Cr7/+io0bN5Z63GAw4P/+7/9w8+bNCsVV/JrcX/axdetWkz9H586dUa1aNaxZswYajcbosZL7Ojg4lPnaP+n7oyx6vb7Usdzd3VGrVi2jFmkPiul+bm5uaNOmDbZu3SqWtxR71Oy/p6cn6tSpgz///LPc8b/++uvQ6XRYv369OBYSEgI/Pz98+eWX+OOPP4y2NxgMmDlzJrKysjB58mSjffz9/bF69WqcOXOm1HFycnJKtWO7fPkyNBoNWrZsWe54iSoDZ3yJTGjMmDF48803sW3bNgwdOhQzZ87EK6+8ghdeeAGDBw+Gj48PUlNT8fvvv+PmzZv46aefxP12796NN998EwMHDkSTJk2QlZWFuLg4zJo1C40aNcKLL76I6OhozJw5E8ePH0erVq2g1+tx9epVxMTEYN26dY9ckjYsLAxLly6FWq3GSy+9VOqj7mnTpuH48eMYPHgwBg0aBD8/P2RlZeGvv/7C0aNHjZZFragFCxZg1KhRmDhxIvr06YPWrVtDq9UiNjYWJ06cQFhYGMaMGVNqv3r16mHo0KEYOnQotFotNmzYAFdXV7z++uviNuV9nR+ma9euiIyMhJOTE/z8/PD777/jyJEjcHV1NdouMDAQCoUCX375JbKzs6FSqdC+fXu4u7s/9mujUqnwxhtvYPbs2Xj11VcRGhqKpKQkbNu2rdzlMO+++y4SEhIwZ84cxMbGIigoCNWrV8eNGzcQExODq1evGs3wl0enTp2gVCoxfvx4DBkyBLm5ufjhhx/g7u6O27dvm/Q5nJycEBERgf/+97946aWX0KdPH1SvXh1///03CgoKsGDBAgBAkyZNEBUVhXnz5qFZs2ZwdHREcHCwSd4f98vNzUWXLl0QEhKCRo0awdHREUeOHMEff/xh9MnAg2Iqy3//+18MHToU/fv3x8svv4y6desiKSkJBw4cQGRk5EPj6datG/bs2VPu2lk/Pz906dIFP/74IyZOnIgaNWpApVJh6dKlePXVV/HKK69gwIABaNq0KbKzs7Fr1y789ddfGD16tNH3ilKpxPLly/Haa69h+PDh6NWrF1q1agWlUolLly5h165dqF69ulE7tiNHjsDBwcHknx4RPSkmvkQm1LNnT9SrVw//93//h8GDB8PPzw9bt27F8uXLsX37dmRmZsLNzQ2NGzfGpEmTxP2qVauGb7/9FsuWLcOePXuwfft2uLu7o0OHDuJFWXK5HCtWrMDXX3+NyMhI7NmzBw4ODqhbty5GjBgh9kx9mLCwMHzxxRfIz89HaGhoqcc9PDzwww8/YMWKFdizZw82bdoEV1dX+Pn5Yfr06U/02tSqVQs//PAD1q9fj5iYGMTGxkKhUCAgIADz589Hv379yvxl3q9fP8jlcnzzzTdIS0tD8+bN8cEHH6BWrVriNuV9nR/m/fffh1wux86dO6HRaNCqVSusX7/eKMEGgJo1a2LWrFlYs2YN3n//fej1emzYsOGJEl8AGD58OARBwPr167FgwQI0atQIq1atwpw5c8q1+peDgwO+/PJLbNu2DTt27MDKlStRUFCAWrVqoV27dvjss8+MLvArj4YNG2Lp0qX44osvsGDBAnh4eGDo0KFwc3PDe++9Z/LnGDRoENzd3bF27VqsXLkSdnZ2aNiwoVH/6FdeeQUXLlzAtm3b8PXXX8Pb2xvBwcEmeX/cz97eHkOHDsXhw4cRGxsLQRBQr1498Q+tR8VUlkaNGmHLli1YsmQJNm3aBI1GAy8vrzLfj/cbOHAg/ve//+H06dNlLiRRljFjxuDAgQP43//+hzfeeANA0ac/P/30E9auXYu4uDhs27YN9vb2aNq0KVatWlVm7PXr18eOHTvw9ddfY8+ePdi3bx8MBgPq16+PQYMGlVpkJSYmBj169BAvkiSyFDLBVFdXEBGZUGJiIrp164a33367zJlgW2AwGNChQwf06NEDc+bMkTocsgCvvvoqatWqhU8//VTqUB7owoUL6N+/P7Zv316hiy2JKgNrfImILIBGoylV57ljxw5kZmaibdu2EkVFlmbq1KmIjo4WV4q0RGvXrkVISAiTXrJILHUgIrIAv//+O+bNm4devXrB1dUV58+fx48//gh/f3/06tVL6vDIQrRo0aJCF7hJ4f4L3YgsCRNfIiIL4O3tjdq1a2Pjxo3IysqCi4sLXnzxRUyfPt1oYRQiInp8rPElIiIiIpvAGl8iIiIisglMfImIiIjIJjDxJSIiIiKbwMSXiIiIiGyCzXZ1SE/PhsEgdRRkbjIZ4O7ujLS0bPAyzqqP59u28HzbFp5v2yKXA25uziZ/XptNfAUBfOPYEJ5v28LzbVt4vm0Lz7dtMNc5ZqkDEREREdkEJr5EREREZBOY+BIRERGRTWDiS0REREQ2gYkvEREREdkEJr5EREREZBOY+BIRERGRTWDiS0REREQ2gYkvEREREdkEJr5EREREZBOY+BIRERGRTWDiS0REREQ2gYkvEREREdkEJr5EREREZBOY+BIRERGRTZA08T158iTGjx+Pzp07IyAgAHv37n3kPsePH0f//v3RtGlT9OjRA9u2bauESImIiIjI2kma+Obl5SEgIAAzZ84s1/YJCQkYN24c2rVrh8jISLz66qv473//i0OHDpk5UiIiIiKydnZSHrxLly7o0qVLubf//vvvUbduXbz77rsAAF9fX5w+fRpff/01nnvuOXOFSURERETmYNBBXnAL8rybkOenQJ5/A8i5iX/+zYP7+CUmP5ykiW9F/f777+jQoYPRWOfOnTF37twKP5dMVvSPqrbic8xzbRt4vm0Lz7dt4fm2Mnrt3UT25t2ktvhfCuR5N+7+fxOygtuQQRB3u3HHCa9t7oczt/2RMt70YVlV4puamgoPDw+jMQ8PD+Tk5KCgoAD29vblfi43N2dTh0cWzN2d59uW8HzbFp5v28LzLTFdAZB7A8hJvvv/jaL/c5Pv3c5JBgrSKvzUkX8G4PUf+iI1txqcnc2TolpV4mtK6enZMBikjoLMTSYr+iGZlpYNQXj09mTdeL5tC8+3beH5NrPCXMjzb0Cel3Jvdjav5Czt3dvaTJMcTpDZweBYGwYHT2TLvPD2pgB8FeMkPl7LQ2WS49zPqhJfDw8PpKamGo2lpqbCycmpQrO9ACAI4BvHhvB82xaeb9vC821beL4rQBAgK8wuI5G9aVRTK89Pgbww2zSHlKvFhNbgULvon2Nt6B3ujjnWgcGhNgS1GyCT4+zZFEyYEIXLlzPE5wgN9cWSJSEmied+VpX4PvPMM/jll1+Mxo4cOYJnnnlGmoCIiIiIKpsgQKbNMJ6JFRPaFCjyb4gztTJdnmkOaecoJrN6hzowOBYntp4wONQRk11BVaNchdh6vQErVpzA/PlHoNMVfQTv6GiH2bO7YvjwZlAozFPMLWnim5ubi/j4ePF+YmIiLly4ABcXF3h5eeHzzz9HSkoKFi5cCAAYMmQIvv32WyxcuBADBw7EsWPHEB0djTVr1kj1JRARERGZhmCATJNuNDurKPPisJuQGTQmOaRB6XwveXXwvJvA3pupLU5uBWV1k15ZWFCgx7ff/ikmvS1aeGL16jD4+tYw2THKImni++eff2LkyJHi/Xnz5gEA+vfvj/nz5+P27du4ceOG+LiPjw/WrFmDefPmYcOGDahduzbmzJnDVmZERERkuQx6yDSpUOTdvFdaUKr0IAXyghTIDIWmOaTKtcRsbImyAzGh9YTeoTagdHr0k5lBtWpKrF4dhhde2IwJE57FjBkdoFIpzH5cmSDYZqVMWhovbrMFMhng4eGM1FReDGELeL5tC8+3bbHI8y32oH1AMltcilBwCzJBb5pDqt1Kzc7qjWZni5Ja2DmY5HimkpOjRXa2BnXqGHfluHEju9QYAMjl5ungYVU1vkRERERmJ/agvVGijrZkcltURysrSDXqQfu4BMgg2Ne8m8CWPTtbnOxCYZ5uB+Z08mQyJk6MRq1a1RAZORh2dvcWDi4r6TUnJr5ERERkG3T592Zi787OKsrqeKBJN8nhBJkcBnvPUslrqTpa+5qAXGmSY1oSnc6AxYuPY9GiY9DrBVy/noVly05iypR2ksXExJeIiIisW2HO3QS2rNnZEmUHpupBK1feTWgfkMw61IbesTYEtQcgN3/dqiW6di0TEydG49Spe9dqtWnjhQEDGkkYFRNfIiIiskSCAFnhHTGBVeTfAP7NRLXU65DdX0drlh609xJa/X3JbXEPWipNEARs2XIBERFxyMnRAgAUChmmT++AN99sa1TmIAUmvkRERFR5jHrQ3nhw6cEDetA+ziVbxT1oixLYB9XR1oagcjVpyy5bk5lZgBkz9iIy8h9xrH59F6xaFYrWrb0kjOweJr5ERET05Ix60BaVGihK3DZfD9p7nQyKEtg6pW4LSmcmtGaWna1BcPBGJCbem30fMqQJ5s4NgpOT5VyQx8SXiIiIHkzsQVt6dvb+5W9lgs40h1S5lpiNvdeL1qnWU8jUudxd/rY2oKxmkuPRk3N2ViMszA9r156Bq6san33WA337+ksdVilMfImIiGyRoRDy/Fv3JbNlXBRWcAsywTSN7w1q9xKzs3Xu9qC9b6b2AT1oZTLAycMZOkvq40tG/vvf51BQoMeUKe3g7V25bcrKi4kvERFRVaLX3FdaYDxTq7ib0JqvB21xAlv7bnLrKSa71tiDlkoTBAEbN/4BhUKGYcOaieP29nb47LPuEkb2aEx8iYiIrEHJHrR5N+6177p/ptZkPWgVMNjXKrUiWKk6WvtagJzphK1ITc3D1Kl7EBNzBQ4OdmjTxgv+/u5Sh1Vu/E4lIiKSklEP2hv3zdSWmLk1eQ/aBySzDrWhd6wDQe1usz1oqWz791/DG2/sxq1buQCA/HwdYmOvMvElIiKyaSV70Ja6KOy+OlpdjmkOKVeXKi3Q362jLZncCuoa7EFLFVJQoMMnn/yKNWt+E8fc3R3wxRc9ERLiK2FkFcfEl4iIqLyKe9Dev4BCGe27ZPp80xzSzlHsYlCy5+z9dbTsQUvmcP78bUyYEI0LF1LFseDgBliyJASentbXVYOJLxERUXEP2hKzs2W370oxYQ/a6kazswaj2dl7t9mDlqQgCALWrTuDjz8+BI1GDwBQqxWYOfN5jBnzDGRW+j3JxJeIiKougx7ygtv39Zstq+zAXD1oa5dKZvV3k132oCVLlptbiFWrTotJb+PGHli1KgyBgR4SR/ZkmPgSEZH1MRRCXnAL0GVDlXwVsgddFGaOHrQluhzo75+pfUAPWiJr4+SkwsqVoejf/we8/npLvP9+Z9jbW3/aaP1fARERVR0le9DetzJYyfZdJXvQVn+Cw4k9aO+7KKxU2YF9LfagpSotN7cQeXmFqFnTURxr374ujh59DQ0auEoXmIkx8SUiIvMr7kF7N5l9YPsubYZJDldmD9pS/WjrwGBfkz1oyeadPZuCCROiUKeOE3744SXI5ffqd6tS0gsw8SUioidR3IP2vtnZUheFFWaZ5HCCXGnU0UDt5oNc2b1lcIvbd7EHLdGj6fUGrFhxCvPnH4FOZ8DlyxlYvfo0Jk5sLXVoZsPEl4iIjBX3oC0zmb2vjtZUPWgV9kYJrf4BM7Ule9DKZIDawxn5qdkQnnzlXSKbkpSUjcmTo3H4cKI41qKFp9X15a0oJr5ERLZCEIpadomrgRnPzpZs32W6HrTVxC4GZZYaFLfsYg9aokoTGXkR06fvRVZWUWs+mQwID2+LGTM6QKWq2p+UMPElIrJ2ggGygjQxmVUYzc7e6z8rz78JmUFrkkOKPWiNLgqrXaqmVlA6m+R4RPTksrM1eO+9/di8+bw45u3tjBUreqFjRx8JI6s8THyJiCyVUQ/aG5DnpdxXalCc0JqhB23JhPb+9l3sQUtkde7c0aBbt//h+vV79fb9+gVg4cJucHW1lzCyysXEl4ioshkKIc+/dV8ye/9FYTcgL7ht2h60JZJZfZkztZ6AwnZ+ARLZkurV1XjuOR9cv54FJycV5s8PxqBBgVa7AtvjYuJLRGQqYg/a0gmtokRCKytIE3vQPgkBMhgcahldFFZm+y72oCUiAB9/3BX5+Tq8807HKtemrLyY+BIRPYou724Cm3K3B+19iW3xbK0pe9DeXQWsVNmBUULLHrREVJogCNiy5QKUSjkGDGgkjjs5qbBqVZiEkUmPPzGJyGbJCrONEtrSbbvuPmaOHrRlJLN6sWUXe9AS0ePJzCzAjBl7ERn5D6pVU6Jly9p46ilXqcOyGEx8iahqEQTItJmQ56aUcVHY3d6zxV0OzNGD1rHOA9p31YagdmPLLiIym8OHEzBpUjSSk4t+tuXmFmLnzn8QHt5W4sgsBxNfIrIORj1ob9xXenBvphYFN+GuKzDNIYt70BrNztaBwdF4plZQujChJSLJaLV6LFhwBMuXnxQXc3FxUePzz3ugb19/aYOzMEx8iUhaJXrQKh42O2vqHrTibGwZdbR3H2MPWiKydJcvp2P8+CicO3dLHOvUqS6WLw+Ftzd/ht2PiS8RmYfYg7bk7GzJZLb43y3T9aBV14DcyQtaVa27Sazx7GzxMriwczTJ8YiIpCIIAjZs+AMffngA+flFP0OVSjkiIjph4sTWkMv5KVRZmPgSUcUYCu8teZtXVh3t3X+m7EFr7yHOzuod6og9Z43raD0hs7OHh4cz7qRmix/3ERFVRXfuaPDpp0fFpNfPrwZWrw5D8+aeEkdm2Zj4ElERvca4k0GJ2VlF8e38m6brQSuTw2Bfs0S5QcnZ2RK32YOWiKgUFxd7LF0agiFDtuHVV5tj1qwucHRUSh2WxWPiS1TVlehBq7jvojDz96AtOTt730Vh7EFLRFRuBQU65OcXokYNB3EsOLgBfvllJBo18pAwMuvC3zpEVupeD9oSy9zmlbgozGw9aGsblxrcTWj1d28L9u6ATG6SYxIREXD+/G1MmBCFunWr43//62e0zDCT3oph4ktkSQQBssKsEqUGN41vi6UHNyHT5ZrmkGIP2uJFFMqYnWUPWiKiSmcwCFi37gxmzz4EjUaPCxfS8PXX5/Daay2kDs1qMfElqgxiD9r7ygvyb0JxX5cDmd6UPWhrG5caONQuVUfLHrRERJYnJSUH4eG7sX//dXGscWMPtG/vLWFU1o+JL9GTEAyQFaSWWETh/tnZ4rKDFBP2oHUpkbw+uI6WPWiJiKxTdPRlTJ26B2lp+eLYuHGt8P77nWFvz9TtSfDVIyqLQXe3B+3NR9TRmrAHrapGqSVui2pnjWdq2YOWiKhqys0txMyZB7FhwzlxzNOzGpYt64WuXetLGFnVwcSXbItRD9qSZQcpxheFmaUHbe3SpQclZm6hsDfJ8YiIyPpkZhYgLGwTLl++12EnNNQXixb1hLu7w0P2pIpg4ktVkiLjPNTXfoQi7wagT4VrVtLdhDbVJM9/rwdtyWVu76+jrQODQy1Azr6KRET0cK6u9mje3BOXL2fA0dEOc+YEYdiwpkYdHOjJMfGlqkeXB9fY3pBr0sSh8n6j3+tBW7JtV+3SF4XZe7AHLRERmdSCBcEoKNDhgw+eg69vDanDqZL4m5uqHNWNA0ZJLwAIctW9i8EeUkfLHrRERFQZIiMvQqVSIDTUTxxzcbHH11/3lTCqqo+JL1U5qvhd4u3sjivg/MzLSMtRQgA/LiIiImllZ2vw3nv7sXnzebi6qtGihSe8vNiFp7JwaouqFoMO6sQoAEV9bDUNBwEO7uxTS0REkjt5MhlBQf/D5s3nAQCZmRr8+OMFiaOyLZzxpSpFefs45Jp0AIDWuwc7JRARkeR0OgMWLTqGxYuPQ68XAABOTirMnx+MQYMCJY7OtjDxpSqlZJmDxqe3hJEQEREB165lYuLEaJw6dUMca9PGCytXhqJ+fRcJI7NNTHyp6hAEqBN+Lrops4PWu6fEARERka0SBAGbN59HREQccnMLAQAKhQzTprXHW2+1g50dq02lwMSXqgxF5l9Q5FwDABTWfg6CugYvZyMiIklkZhbgo48Oiklv/fouWLUqFK1be0kcmW3jnxtUZahZ5kBERBaiRg0HLFpU9MnjkCFNsH//CCa9FoAzvlRlqO6WOQCA1idMwkiIiMjWaLV6aLV6ODmpxLGwMD/s2TMMLVp4ShgZlcQZX6oS5DnxUKafBQAUureEoVpdiSMiIiJbcflyOsLCNmHKlFgIgmD0GJNey8LEl6oEtdFsL8sciIjI/ARBwDffnEO3bv/DuXO3EBn5D7ZsYV9eS8ZSB6oSSpY5aHz6SBgJERHZgtTUPEydugcxMVfEMT+/GggMdJcwKnoUJr5k9WQFaVCmHAYA6J2fgt6VzcCJiMh84uKuITx8N27dyhXHXn21OWbN6gJHR6WEkdGjMPElq6dK2g2ZoAdwd7aXyxMTEZEZFBTo8Mknv2LNmt/EMXd3B3zxRU+EhPhKGBmVFxNfsnpqljkQEZGZZWTko1+/H3DhQqo4FhzcAEuWhMDTs5qEkVFF8OI2sm66PKiS9gIADPYe0NVsK3FARERUFbm62otLDKvVCsydG4RNm/oz6bUynPElq6a6cQAyfT4AQFM3DJArJI6IiIiqIplMhsWLe6KgIAqzZnVBYKCH1CHRY2DiS1ZNVWK1Nm09tjEjIiLTiIm5ApVKgeDgBuKYu7sDtmwZKF1Q9MSY+JL1MuihTowGAAh21aCt3VXaeIiIyOrl5hZi5syD2LDhHDw8HHHw4EjUrOkodVhkIqzxJaulvH0cck0aAEDr1R2wc5A4IiIismZnz6age/f/YcOGcwCKevVu2vSnxFGRKXHGl6yWKuFemYOGZQ5ERPSY9HoDVqw4hfnzj0CnMwAAHB3tMHt2Vwwf3kzi6MiUmPiSdRIEqO/W9woyBbTeIRIHRERE1igpKRuTJkXjyJFEcaxFC0+sXh0GX98aEkZG5sDEl6ySIvM8FDnXAACFns9BUPOHExERVUxk5EVMn74XWVkaAEXrH4WHt8WMGR2gUrFLUFXExJeskpplDkRE9ATS0vIxdeoeZGdrAQDe3s5YsaIXOnb0kTgyMide3EZWSRV/b7U2rQ8TXyIiqhh3dwcsXNgNANCvXwD27x/BpNcGcMaXrI48JwHK9N8BAIXuLWGoVlfagIiIyOLpdAZotXo4OirFsYEDA+Hl5Yz27b0hk8kkjI4qC2d8yeqoEjjbS0RE5XftWib69t2MiIi4Uo916FCXSa8NYeJLVkddIvHV+PSRMBIiIrJkgiBg8+bzCAraiFOnbmDTpr/w00//SB0WSYilDmRVZJp0KFN+BQDonZ+C3jVQ4oiIiMgSZWYWYMaMvYiMvJfo1q/vAi8vJwmjIqkx8SWrokrcDZmgB3B3tpcfTxER0X0OH07ApEnRSE7OEceGDGmCuXOD4OSkkjAykhoTX7Iqatb3EhHRA2i1eixYcATLl5+EIBSNubqq8dlnPdC3r7+0wZFFYOJL1kOXD1XyXgCAQe2OwprtJA6IiIgsRXp6PgYP3opz526JY507+2D58l7w8nKWMDKyJEx8yWqobhyATJcHAND4hAFyrqpDRERFXF3t4ebmAABQKuWIiOiEiRNbQy5nSRzdw64OZDVUJVZr07KbAxERlSCXy7BsWQjatfNGdPRQTJ7chkkvlcIZX7IOBj3UCVEAAMHOEdo6XaWNh4iIJLV//zXY29uhQ4d7ixh5ejph586XJYyKLJ3kM77ffvstgoOD0axZMwwaNAjnzp176PZff/01QkJC0Lx5c3Tp0gVz586FRqOppGhJKsrbxyHXpAEAtF7dATsHiSMiIiIpFBTo8MEHB/Dyy9swYUIUMjMLpA6JrIikiW9UVBTmzZuHSZMmYfv27WjUqBHGjBmDtLS0MrffuXMnPv/8c0yePBlRUVH45JNPEBUVhUWLFlVy5FTZSpY5aNjNgYjIJv3xRwpCQr7DmjW/AQCSk3OwYcPDJ8yISpI08V2/fj0GDx6MgQMHws/PD7NmzYK9vT22bt1a5vZnzpxBq1at8MILL6Bu3bro3Lkz+vTp88hZYrJyggB1fFHiK8gU0NYNkTggIiKqTAaDgDVrfkObNl/i/PlUAIBarcDcuUF44402EkdH1kSyGl+tVou//voL48aNE8fkcjk6duyIM2fOlLlPy5Yt8dNPP+HcuXNo3rw5EhIScPDgQbz44osVPr5MxrUPrIUi8zwUOdcAAIWenQF7N5T31BWfY55r28DzbVt4vm3DzZs5CA/fjf37r4tjjRt7YPXqMAQGekgYGZmTud7XkiW+GRkZ0Ov1cHd3Nxp3d3fH1atXy9znhRdeQEZGBl555RUIggCdTochQ4Zg/PjxFT6+mxt7+lmNS3vEm6rAgfDwqPi5c3fn+bYlPN+2hee76oqM/Buvv74Tqal54tiUKe0xd2432Nvz+nyqOKv6rjl+/DjWrFmDmTNnonnz5oiPj8cnn3yCFStWYNKkSRV6rvT0bBgMZgqUTMrl4nYo795Od+sGQ2p2ufeVyYp+KaalZYur+FDVxfNtW3i+q7bU1Dy88so25OUVAgA8Pathw4b+ePbZWsjJyUdOziOegKyaXG6eSUrJEt8aNWpAoVCUupAtLS0NHh5lf3SxZMkS9O3bF4MGDQIABAQEIC8vDx9++CEmTJgAubz8JcuCAP6gtALy3EQo04pKXwrdnoG+mg/wGOeN59u28HzbFp7vqsnd3RFz5nTF1Kl70KuXL774oicCAmohNZV/6NgCc51jyS5uU6lUaNKkCY4ePSqOGQwGHD16FC1btixzn4KCglLJrUJRtHqXwHdBlaRK+Fm8ra3Hbg5ERFWVXm+ARqMzGhs2rCm+/74/vvmmL9zd2caSnpykXR1ee+01bNmyBdu3b8eVK1fw0UcfIT8/HwMGDAAAvP322/j888/F7YOCgrBp0yb8/PPPSEhIwOHDh7FkyRIEBQWJCTBVLer4e4mvhqu1ERFVSUlJ2XjppR/x0Ue/GI3LZDIEBz8FGa9gJBORtMY3LCwM6enpWLp0KW7fvo3AwECsW7dOLHW4ceOG0QzvhAkTIJPJ8MUXXyAlJQVubm4ICgrClClTpPoSyIxkmgwoUw4BAPRODaB3bSxxREREZGqRkRcxffpeZGVpcPhwIrp1a4Du3RtKHRZVUTLBRmsE0tJ4cZulU1/9HtV/HQsAyGs8Gbmt51b4OWQywMPDmTVhNoLn27bwfFu37GwN3ntvPzZvPi+OeXs7Y9WqULRvX7fU9jzftkUuN0/HFqvq6kC2pWSZg5ZlDkREVcbJk8mYODEa169niWP9+gVg4cJucHW1lzAyquqY+JJl0uVDlbwXAGBQu6OwZjuJAyIioiel0xmwePFxLFp0DHp90bStk5MK8+cHY9CgQNbyktkx8SWLpLp5ADJdLgBA4xMGyHnxIhGRNUtPz8fw4Ttw6tQNcaxNGy+sXBmK+vVdJIyMbAkTX7JIKpY5EBFVKS4uatjZFV2wrlDIMG1ae7z1VjtxjKgy8LuNLI9BD3ViFABAsHOEtk5XaeMhIqInplDIsWJFKJo3r4WdO1/G9OkdmPRSpeOML1kcu9snIC9IBQBovboDdmxaTkRkbY4cSYC9vR1ataojjvn4VMeePcNYy0uS4Z9aZHHUCbvE2xofrtZGRGRNtFo95sw5hP79f8C4cVHIydEaPc6kl6TExJcsiyCIia8gU0BbN0TigIiIqLwuX05HWNgmLF16EoIAXL+ehfXrz0odFpGIpQ5kURSZF6DI/hcAUOjZCYLaTeKIiIjoUQRBwMaNf+CDDw4gP18HAFAq5YiI6ISJE1tLHB3RPUx8yaKULHPQssyBiMjipabmYerUPYiJuSKO+fnVwOrVYWje3FPCyIhKY+JLFkWVcK+NGet7iYgsW1zcNYSH78atW7ni2KuvNsesWV3g6KiUMDKisjHxJYshz02EMu0MAKDQrQUMTvUkjoiIiB7k1q1cjBoViYICPQDA3d0BX3zREyEhvhJHRvRgvLiNLEbJ2V6WORARWbZatarhv/99DgAQFFQfBw6MZNJLFo8zvmQx1CVWa9PU42ptRESWxGAQoNcboFTeW0L+9ddbok4dJ/Tu/TTkcrYpI8vHGV+yCDJNBpQphwAAeqcG0Ls2kTgiIiIqlpKSgyFDtmHevMNG43K5DC+84M+kl6wGE1+yCKqkWMiEojoxjU9vgA3OiYgsQnT0ZXTpsgEHDlzHihWncOhQvNQhET02ljqQRVCXrO9lmQMRkeRycwsxc+ZBbNhwThyrWbOahBERPTkmviQ9fQFUSXsAAAa1OwprtpM4ICIi23b2bArGj4/ClSsZ4livXr5YvLgn3N0dJIyM6Mkw8SXJqW4cgExX1ANSUzcUkPPbkohICnq9AStWnML8+Ueg0xkAAI6Odpg9uyuGD28GGcvQyMoxwyDJqeJZ5kBEJLW0tHy8/vpOHD6cKI61aOGJ1avD4OtbQ8LIiEyHiS9Jy6CHOjEKACDYOUJbJ0jigIiIbFP16irk5hYCKLq+ODy8LWbM6ACVSvGIPYmsB7s6kKTsUk9CXnAbAKD16gbYsXaMiEgKSqUCq1aFwd/fDdu3D8L773dm0ktVDmd8SVLq+F3ibQ1XayMiqjQnTybDwUGJpk1rimO+vjXwyy+vsi8vVVmc8SXpCALUCTuLbsoU0HqHSBwQEVHVp9MZ8OmnR9G372aMH/8z8vIKjR5n0ktVGRNfkowi628osv8FABR6doJg7y5xREREVdu1a5no23czPv30KPR6Af/8k471689KHRZRpWGpA0mmZJmDlmUORERmIwgCtmy5gIiIOOTkaAEACoUM06d3wLhxrSSOjqjyMPElyagSWN9LRGRumZkFmDFjLyIj/xHHGjRwwcqVoWjd2kvCyIgqHxNfkoQ8NxHKtDMAgEK3FjA41ZM4IiKiqufw4QRMmhSN5OQccWzo0Cb45JMgODmpJIyMSBpMfEkSqoQo8TbLHIiITC8lJQcvv7wNWq0eAODqqsZnn/VA377+EkdGJB1e3EaSUCfcW62NZQ5ERKbn6emE6dPbAwA6d/bBgQMjmfSSzeOML1U6mSYDypuHAAB6p/rQ12gqcURERNZPEAQYDAIUintzWm+80QZeXs546aVAtikjAmd8SQKqpFjIBB2Au7O9Mv4wJiJ6EqmpeXj11Z+waNFxo3GFQo7Bgxsz6SW6izO+VOlKljloffpIGAkRkfWLi7uG8PDduHUrF3v2XEXXrvXRpg27NRCVhYkvVS59AVRJewAABrUbCmu1lzggIiLrVFCgwyef/Io1a34Tx1xd7cU+vURUGhNfqlSqGwcg0+UCALR1QwE5vwWJiCrq/PnbmDAhGhcupIpjQUH1sXRpL3h6VpMwMiLLxqyDKpUqvmQ3B5Y5EBFVhMEgYN26M5g9+xA0mqI2ZWq1Ah9++BzGjGnJWl6iR2DiS5XHoIc6sah/r6BwgNYrSOKAiIisR3p6PiZMiML+/dfFscBAD6xeHYbAQA8JIyOyHkx8qdLYpZ6CvOA2AEDr1Q2wc5Q4IiIi6+HoqMTNm/dWYBs3rhXef78z7O35q5yovNjOjCqNOmGXeFtTj4tWEBFVhL29HVatCkO9ei7YvHkAZs/uyqSXqIL4jqHKIQhQxe8suimTQ+vdS+KAiIgs29mzKXB0VOLpp93EscaNa+LYsddgZ8d5K6LHwXcOVQpF1kXYZV8FABTW6gTB3l3iiIiILJNeb8DSpScQGroJ48b9DI1GZ/Q4k16ix8d3D1WKkmUOWpY5EBGVKSkpGwMH/og5c36FTmfAn3/exvr1Z6UOi6jKYKkDVQpVfIn6Xh8mvkRE94uMvIjp0/ciK0sDoGg19/Dwthg9+hlpAyOqQpj4ktnJc5OgTCtaWaiwRnMYnOpLHBERkeXIztbgvff2Y/Pm8+KYt7czVqzohY4dfSSMjKjqYeJLZqdKiBJvs8yBiOiekyeTMXFiNK5fzxLH+vULwMKF3eDqai9hZERVExNfMjujNmZcrY2ICABw40Y2+vf/AVpt0QpsTk4qzJ8fjEGDAiGTcQU2InPgxW1kVjJtJpQ3DwEA9E71oa/RVOKIiIgsQ506zpg48VkAQJs2Xti/fwQGD27MpJfIjDjjS2alSoyFTChqxaPx6V10tQYRkQ0SBAEAjBLbGTM6wNu7OoYNa8o2ZUSVgO8yMitVws/ibS3LHIjIRmVmFmDs2J+xcuVpo3GlUoFXX23OpJeoknDGl8xHXwBV0h4AgEHthsJa7SUOiIio8h0+nIBJk6KRnJyDqKjLeP75emjWrJbUYRHZJCa+ZDaqGwch1+UAALR1QwE5v92IyHZotXosWHAEy5efxN0qB1SrpsStW7nSBkZkw5iJkNmULHNgNwcisiWXL6dj/PgonDt3Sxzr3NkHy5f3gpeXs4SREdk2Jr5kHgY91HcTX0HhAK1XkMQBERGZnyAI2LDhD3z44QHk5xdd2KtUyhER0QkTJ7aGXM4LfImk9ESJr0ajgVqtNlUsVIXYpZ6CvOA2AEDrFQzYOUocERGReWVk5OPNN2MRE3NFHPPzq4HVq8PQvLmnhJERUbEKX0ZqMBiwYsUKPPfcc2jZsiUSEhIAAF988QV++OEHkwdI1omLVhCRrVGp7HDpUrp4f9SoFti7dziTXiILUuHEd+XKldi+fTtmzJgBpVIpjvv7++PHH380aXBkpQQBqvidRTdlcmjr9pI4ICIi86tWTYlVq0JRu3Y1bNz4IhYu7AZHR+WjdySiSlPhxDcyMhKzZ89G3759IZff2z0gIABXr141aXBknRRZF2GXXfS9UFirIwR7d4kjIiIyvfPnb+PatUyjsWeeqY2TJ8cgJMRXmqCI6KEqnPimpKSgXr16pcYFQYBOpzNJUGTdSpY5aH16SxgJEZHpGQwC1q79DSEh32HChGjodAajx9VqXjdOZKkqnPj6+fnh1KlTpcZjYmIQGBhokqDIuhm3MWPiS0RVR0pKDoYM2Yb//vcANBo9Tp++ga+/Pit1WERUThX+s3TixIl49913kZKSAkEQEBsbi3///Rc7duzAmjVrzBEjWRF5XjKUqUVLcupqNIPBuYG0ARERmUh09GVMmRKL9PQCcWzcuFYYPryZhFERUUVUOPHt3r07Vq9ejRUrVsDBwQFLly5F48aNsXr1anTq1MkcMZIVUSVEibc520tEVUFubiFmzjyIDRvOiWOentWwdGkIgoIaSBcYEVXYYxUitW7dGuvXrzd1LFQFqONLtDGrxzZmRGTdzp5NwfjxUbhyJUMcCw31xaJFPeHu7iBhZET0OCpc49utWzdkZGSUGr9z5w66detmkqDIOsm0mVDe/AUAoK9WD/oa/PiPiKxXUlI2evf+Xkx6HR3tsGhRD3z9dV8mvURWqsKJb1JSEgwGQ6lxrVaLlJQUkwRF1kmVtAcyoaizh6Zeb0DGpTmJyHp5ezvjtddaAABatPDEvn0jMHx4M8j4s43IapW71GHfvn3i7UOHDsHZ2Vm8bzAYcPToUXh7e5s2OrIqqvh73Ry0XK2NiKyQIAhGie3773eGt7czRo9+BiqVQsLIiMgUyp34Tpo0CQAgk8nw7rvvGj+JnR28vb1LjZMN0WugSooFABhUNVBYq4PEARERlV92tgbvvbcfLVvWxujRz4jj9vZ2GD/+WekCIyKTKnfi+/fffwMAgoOD8eOPP8LNzc1sQZH1Ud08CLkuBwCg9QkF5GzgTkTW4eTJZEyYEI34+CxERl5E584+8PfnipNEVVGFa3zj4uKY9FIpJcscNCxzICIroNMZsHDhEfTtuxnx8VkAADs7Ba5dy5I4MiIyl8ealsvLy8PJkyeRnJyMwsJCo8dGjhxpksDIiggGqO+u1iYoHKD1CpY4ICKih7t2LRMTJ0bj1Kkb4libNl5YuTIU9eu7SBgZEZlThRPf8+fPY+zYscjPz0d+fj5cXFyQkZEBBwcHuLm5MfG1QXapJyEvuAUARUmvnaPEERERlU0QBGzefB4REXHIzS2auFEoZJg2rT3eeqsd7Owq/EEoEVmRCr/D582bh6CgIJw8eRJqtRpbtmzB/v370aRJE7zzzjvmiJEsnJplDkRkBbKyCjB27M8ID98tJr3167tg586XMX16Bya9RDagwu/yCxcu4LXXXoNcLodCoYBWq0WdOnUwY8YMLFq0yBwxkiUTBKjidxbdlMmhrdtL4oCIiMomk8nw2283xftDhjTB/v0j0Lq1l4RREVFlqnDia2dnB7m8aDd3d3ckJycDAJycnHDz5s2H7UpVkCLrH9hlXwEAFNbqCMGeV0ITkWWqXl2NFSt6wd3dAevW9cHSpSFwclJJHRYRVaIK1/g2btwYf/zxBxo0aIA2bdpg6dKlyMjIQGRkJJ5++mlzxEgWTJWwS7yt9ektYSRERMYuX06Ho6MSXl73Flxq374uTp16HdWqKSWMjIikUuEZ3ylTpqBmzZri7erVq+Ojjz5CRkYGPv74Y5MHSJZNXSLx1TDxJSILIAgCvvnmHLp1+x8mT46BwSAYPc6kl8h2VXjGt1mzZuJtd3d3fPXVVyYNiKyHPC8ZytTTAABdjaYwODeQNiAisnmpqXmYOnUPYmKKSrB+/TUBGzacw6hRLSSOjIgsgckuYf3rr78wbtw4Uz0dWQFVQpR4m7O9RCS1uLhr6Np1o5j0AsCrrzbH4MGNJYyKiCxJhRLfQ4cOYcGCBVi0aBESEhIAAFeuXMHEiRPx0ksvwWAwVDiAb7/9FsHBwWjWrBkGDRqEc+fOPXT7O3fuYNasWejcuTOaNm2KkJAQHDx4sMLHpSenji9Z38s2ZkQkjYICHT744ACGDNmGW7dyAQDu7g7YuPFFfPppdzg6srSBiIqUu9Thhx9+wAcffAAXFxfcuXMHP/zwA959913MmTMHoaGh2LVrF3x9fSt08KioKMybNw+zZs1CixYt8M0332DMmDGIiYmBu3vp7gBarRavvfYa3N3dsWTJEnh6eiI5ORnVq1ev0HHpycm0mVDe/AUAoK/mA51bc4kjIiJb9McfKRgy5EecP58qjgUF1cfSpb3g6VlNwsiIyBKVO/HdsGEDpk+fjtdffx27d+/Gm2++iU2bNmHnzp2oXbv2Yx18/fr1GDx4MAYOHAgAmDVrFg4cOICtW7di7NixpbbfunUrsrKy8P3330OpLPoLvm7duo91bHoyqqQ9kAk6AHfLHGQyiSMiIluTkHAHHTqsh0ajBwCo1Qp8+OFzGDOmJeRy/kwiotLKnfgmJCSgV6+ixQl69uwJOzs7zJgx47GTXq1WW6ouWC6Xo2PHjjhz5kyZ+8TFxeGZZ57Bxx9/jH379sHNzQ19+vTBf/7zHygUigodXyZjrvYk1An3VmsrrNfHYl/L4rgsNT4yLZ5v21KvXnWMHNkCX375Gxo39sDq1WEIDPSQOiwyE76/bYu5znO5E9+CggI4ODjcDUYGpVKJWrVqPfaBMzIyoNfrS5U0uLu74+rVq2Xuk5CQgGPHjuGFF17A2rVrER8fj1mzZkGn02Hy5MkVOr6bm/OjN6Ky6TRA8p6i2/Y14NIkBJBXuEFIpXJ35/m2JTzftmPx4hDUr++CadM6wt7esn8OkWnw/U1PokI/JX744Qc4OjoCAPR6PbZt24YaNWoYbTNy5EjTRXcfQRDg7u6O2bNnQ6FQoGnTpkhJScFXX31V4cQ3PT0bj3EtHgFQJu2BizYbAFDg3Qs56fkSR/RgMlnRD8m0tGwIwqO3J+vG81115eYWYubMg3j22ToYOrQJgHvne/z4lsjJyUdOjsRBklnx/W1b5HLzTFKWO/H18vLCli1bxPseHh6IjIw02kYmk5U78a1RowYUCgXS0tKMxtPS0uDhUfZHVTVr1oSdnZ1RWUPDhg1x+/ZtaLVaqFTlX3pSEMA3zmNSxd8rc9D49LGK15Hn27bwfFctZ8+mYMKEKFy+nIEff7yAdu288dRTruLjPN+2hefbNpjrHJc78Y2LizPpgVUqFZo0aYKjR4+ie/fuAACDwYCjR49i+PDhZe7TqlUr7Nq1CwaDAXJ5USe2a9euoWbNmhVKeukJCAao7tb3Cgp7aOsESxwQEVVVer0BK1acwvz5R6DTFX1EJwgC/v471SjxJSIqL5MtYPE4XnvtNWzZsgXbt2/HlStX8NFHHyE/Px8DBgwAALz99tv4/PPPxe2HDh2KzMxMfPLJJ/j3339x4MABrFmzBsOGDZPqS7A5dqmnoMhPAYCipFfJdkFEZHpJSdkYOPBHzJnzq5j0tmjhiX37RiA01E/i6IjIWkl6JUBYWBjS09OxdOlS3L59G4GBgVi3bp1Y6nDjxg1xZhcA6tSpg6+++grz5s1D37594enpiZEjR+I///mPVF+CzVGXLHOox0UriMj0IiMvYvr0vcjK0gAoqu0MD2+LGTM6QKWqWAcfIqKSZIJgm5UyaWm8uO1x1NjxLOzuXIIgkyNt0GUI9pbdOkgmAzw8nJGayoshbAHPt3XLydEiIiIOmzefF8e8vZ2xYkUvdOzoU2p7nm/bwvNtW+Ry83TwYO8XKjdF1j+wu3MJAFBYq4PFJ71EZF00Gj0OHLgu3u/XLwALF3aDq6u9hFERUVUiaY0vWRdV/C7xttant4SREFFV5O7ugGXLesHZWYXly3thzZowJr1EZFKPNeMbHx+PrVu3IiEhAe+//z7c3d1x8OBBeHl54emnnzZ1jGQh1An3El8NE18iekLXrmXC0VGJWrXuXSTbtWt9/Pbb63BxYcJLRKZX4RnfEydO4IUXXsC5c+cQGxuLvLw8AMDFixexbNkykwdIlkGedwPK1FMAAF2NpjA4PyVxRERkrQRBwPff/4WgoI14661Y3H+pCZNeIjKXCie+n3/+Od566y2sX78eSqVSHG/fvj1+//13U8ZGFkSVECXe5mwvET2uzMwCjB37M8LDdyM3txB79/6LTZv+kjosIrIRFU58//nnH3HBiZLc3NyQkZFhkqDI8pQsc9D6sI0ZEVXc4cMJ6Np1AyIj/xHHhgxpgr59/SWMiohsSYVrfJ2dnXH79m34+Bi3lrlw4QI8PT1NFhhZDpk2C8qbvwAA9NV8oHNrLnFERGRNtFo9Fiw4guXLT4ptqFxd1fjssx5MeomoUlV4xrd379747LPPcPv2bchkMhgMBpw+fRoLFixAv379zBAiSU2VtAcyQyGAu2UOMpnEERGRtbh0KR1hYZuwbNm9pLdzZx8cODCSSS8RVboKz/hOmTIFH3/8Mbp27Qq9Xo/evXtDr9ejT58+mDBhgjliJImpSpY5cLU2Iiqna9cy0b37/5CfrwMAKJVyRER0wsSJrSGX8w9oIqp8FU58VSoV5syZg4kTJ+LSpUvIzc1F48aN0aBBAzOER5LTa6BK2gMAMKhcUViro8QBEZG1aNDAFWFhfti69W/4+dXA6tVhaN6cJXFEJJ0KJ76nTp1C69at4eXlBS8vL3PERBZEefMXyAuzAQDaur0AORf7I6LyW7CgG3x8quOtt9rB0VH56B2IiMyowjW+o0aNQnBwMBYtWoTLly+bIyayIOqEn8XbGnZzIKIHKCjQ4YMPDuCnn/4xGq9eXY333uvMpJeILEKFE99ffvkFo0ePxokTJ9CnTx+8+OKLWLduHW7evGmO+EhKggGqu4mvoLCH1qubxAERkSU6f/42QkK+w5o1v2HatD1ISsqWOiQiojJVOPF1c3PD8OHD8f3332PPnj3o1asXduzYgeDgYIwcOdIcMZJE7FJPQ5GfAgDQ1gkClNUesQcR2RKDQcDatb8hJOQ7XLiQCqBo5vf33zkRQkSW6YkKNn18fDB27Fg0atQIS5YswcmTJ00VF1mAkmUOXLSCiEpKSclBePhu7N9/XRwLDPTA6tVhCAz0kDAyIqIHe+zE9/Tp09i5cyd2794NjUaDbt26YerUqaaMjSRW3MZMkMmh8QmVOBoishTR0ZcxdeoepKXli2PjxrXC++93hr09L4AlIstV4Z9Qn3/+OX7++WfcunULnTp1wvvvv49u3brBwcHBHPGRRBRZ/8Auq+gilcKa7SHYcwaHyNbl5hZi5syD2LDhnDjm6VkNS5eGICiogXSBERGVU4UT35MnT2LMmDEIDQ2Fm5ubOWIiC6AqWebARSuICEBOjgY//3xJvB8a6otFi3rC3Z0TH0RkHSqc+H7//ffmiIMsjDr+3mptGp8wCSMhIkvh6emERYt6YMKEKMyZE4Rhw5pCxiXMiciKlCvx3bdvH55//nkolUrs27fvodt268aWV9ZOnncTytSiCxV1rk1gcG4ocUREJIWkpGw4OtqhRo17M7qhoX44efJ11KzpKGFkRESPp1yJ76RJk3D48GG4u7tj0qRJD9xOJpPhwoULJguOpKFKjBJva+r1ljASIpJKZORFTJ++F88/Xw/r1vUxmtll0ktE1qpcie/ff/9d5m2qmkqWObCNGZFtyc7W4L339mPz5vMAgJ07L2Hr1r/x0kuBEkdGRPTkKryAxY4dO6DVakuNa7Va7NixwxQxkYRk2jtQ3jwIANA71oXOrYXEERFRZTl5MhlBQf8Tk14A6NcvAN27PyVhVEREplPhxDciIgLZ2aWXo8zNzUVERIRJgiLpqJL2QGYoBHC3zIEXrhBVeTqdAZ9+ehR9+25GfHwWAMDJSYXly3thzZowuLraSxwhEZFpVLirgyAIZV7Fm5KSAmdnZ5MERdIpXrQCYJkDkS24di0TEydG49SpG+JYmzZeWLkyFPXru0gYGRGR6ZU78e3Xrx9kMhlkMhleffVV2Nnd21Wv1yMxMRHPPfecWYKkSqLXQJUUCwAwqFxR6NlR4oCIyJyuXs1A9+7fIienqHxNoZBh2rT2eOutdrCzq/AHgkREFq/ciW/37t0BABcuXEDnzp1RrVo18TGlUglvb2/07NnT9BFSpVHePAR5YVEZi7ZuL0CulDgiIjKnp55yxXPP+SA6+grq13fBqlWhaN3aS+qwiIjMptyJ7+TJkwEA3t7eCAsLg1qtNltQJA11idXaNCxzIKryZDIZFi3qCR+fY3j33U5wclJJHRIRkVlV+LOs/v37M+mtigSDuEyxoLCH1osLkRBVJVqtHrNnH8KePVeNxt3dHTBnThCTXiKyCeWa8W3bti1iYmLg5uaGNm3aPHSJyhMnTpgsOKo8dqmnoci/CQDQ1gkClNUesQcRWYvLl9MxfnwUzp27hU2b/sKBAyNQqxbf40Rke8qV+EZERMDJyUm8zbXZq56SZQ7s5kBUNQiCgA0b/sCHHx5Afr4OAJCVVYATJ5LRp8/TEkdHRFT5ypX49u/fX7w9YMAAswVD0iluYyZABk3dXhJHQ0RPKjU1D1On7kFMzBVxzM+vBlavDkPz5p4SRkZEJJ0K9/H966+/YGdnh4CAAADA3r17sW3bNvj5+WHy5MlQqVgnZm0UWf/ALusfAICuVnsIDjUljoiInkRc3DWEh+/GrVu54tioUS3w0UfPw9GR3VqIyHZV+OK2Dz/8ENeuXQMAJCQkYMqUKXBwcEBMTAw+/fRTU8dHlUDFbg5EVUJBgQ4ffHAAQ4ZsE5Ned3cHbNz4IhYu7Makl4hsXoUT32vXriEwMBAAEB0djbZt2+Lzzz/HvHnzEBsba/IAyfyM25iFSRgJET2J1NQ8bNr0l3g/OLgBDhwYiZAQXwmjIiKyHBVOfAVBgMFgAAAcPXoUzz//PACgTp06yMjIMG10ZHbyvJuwu30SAKBzbQxDdf6CJLJWdetWx8KF3aBWKzB3bhA2beoPT092byAiKlbhGt+mTZti1apV6NChA06ePImPPvoIAJCYmAgPDw9Tx0dmpkqMhgwCAEDj01viaIioIlJScuDoqISz873e6gMGNEK7dt7w9naWMDIiIstU4Rnf9957D+fPn8fs2bMxfvx41K9fHwCwe/dutGzZ0uQBknkVd3MAAG091vcSWYvo6Mvo2nUj3ntvf6nHmPQSEZVNJgiCYIon0mg0kMvlUCqt4+KJtLRs3K3YsFky7R24b2kImUELvaM30geeB6pYj2aZDPDwcEZqajZM851OlswWzndubiFmzjyIDRvOiWNffdUHL7zgL2FU0rCF80338HzbFrkccHc3/R/xFS51KPbnn3/iypWi/pB+fn5o0qSJyYKiyqFK3guZQQsA0Pr0rnJJL1FVc/ZsCsaPj8KVK/eupwgN9UXHjj4SRkVEZD0qnPimpaXhrbfewsmTJ1G9enUAwJ07d9CuXTssXrwYbm5uJg+SzEMVf6/MQcMyByKLpdcbsGLFKcyffwQ6XdFHVY6OdpgzJwjDhjXlappEROVU4Rrf2bNnIy8vDz///DNOnDiBEydOYNeuXcjJycGcOXPMESOZg14LVVJR+zmDyhWFnp0kDoiIypKUlI2BA3/EnDm/iklvixae2LdvBIYPb8akl4ioAio843vo0CGsX78evr732l75+flh5syZGD16tEmDI/NRphyCvPAOAEBbNwSQW0dtNpEtuXIlA716fYesLA2Aomqk8PC2mDGjA1QqhcTRERFZnwrP+BoMhjIvYLOzsxP7+5LlU5csc+BqbUQW6amnXNGqVW0ARZ0atm8fhPff78ykl4joMVU48W3fvj0++eQTpKSkiGMpKSmYN28eOnToYNLgyEwEA1QJUUU35WpovbpJHBARlUUul2Hp0hCMGNEM+/eP4EVsRERPqMKlDh9++CEmTJiAbt26oXbtopmImzdv4umnn8ann35q8gDJ9OzSfoMi/wYAQOsVBCidJI6IiHQ6AxYvPo727b3x3HP1xHFPTyd8/nkPCSMjIqo6Kpz41qlTB9u3b8fRo0fFdma+vr7o2LGjyYMj81DH/yze1rLMgUhy165lYuLEaJw6dQN16jjhwIERqFHDQeqwiIiqnAolvlFRUdi3bx8KCwvRoUMHjBgxwlxxkRkVr9YmQAZN3VCJoyGyXYIgYMuWC4iIiENOTlFP7Vu3cvHrrwk2uSAFEZG5lTvx/e677/Dxxx+jfv36sLe3x549exAfH4933nnHnPGRiSmyLsEu6yIAQFerPQSHmhJHRGSbMjMLMGPGXkRG/iOO1a/vglWrQtG6tZeEkRERVV3lvrjt22+/xeTJk7F7925ERkZi/vz52LRpkzljIzNQJdwrc2A3ByJpHD6cgK5dNxglvUOGNMH+/SOY9BIRmVG5E9+EhAT069dPvP/CCy9Ap9Ph1q1b5oiLzESdULKNWZiEkRDZHq1WjzlzDmHAgB+QnJwDAHBxUWPduj5YujQETk4qiSMkIqrayl3qoNVq4ejoKN6Xy+VQKpXQaDRmCYxMT553E3a3TwIAdK6NYaju+4g9iMiUkpOzsW7d7xCEovudOtXF8uWh8PZ2ljYwIiIbUaGL27744gs4ONy70riwsBCrVq2Cs/O9H9oRERGmi45MSpUYDRmKfuNqfHpLHA2R7WnQwBWffNIVb7+9DxERnTBxYmvI5VxymIiospQ78W3Tpg3+/fdfo7GWLVsiISFBvM814y2bqkSZg7Ye63uJzC0tLR8ODnZwdLy32uUrrzRFhw510bBhDQkjIyKyTeVOfDdu3GjOOMjMZNo7UN04CADQO3pD5/aMtAERVXFxcdcQHr4bvXv7YcGCe6sjymQyJr1ERBKp8JLFZJ1UyXshMxT1CdX6hAGcnScyi4ICHT744ACGDNmGW7dysX79WezZc1XqsIiICI+xchtZJ7YxIzK/8+dvY8KEaFy4kCqOBQc3QPPmnhJGRURExZj42gK9FqrEWACAQemCwtqdJQ6IqGoxGASsW3cGs2cfgkajBwCo1QrMnPk8xox5htc/EBFZCCa+NkCZ8ivkhVkAAG3dEECufMQeRFReKSk5CA/fjf37r4tjgYEeWL06DIGBHhJGRkRE92PiawOMFq1gNwcik7l8OR0vvLAZaWn54ti4ca3w/vudYW/PH69ERJbmsS5uO3XqFKZPn46XX34ZKSkpAIAdO3bg1KlTJg2OTEAwQJUQVXRTrkahV7dH7EBE5fXUU67w93cDAHh6VsPmzQMwe3ZXJr1ERBaqwonv7t27MWbMGNjb2+P8+fPQaos6BeTk5GDNmjUmD5CejF3aGSjykgEA2jpdISi5QhSRqSgUcqxYEYpBgwJx4MBIBAU1kDokIiJ6iAonvqtWrcKsWbMwZ84c2Nndm9Vo1aoVzp8/b9Lg6MmV7ObARSuIHp9eb8DSpSdw4kSy0XjdutWxYkUo3N0dHrAnERFZigp/Hvfvv/+idevWpcadnZ1x584dkwRFpqOOL6rvFSCDpm6oxNEQWaekpGxMmhSNI0cSUa+eC/bvHw5nZ7XUYRERUQVVeMbXw8MD8fHxpcZPnz4NHx8fkwRFpqG4cwl2WX8DAHQ120FwqCVxRETWJzLyIrp23YAjRxIBAAkJWThw4Poj9iIiIktU4cR38ODB+OSTT3D27FnIZDKkpKTgp59+woIFCzB06FBzxEiPSRUfJd5mNweiisnO1uCNN2Lwn//8jKwsDQDA29sZ27cPwgsv+EscHRERPY4KlzqMHTsWBoMBo0aNQn5+PoYPHw6VSoXRo0djxIgR5oiRHlPJNmZanzAJIyGyLidPJmPixGhcv54ljvXrF4CFC7vB1dVewsiIiOhJVDjxlclkmDBhAsaMGYP4+Hjk5eXB19cX1apVM0d89Jhk+Smwu30CAKBzDYS+up/EERFZPp3OgMWLj2PRomPQ6wUAgJOTCvPnB2PQoECuwEZEZOUeu9mkSqWCnx+TKUulToiGDEW/uDU+vSWOhsg6XLuWiaVLT4hJb5s2Xli5MhT167tIHBkREZlChRPfESNGPHTWY8OGDU8UEJmGyqjMgfW9ROXh5+eGDz98Dh9+eBDTprXHW2+1g53dY63zQ0REFqjCiW9gYKDRfZ1OhwsXLuDSpUvo16+fqeKiJyArzIbqxgEAgN7RCzr3ltIGRGShMjML4OBgB7X63o/C119vic6d6yEw0EPCyIiIyBwqnPi+9957ZY4vW7YMeXl5TxwQPTll0l7IDEUr6ml9egOsSyQq5fDhBEyaFI1+/QLw0UddxHGZTMakl4ioijLZZ3h9+/bF1q1bTfV09ARKdnPQsMyByIhWq8ecOYcwYMAPSE7OwcqVp/HLL6V7kxMRUdXz2Be33e/MmTNQqVSmejp6XHotVImxAACD0gWFtTtLHBCR5bh8OR3jx0fh3Llb4ljnzj7w86shYVRERFRZKpz4Tp482ei+IAi4ffs2/vzzT0ycONFkgdHjUab8CnlhUe9Rbd0QQK6UOCIi6QmCgA0b/sCHHx5Afr4OAKBUyhER0QkTJ7aGXM5yICIiW1DhxNfZ2dnovkwmw1NPPYXw8HB07szZRakZlTlwtTYipKbmYerUPYiJuSKO+fnVwOrVYWje3FPCyIiIqLJVKPHV6/UYMGAA/P394eLCvpYWRxCgSihapliQq1Do1U3igIikdflyOvr1+wG3buWKY6NGtcBHHz0PR0d+GkJEZGsqdHGbQqHA6NGjcefOHZMG8e233yI4OBjNmjXDoEGDcO7cuXLt9/PPPyMgIIAlFnfZpZ2BIi8ZAKCt0xWC0vkRexBVbfXru8Db2wkA4O7ugI0bX8TChd2Y9BIR2agKd3V4+umnkZiYaLIAoqKiMG/ePEyaNAnbt29Ho0aNMGbMGKSlpT10v8TERCxYsACtW7c2WSzWjotWEBlTKhVYtSoMvXv74cCBkQgJ8ZU6JCIiklCFE9+33noLCxYswP79+3Hr1i3k5OQY/auo9evXY/DgwRg4cCD8/Pwwa9Ys2NvbP7Q1ml6vx/Tp0/HGG2/Ax8enwsesqtQJPwMABMig8QmVOBqiymUwCFi79jecOXPDaLxhwxpYv74vPD2rSRQZERFZinLX+C5fvhyjR4/G2LFjAQATJkwwWrpYEATIZDJcuHCh3AfXarX466+/MG7cOHFMLpejY8eOOHPmzAP3W7FiBdzd3TFo0CCcPn263McrSSarWus6yO9chl1m0Wuvq9kWcPREFfryHlvxOa5K55pKu3kzB+Hhu7F//3Vs3PgnYmOHwsGB5QxVHd/ftoXn27aY6zyXO/FdsWIFhg4dig0bNpjs4BkZGdDr9XB3dzcad3d3x9WrV8vc59SpU/jxxx+xY8eOJzq2m1sVq3/9d594Uxk4EB4eVezre0Lu7nw9qqrIyL/x+us7kZpatHLk33+n4sSJmxg4sLHEkVFl4fvbtvB805Mod+IrCAIAoG3btmYL5lFycnLw9ttvY/bs2XBzc3ui50pPz4bBYKLALIDL31tRPL+V7t4dhtRsSeOxFDJZ0Q/JtLRs3P0WpioiN7cQM2cexDff3LsY1tOzGjZs6I9nn62FVL4Hqjy+v20Lz7dtkcvNM0lZoXZmMhPPO9eoUQMKhaLUhWxpaWnw8PAotX1CQgKSkpIwYcIEccxwN3tt3LgxYmJiUK9evXIdWxBQZd44svxbsLt1HACgc2kEvbMfUEW+NlOpSuebgLNnUzB+fBSuXMkQx0JDfbF4cU8EBBQlvTzftoPvb9vC820bzHWOK5T4hoSEPDL5PXHiRLmfT6VSoUmTJjh69Ci6d+8OoCiRPXr0KIYPH15q+4YNG2Lnzp1GY1988QVyc3Px/vvvo3bt2uU+dlWiToyG7G6my0UrqCrT6w1YseIU5s8/Ap2u6I9eR0c7zJ7dFcOHN+MKbERE9FAVSnzfeOONUiu3PanXXnsN77zzDpo2bYrmzZvjm2++QX5+PgYMGAAAePvtt+Hp6Ylp06ZBrVbD39/faP/q1asDQKlxW6KKL9nGrLeEkRCZ16VL6UZJb4sWnli9Ogy+vjUkjoyIiKxBhRLf3r17l7oQ7UmFhYUhPT0dS5cuxe3btxEYGIh169aJpQ43btyAXF7hrms2Q1aYDdWNAwAAvaMXdO4tpQ2IyIwaNfLAu+92xCef/Irw8LaYMaMDVCqF1GEREZGVkAlC+aooAgMD8euvv5o88ZVKWlrVuLhNdX0HXA6OBADkB7yOnHaLJI7IsshkgIeHM2s+rVROjhb29naws7v3x69eb8Aff9zCM8+ULm3i+bYtPN+2hefbtsjl5ungUe6p1HLmx1TJ1CXKHDRcrY2qkJMnkxEUtBGLFh0zGlco5GUmvURERI9S7sT377//rjKzvVWGoRCqxN1FN5UuKPTsLHFARE9OpzPg00+Pom/fzbh+PQuLFh3HiRPJUodFRERVQIVqfMmyKG/+CnlhFgBAW7cnoFBJHBHRk7l2LRMTJ0bj1Kl7yw4/+2wdLjdMREQmwcTXiqkTWOZAVYMgCNiy5QIiIuKQk6MFACgUMkyb1h5vvdXOqMaXiIjocTHxtVaCAFXCz0U35SoUeneXOCCix5OZWYC3396HHTsuimP167tg1apQtG7tJWFkRERU1TDxtVJ2aWegyCuqe9TW6QpBybXLyfpcvpyOQYO2Iinp3vLCQ4Y0wdy5QXByYukOERGZFhNfK6VKKLloBcscyDrVrVsd1aurkZSUDVdXNT77rAf69rXdxWiIiMi8WDhnpdTFZQ6QQeMTKnE0RI/H3t4Oq1eHoXv3p3DgwEgmvUREZFZMfK2Q4s5l2GVeAADoaraF4OApcUREjyYIAjZsOIeLF9OMxgMDPfDdd/3h5cVyHSIiMi+WOlghVUKUeJvdHMgapKbmYerUPYiJuYImTWoiJmYo1Gr++CEiosrFGV8rVFzmAADaer0ljITo0eLirqFr142IibkCAPjrr9uIjb0qcVRERGSLOOViZWT5t2F3q2gJV51LAPTV/SSOiKhsBQU6zJlzCGvXnhHH3N0d8MUXPRES4ithZEREZKuY+FoZdWI0ZBAAsJsDWa7z529jwoQoXLhwr543KKg+li7txVXYiIhIMkx8rUzJNmYaljmQhTEYBKxbdwazZx+CRqMHAKjVCnz44XMYM6Yl5HKZxBESEZEtY+JrTQpzoEreDwDQO9SBzr2VxAERGTt/PhUffngQBkPRpxKBgR5YvToMgYEeEkdGRETEi9usiip5H2QGDQBA6xMGyHj6yLI0bVoTb73VFgAwblwr7N79CpNeIiKyGJzxtSJqozIH1veS9PLyCmFvb2dUwjBtWnt07Vof7dvXlTAyIiKi0jhlaC0MhVAl7i66qayOQs/nJA6IbN3Zsyno1u1/WLnylNG4Uqlg0ktERBaJia+VUKYchlybCQDQevcEFCppAyKbpdcbsHTpCYSGbsKVKxmYN+8wzp1LkTosIiKiR2Kpg5VQx98rc9CyzIEkkpSUjUmTonHkSKI41rhxTVSrxj/EiIjI8jHxtQaCANXd1doEuQpar+4SB0S2KDLyIqZP34usrKILLGUyIDy8LWbM6ACVSiFxdERERI/GxNcK2KX/DkVeEgBAW6cLBFV1iSMiW5KdrcF77+3H5s3nxTFvb2esWNELHTv6SBgZERFRxTDxtQKqkmUOXK2NKtHly+kYOnQ7rl/PEsf69QvAp592g4uLvYSRERERVRwTXyugLi5zgAwanzCJoyFbUqeOM+zsiq6BdXJSYf78YAwaFAiZjCuwERGR9WFXBwsnv3MFdplFHzHraraB4OApcURkS6pVU2L16jB06lQX+/ePwODBjZn0EhGR1WLia+HUCVHibQ3LHMiMBEHA5s3n8e+/mUbjLVp4Ytu2Qahf30WawIiIiEyEia+FK7lam7ZebwkjoaosM7MAY8f+jDfeiMHEiVEoLNQbPc5ZXiIiqgqY+FowWf5t2N06BgDQuQRAX/1piSOiqujw4QR07boBkZH/AABOn76J2NirEkdFRERkery4zYKpE6MhgwCA3RzI9LRaPRYsOILly09CKPo2g6urGp9/3gO9e/OPLCIiqnqY+FowVYkyBw3LHMiELl9Ox/jxUTh37pY41rmzD5Yv7wUvL2cJIyMiIjIfJr6WqjAHquT9AAC9Qx3o3FtJHBBVBYIgYMOGP/DhhweQn68DACiVckREdMLEia0hl7OWl4iIqi4mvhZKlbwPMkPR0rBanzBAxnJsenJ//HELM2bsFe/7+dXA6tVhaN6cbfKIiKjqYzZloYoXrQAATT3W95JpNG/uifHjnwUAjBrVAnv3DmfSS0RENoMzvpbIUAhVYkzRTWV1FHo+J3FAZK00Gh1UKoVRO7L33++E4OAG6Nq1voSRERERVT7O+FogZcoRyLWZAACtdw9AoZI2ILJK58/fRs+e32L9+rNG42q1HZNeIiKySUx8LVDJbg5sY0YVZTAIWLv2N4SEfIcLF9Lw0UcHcfFimtRhERERSY6lDpZGEKCOL6rvFeTKohlfonJKSclBePhu7N9/XRx76qkaEkZERERkOZj4Whi79LNQ5CUCAAprd4Ggqi5xRGQtoqMvY+rUPUhLyxfHxo1rhfff7wx7e77ViYiI+NvQwhgvWsEyB3q03NxCzJx5EBs2nBPHPD2rYenSEAQFNZAuMCIiIgvDxNfCFJc5AIC2bpiEkZA1uHIlA8OH78CVKxniWGioLxYt6gl3dwcJIyMiIrI8THwtiDz7Kuwy/wIAFHq0gcGxtsQRkaWrWdMRhYV6AICjox3mzAnCsGFNjdqXERERURF2dbAg6oQo8TbLHKg8qldXY8WKUDz7bG3s2zcCw4c3Y9JLRET0AEx8LYgqnm3M6OF++ukfJCVlG421a+eNqKih8PVl9wYiIqKHYeJrIWT5t6G8fQwAoHPxh97laYkjIkuSna3BG2/E4PXXd2Hy5Gjo9QajxznLS0RE9GhMfC2EOjEGMqEomeFsL5V08mQygoP/h82bzwMADh9ORGzsVYmjIiIisj68uM1CGLUx8+ktYSRkKXQ6AxYvPo5Fi45BrxcAAE5OKsyfH4xevXwljo6IiMj6MPG1BIU5UCXHAQD0DrWh83hW4oBIateuZWLixGicOnVDHGvTxgsrV4aifn0XCSMjIiKyXkx8LYAqOQ4ygwYAoPXpDchYgWKrBEHAli0XEBERh5wcLQBAoZBh2rT2eOutdrCz4/cGERHR42LiawHULHOgu37/PQVvvBEj3q9f3wWrVoWidWsvCaMiIiKqGjh9JDVDIVSJRYmOQVkdhbWflzggklLLlrUxcmRzAMCQIU2wf/8IJr1EREQmwhlfiSlTjkCuzQQAaL17AAqVtAFRpSos1MPOTm7UjmzWrC7o3v0pXsBGRERkYpzxlVjJbg5sY2ZbLl9OR2joJrFNWbFq1ZRMeomIiMyAia+UBAHq+J+LbsqVRTO+VOUJgoBvvjmHbt3+h3PnbiEiIg5Xr2ZIHRYREVGVx1IHCdmln4MiLxEAUFi7CwRVdYkjInNLTc3D1Kl7EBNzRRyrU8cJBQU6CaMiIiKyDUx8JWS0aEU9ljlUdXFx1xAevhu3buWKY6++2hyzZnWBo6NSwsiIiIhsAxNfCakTfhZva+uGSRgJmVNBgQ6ffPIr1qz5TRxzd3fAF1/0REgIa3mJiIgqCxNficiz/4Vdxp8AgEKP1jA41pY4IjKHq1cz8NprO3HhQqo4FhzcAEuWhMDTs5qEkREREdkeJr4SKTnbq2E3hyrL1dUeGRn5AAC1WoGZM5/HmDHPGLUvIyIiosrBrg4SUZUsc2B9b5Xl5uaApUt7oUmTmoiNHYbXX2/JpJeIiEgiTHwlICtIhfLWUQCArvrT0Lv4SxwRmcru3VeQkpJrNNa1a33s3TsMgYEeEkVFREREABNfSagSYyATDAC4aEVVkZtbiOnT92LEiEi89dZuCIJg9LhCwbcaERGR1PjbWALq+JJtzHpLGAmZwtmzKeje/X/YsOEcAGDfvmuIjb0qcVRERER0P17cVtkKc6G6EQcA0Dt4QufRWuKA6HHp9QasWHEK8+cfgU5XNIPv6GiHOXOC0LNnQ4mjIyIiovsx8a1kqhtxkOkLAABan96AjJPu1igpKRuTJkXjyJFEcaxFC0+sXh0GX98aEkZGRERED8LEt5IZlTn4sMzBGu3YcREzZuxFVpYGACCTAeHhbTFjRgeoVAqJoyMiIqIHYeJbmQw6qBKji24qnVFY+3mJA6KKOnUqGWPH3mtF5+3tjBUreqFjRx8JoyIiIqLy4OfslUh56wjk2kwAgNa7B6BQSxsQVVjr1l4YNCgQANCvXwD27x/BpJeIiMhKcMa3EqlKlDmwjZl1MBgEyOXGC07Mnx+MHj0a4sUX/bkYBRERkRXhjG9lEQRxmWJBriya8SWLdu1aJvr0+R6RkReNxp2d1ejXL4BJLxERkZXhjG8lsUs/B0VuAgCgsPbzEFQuEkdEDyIIArZsuYCIiDjk5Ghx6dJetG7tBW9vZ6lDIyIioifAxLeSqBJKdnNgmYOlyswswIwZexEZ+Y845upqj/T0fCa+REREVo6JbyUpLnMAAK1PmISR0IMcPpyASZOikZycI44NGdIEc+cGwclJJWFkREREZApMfCuBPPtf2GX8CQAo9GgNg2MdiSOikrRaPRYsOILly09CEIrGXFzU+PzzHujb11/a4IiIiMhkmPhWgpKzvSxzsCzXrmXi9dd34dy5W+JYp051sXx5KEsbiIiIqhgmvpVAVbLMoR4TX0vi4GCHpKRsAIBSKUdERCdMnNi6VAszIiIisn5sZ2ZmsoI0KG8dBQDoqj8NvQs/Orcknp5OWLy4J55+2g3R0UMxeXIbJr1ERERVFGd8zUyVGAOZYADARSsswcGD19GsWS24uTmIY716+aJbtwZQKhUSRkZERETmZhEzvt9++y2Cg4PRrFkzDBo0COfOnXvgtlu2bMErr7yCNm3aoE2bNhg1atRDt5eaumQbs3q9JYzEthUU6PDBBwcwaNBWTJ++F0LxVWx3MeklIiKq+iRPfKOiojBv3jxMmjQJ27dvR6NGjTBmzBikpaWVuf3x48fRu3dvbNiwAd9//z3q1KmD0aNHIyUlpZIjLwddHlTJcQAAvYMndB6tJQ7INv3xRwpCQr7DmjW/AQB27bqEuLhr0gZFRERElU7yxHf9+vUYPHgwBg4cCD8/P8yaNQv29vbYunVrmdt//vnnGDZsGAIDA+Hr64s5c+bAYDDg6NGjlRz5o6mS4yDT5wMAtHXDAJnkL7dNMRgErFnzG9q0+RLnz6cCANRqBebODUJwcANpgyMiIqJKJ2mNr1arxV9//YVx48aJY3K5HB07dsSZM2fK9Rz5+fnQ6XRwcanYEsAyWdE/cypZ5qCt19vsx6N7bt7MQXj4buzff10ca9zYA6tXhyEw0EPCyMicit9jfK/ZBp5v28LzbVvMdZ4lTXwzMjKg1+vh7u5uNO7u7o6rV6+W6zk+++wz1KpVCx07dqzQsd3czNyj1aADkmKKbiud4NK0D2CnNu8xCQDw008XMWbMT0hNzRPHpkxpj7lzu8Hentdz2gJ3d/ZgtiU837aF55uehFVnAWvXrkVUVBQ2bNgAtbpiSWV6ejYMBjMFBkB58xBcCtIBABrvnsjO1ALQmu+ABAA4fjwJL764Wbxfq1Y1bNzYH88+Wws5OfnIyXnIzmT1ZLKiX4ppadm47/pFqoJ4vm0Lz7dtkcvNM0kpaeJbo0YNKBSKUheypaWlwcPj4R9Hf/XVV1i7di3Wr1+PRo0aVfjYggCzvnGU8SW6Ofj05pu0krRp44WwMD9ERV1Gr16++OKLnggIqIXUVP6gtCXmfn+TZeH5ti0837bBXOdY0qutVCoVmjRpYnRhWvGFai1btnzgfl9++SVWrlyJdevWoVmzZpURasUIAtTxRau1CXIltN49JQ6o6rq/LZlMJsOiRT2wdGkIvvmmL9zdHR6wJxEREdkaydsMvPbaa9iyZQu2b9+OK1eu4KOPPkJ+fj4GDBgAAHj77bfx+eefi9uvXbsWS5Yswdy5c+Ht7Y3bt2/j9u3byM3NlepLKEWR8QcUufEAgELP5yCoKnbhHZVPUlI2Bgz4AbGxxvXgbm4OGDKkCWS8AoKIiIhKkLzGNywsDOnp6Vi6dClu376NwMBArFu3Tix1uHHjBuTye/n5999/j8LCQoSHhxs9z+TJk/HGG29UauwPoi5Z5lCPq7WZQ2TkRUyfvhdZWRpcvJiG/ftHwtOzmtRhERERkQWTPPEFgOHDh2P48OFlPrZx40aj+3FxcZUR0hNRJ/ws3tb6hEkYSdWTna3Be+/tx+bN58UxtdoOKSk5THyJiIjooSwi8a1K5NnXYJfxBwCg0ONZGBy9JI6o6jh5MhkTJkQjPj5LHOvXLwALF3aDq6u9hJERERGRNWDia2IlZ3s1PixzMAWdzoBFi45h8eLj0OuLLmZzclJh/vxgDBoUyFpeIiIiKhcmviamMipzYOL7pOLjszB+fBROnbohjrVp44WVK0NRvz4vGiQiIqLyY+JrQrKCNChvHQEA6Kr7Qe/iL3FE1k8ul+Gff4oWAlEoZJg2rT3eeqsd7Owkb0hCREREVobZgwmpEmMgE4qWg9P69OGC4iZQt251fPppN9Sv74KdO1/G9OkdmPQSERHRY+GMrwmpE0q2MestYSTW69ixRDRpUhPOzveWoO7fvxFCQ/1gb89vVyIiInp8nDozFV0eVMlFrdYM9rWg82gjcUDWRavVY/bsQ3jxxS2IiNhf6nEmvURERPSkmPiaiCo5DjJ9PgBA49MbkPGlLa/Ll9MRFrYJy5adhCAAW7acx/7916QOi4iIiKoYTqOZiNGiFSxzKBdBELBhwx/48MMDyM/XAQCUSjkiIjqhS5f6EkdHREREVQ0TX1Mw6KBKjC66aecEbe0uEgdk+VJT8zB16h7ExFwRx/z8amD16jA0b+4pYWRERERUVTHxNQHlrWOQa4pabmm9ewIK9SP2sG1xcdcQHr4bt27limOjRrXARx89D0dHpYSRERERUVXGxNcEVCW6ObDM4eGOHUvEkCHbxPvu7g744oueCAnxlTAqIiIisgW8AutJCYJY3yvIlUUzvvRA7dp5Izi4AQAgOLgBDhwYyaSXiIiIKgVnfJ+QIuNPKHKuAwAKPTtDUHEZ3YeRyWRYsiQEUVGXMWpUc8i4yAcRERFVEs74PiGjRSt8+kgYieVJScnFK69sxy+/xBuNe3pWw2uvtWDSS0RERJWKM75PSBVfoo2ZT5iEkViWmJgrmDIlFmlp+fjrr9vYv38E3NwcpA6LiIiIbBgT3ycgz7kOZcY5AECheysYqnlLHJH0cnMLMXPmQWzYcE4cMxgEJCTcYeJLREREkmLi+wSMF61gmcPZsymYMCEKly9niGOhob5YtKgn3N2Z9BIREZG0mPg+gZJlDrZc36vXG7BixSnMn38EOp0BAODoaIc5c4IwbFhT1vISERGRRWDi+5hkBWlQ3joMANA5+0LvEiBxRNJITs7GpEnROHw4URxr0cITq1eHwde3hoSRERERERlj4vuYVEkxkAlFs5vaen0AG53VLCjQ4cyZFABFL0F4eFvMmNEBKpVC4siIiIiIjLGd2WNSs8wBANCwYQ3MnRsEb29nbN8+CO+/35lJLxEREVkkzvg+Dl0eVMn7AAAG+1rQebSWOKDK89tvN9CokQccHZXi2NChTdC3rz+cnFQSRkZERET0cJzxfQyq5P2Q6fMBABqfMEBe9Wc4dToDPv30KHr3/h4fffSL0WMymYxJLxEREVk8Jr6PoeRqbVqf3hJGUjmuXctE376b8emnR6HXC/j667P49df4R+9IREREZEFY6lBRBh1UidFFN+2coK3TReKAzEcQBGzZcgEREXHIydECABQKGaZNa4/27etKHB0RERFRxTDxrSDlrWOQa9IBAFrvHoDCXuKIzCMzswBvv70PO3ZcFMfq13fBqlWhaN3aS8LIiIiIiB4PE98KUtlAmcORIwmYNCkGSUnZ4tiQIU0wd24Qa3mJiIjIajHxrQhBEJcpFmR20NbtKXFApnfkSAL69/8BglB039VVjc8+64G+ff2lDYyIiIjoCfHitgpQZP4FRc51AEBh7ecgqFylDcgM2rXzRocORfW7nTv74MCBkUx6iYiIqErgjG8FqOPvlTlU1UUrFAo5VqwIxU8//YNx41pBLrfNFemIiIio6uGMbwWoEu6t1qb1CZMwEtNITc3Da6/9hOPHk4zGvb2dMWHCs0x6iYiIqErhjG85yXPioUw/CwAodG8FQzVviSN6MnFx1xAevhu3buXijz9uYf/+EXB2VksdFhEREZHZcMa3nNQlZ3vrWW+ZQ0GBDv/9734MGbINt27lAgBycwtx5UqGxJERERERmRdnfMupZJmDtdb3nj9/GxMmROHChTRxLDi4AZYsCYGnZzUJIyMiIiIyPya+5SArSIMy5TAAQOfcEHqXAIkjqhiDQcC6dWcwe/YhaDR6AIBarcDMmc9jzJhnIJOxlpeIiIiqPia+5aBK2g2ZUJQwan36AFaUKKak5CA8fDf2778ujgUGemD16jAEBnpIGBkRERFR5WLiWw4l63s1Vlbfm5FRgCNHEsX748a1wvvvd4a9PU89ERER2RZe3PYoujyokvYCAAz2NaHzaCNxQBXTqJEHZs58HrVqVcPmzQMwe3ZXJr1ERERkk5gBPYLqxgHI9PkAAE3dMECukDiih/vzz9t4+ukaUKvvndoxY57BSy8FwtXVXsLIiIiIiKTFGd9HUJVYrU1br7eEkTycXm/A0qUn0LPnt5g797DRYzKZjEkvERER2Twmvg9j0EGdGAUAEOyqQVunq7TxPEBSUjYGDvwRc+b8Cp3OgFWrTuPYsaRH70hERERkQ1jq8BDK28ch16QDALTePQCF5c2aRkZexPTpe5GVpQFQ1HAiPLwtWrWqLXFkRERERJaFie9DlCxz0PhYVplDdrYG7723H5s3nxfHvL2dsWJFL3Ts6CNhZERERESWiYnvgwiC2MZMkNlB691T4oDuOXkyGRMnRuP69SxxrF+/ACxc2I21vEREREQPwMT3ARSZf0GRcw0AUFj7OQjqGtIGdNfhwwl46aUfodcLAAAnJxXmzw/GoEGBXIGNiIiI6CF4cdsDqC20zKFtWy+0aOEJAGjTxgv794/A4MGNmfQSERERPQJnfB9AVWK1Nq1PmISRGFMqFVi5MhSRkf/gjTfawM6Of7sQERERlQcT3zLIc+KhTD8LACh0bwlDtbqSxJGZWYB3343DhAnPirO8ANCwYQ1MmdJOkpiIiKo6QRBgMOhhMBikDoVKkMmAgoICFBZqIQhSR0OmoFDYQS6v3Ak8Jr5lUBvN9vaRJIbDhxMwaVI0kpNzcO5cCvbuHQ5HR6UksRAR2QqdrhBZWekoLCyQOhQqQ3q6nH+QVCky1KhRE2q1Q6UdkYlvGUqWOWjqVW7iq9XqsWDBESxfflL8izY1NQ8XL6ahZUv25iUiMhdBEJCWdhNyuRwuLh5QKOx4/YSFUShk4sXdZN0EQUBOThYyMm6jVq26lTbzy8T3PjJNOpQpRUv+6pwbQu/SqNKOfflyOsaPj8K5c7fEsc6dfbB8eS94eTlXWhxERLZIpyuEIBjg4lITKhVbQ1oiOzs5dDrO+FYVTk4uSE/Ph16vg1yuqpRjMvG9jypxN2SCHsDdModK+GtfEARs2PAHPvzwAPLzdQAApVKOiIhOmDixNeRyzjgQEVUWmYwXDRNVBik+UWHiex91JZc5pKbmYerUPYiJuSKO+fnVwOrVYWje3PMhexIRERFRRfDP2pJ0+VAl7wUAGOxrQufRxuyHTE7Oxt69/4r3R41qgb17hzPpJSIiIjIxJr4lqG4cgEyXBwDQ1A0D5AqzH7N5c0+8+25HuLs7YOPGF7FwYTd2byAiIqok8fHX0LdvCPLycqUOpUopLCzESy+9gL//Pi91KEZY6lCCKuHeam3aeuZZre3SpXQ0aOACpfJeUj1pUmsMHdoUNWs6muWYRERUtX3yyUeIji76HaZQKFCrlieCgrphzJjxUKvVRtsePnwImzZtxMWLf8Ng0OOpp3wxYMAghIW9UOp5DxzYhx9/3IxLly7CYDDAy8sbXbt2w8CBg1G9ukulfG3mtnr1CgwcOBiOjtWkDsVstm7dgk2bNiI9PQ2+vk9jypQZaNy46UP32bLlO2zf/iNSUlLg6uqKrl2DMW7cZPH76auv1mD9+i+N9qlXrz6++24rAECpVGLo0OFYtWoZlixZZZ4v7DFwxreYQQ91QhQAQLCrBm2drqZ9eoOAtWt/Q3DwRixadNzoMYVCzqSXiIieSLt2HREZGYMtWyLxxhtTERm5DV99tcZomx9//B4REdPQrFkLrF37Nb755nt069YTn302D8uXf2G07Zo1KzBz5nsIDGyCzz5big0bNmPy5Ldw+fI/iImJqrSvq7Cw0GzPffPmTRw5cqjMpL8izBnjk9q3LxbLly/Ga6/9B1999T/4+flj6tQ3kJGR/sB9YmNjsHr1crz22lh8++0PePfdD7Bv3x6sXbvCaLunnmqIyMgY8d/KlV8ZPd6jRyjOnfsdV69egaXgjO9dytvHIdekAQC0Xt0Bhela2aSk5CA8fDf2778OAFi8+Dh69HgKrVrVMdkxiIjItqlUSri7ewAAPD1rY/futjh16t5ES0rKTSxf/gUGDRqKceMmieNDhw6HUmmHL774DEFB3dGkSVOcP/8nNm5cj/DwaRg8eKi4bZ06XmjTpj2ys7MfGMetWylYsWIJTpw4hsJCLerXfwpTp76DJk2a4pNPPkJOTjbmzftc3H7Jks9x6dJFLF++FgAwefJYNGzoC4XCDrGxUWjY0A/u7h4wGAyYO3eBuJ9Op8OLL4Zg8uQpCA3tA4PBgG+//QY//bQdaWlp8PGph1GjxiAoqPsDY42L2wM/P3/UrFlLHMvKysSiRQtx9uwZZGffgbd3XYwY8Rp69OglblNWjMuWrcHVq5exYsVSnDt3Bvb2Dmjbth3eeGMaXF1dAQDHjh3BN998hX//vQK5XIGmTZvhzTenw9vbfCvEfv/9t3jhhX7o3bsvAGDGjAgcPfordu36CSNGjCpznz//PItmzVqgZ8+ir7lOHS907x6C8+f/NNpOobATv+fKUr16dTRr1gL79sWiYcMJpvmCnhAT37tKljloTFjmEB19GVOn7kFaWr449p//tETjxjVNdgwiIjIf1bXtqHb2E8gKcyrtmILSCbnP/Bfa+v0ea/+rVy/jzz/PwdPz3gTLgQP7oNPpMHToiFLbv/jiQKxZsxJ79+5GkyZNERsbAwcHRwwYMKjM53d2Lru3fF5eHiZPHouaNWth/vxFcHd3x8WLf0MQKtZ7Nzr6Z/TvPxCrVhXNICYmJuKDD95BXl6e2GP5+PGjKCgoQJcuQQCAjRvXIzY2GtOnR6BuXR+cPXsGs2d/CFfXGmjZ8tkyj3Pu3Bk0ahRoNKbVahEQEIjhw1+Fo2M1HD36K+bMmQlv77pG5QH3x5idnY3w8Al44YV+CA+fCo2mAKtWLcOHH76LpUtXAwAKCvIxZMgw+Po+jfz8PKxbtxrvvTcd69d/98AFHDZs+D9s3Lj+oa/Xxo0/oHbt0otcFRYW4p9//saIEa+JY3K5HK1bt8Vff5174PM1bdoCsbHROH/+TzRu3BRJSYk4duwwQkLCjLZLTIzHiy/2gkqlRtOmzTBu3ORScQQGNsHZs2ceGn9lYuILAIIAdXxR4ivIFNB6hzzxU+bmFmLmzIPYsOHeN1atWtWwbFkIgoIaPPHzExFR5XD8awnssv6R5LgVSXyPHPkVPXo8B71eD61WC7lcjilT3hYfT0iIh5OTEzw8Ss/QKZVKeHl5IyGh6JPJxMR4eHl5w86uYmnCnj0xyMzMxLp1G8Qa4Lp1fSr0HADg4+ODiRPfFO97edWFg4MDDh6MQ48eYeKxOnd+Ho6O1aDVarFx43p88cVKNG3aHADg7V0X5879jsjIbQ9MfG/evIlGjRobjdWsWQuvvHLvj4OXXhqCEyeOIS5ur1Hie3+MX3+9Dv7+AUaz6RERH2LAgN6Ij7+OevXqo2vXbkbHioiYiT59uuPatato2NCvzBj79RuI4OAeD329yjqnQNHstV6vh5ubm9G4m5sbrl+/9sDn69mzF7KyMjFx4usQBAF6vR79+g3EyJGjxW0aN26K9977CPXq1UdaWirWr/8Skya9jo0bNxvVS3t41ERKys2Hxl+ZmPgCUGSehyLnGgCg0PM5COoaT/R8Z8+mYPz4KFy5kiGO9erli8WLe8LdvfLWoyYioieX1/QtVPt9TqXP+OY1efPRG5bQsuWzmD49Avn5+diy5TsoFIpSiVa5j/+YqwJfuvQP/P0DnvjCt4AA41lYOzs7BAX1wO7d0ejRIwz5+fn49deD+OijuQCAxMQEFBQUYMqUSUb7FRYW4umnAx54HI2mACqV8Ypher0eGzeuR1zcHty+fRs6XSG0Wi3UauMSyPtjvHz5En777RR69Hiu1HGSkhJRr159JCTEY9261Th//i9kZWWKM+EpKTcfmPhWr+5S6RcS/vbbKWzcuB7Tpr2Lxo2bIjExAUuWfIavv16HUaNeBwB06NBJ3N7P72k0btwUL73UB3Fxe9CnTz/xMbVajYKCgkqN/2GY+AJQm7DM4dCheLz88jZxSUVHRzvMnt0Vw4c345rvRERWSFu/32OXHFQmBwcHcXY1IuJDjBo1FLt27RCTEB+fesjJyUFq6m14eBiX2xUWFiI5ORGtWrUWtz137nfodLoKzfre30HifjKZDMJ9WbVOpyu1nb196Uminj17YfLkccjISMfJk8ehVqvRvn1HAEB+flE54cKFXxjV6wJFs9kP4urqWqpe+bvvNuKHHzYhPHwaGjb0g4ODA5Yu/Rw6nfEFbPfHmJ+fj06dnsOECeGljlNcB/vOO1NQu3YdvPPO+/DwqAmDwYCRI19GYWHp16DYk5Q6uLi4QqFQID3d+EK29PR0uLu7P/D51q1bjZCQMLzwQj8AgK+vHwoK8rFw4ScYOXJ0mWUZzs7O8PGpj8TERKPxO3eyxBpnS8DEF4Aq/t5qbVqfJ0t827b1gr+/2/+3d+9hOd//A8ef993RQpKUbUZsFclkaKxYGlot+zKsGQnDcloOXzltcphsQjogh9mY8TUqotq+7GIMzXlY5ruUDswKjUSn+/794ee21sHudFr363FdXdd63+/P5/N699rtet3v+/15f/j552xefNGSNWs8aNv2yWaQhRBCCG0olUqGDx9JePgK+vRxx8jImF693Fi9OoytW79k0qQpJfrHxOzk3r17vPbag6V+ffq4s2PHNqKivi5xc9tDd+7cKXOd7/PPv8CePTHcvv1HmbOUTZqYkZJS8g7/X3/9BT29x5cjDg4vYmlpyf7933Ls2BFcXV/TFOXW1tYYGhpy/fpv5S5rKMsLL9iSmnq5RNu5c2dxdu6lWc+qUqlIS0vD2tq6wnPZ2Nhy8OB3WFm1KPPDwh9/5JCWdoWAgLm8+KIjAGfPnnlsjE+y1MHAwAAbGztOnvyRnj1f1Yzn5MnjDBw4pNzz3b9/v9Rk3cNi968fXB7Ky8sjMzOj1DrglJRkbGzKn3WvaTq/nZkyNx2Dm2cAKDR3RGXyZHdWGhnps2aNB1OmOLF3r7cUvUIIIWqFq+trKJV67Nz5NQBWVlaMHz+Zr7/eSmRkBFeupJKZmcG2bV+yenUo3t7DsLd/sIbV3r4DQ4f6EBERwqpVKzl//id+++0aJ078yNy5AZo9g//qtdf60bSpObNmTeenn86QmZnBgQP7OX/+wf0uL73UlYsXk4iP30N6ehobNkRqtdVV377uxMREcfx4In36vK5pf+opE7y9hxEWtpz4+D1kZmbwyy8X2bFjW7mxAnTr1p3z589RXFysaWvZsiXHjydy7txZUlNTWLp0Mbdu3XhsbG+9NYTbt28TGDiHpKQLZGZmkJh4lMWL51NcXEyjRo0xNTVl9+4oMjLSOXnyOOHhyx973saNTXn22ZYV/lQ0K+/t/S6xsTHEx+8hNTWF4OAg7t27h6fnoy3cFi78iDVrwjW/v/KKCzExO9m37xuuXs3k+PFjrF+/hlde6Yme3oPnEISHh3D69EmuXbvKuXNnmT17Onp6Ss2Hp4fOnj1D164vP3acNUXnZ3wN0ys/23vnTj7z5h1k7NjO2Nk9+rRlZ9eMWbPK395DCCGEqG76+voMHDiEr77axIABg2jQoAFDhgzl6aefYevWL9mxYxvFxSqsrdswbdpMzXZXD40fPxlb23ZER39NTEwUarWKp59+FldXN15//Y0yr2lgYMCKFRGEh6/g3//+gOLiYlq3bsPUqQ9usnNy6o6v73usXh1GQUE+np79cXf3JDn51781pn79XufzzzdgZdWCjh1fLPHamDF+NGlixubNG7l6NZOGDRthY2OHj8/Ics4GL7/cAz09PU6c+BEnp+4AjBgxmqtXM5k6dRLGxsb07z8AF5dXuXu34jXezZpZsHr1BlavDmPKlIkUFhZgZdUCJ6fuKJVKFAoFgYGLWbkyGB+ft2nZshX+/tOZNGnc3xp7Zbm59SUn5xbr16/h5s0bPP+8DcuWhdG06aOlDtev/1Zi+cKIEaNRKBSsW7earKwsmjRpwiuv9GTs2PGaPllZ1wkMnPP/SxnM6NjxRSIjP8fM7NGE3/nzP5Gbm4ura+XWmlcHhbq8Oet67saNO6hUYPqtF4a/HQTgptcxis3aP+bIB44fv8r48fFcufIH7ds345tvhmJkpPOfI+ochQKaNWtEdvadSt+sIf45JN+6parzXVhYwI0b1zA3b4GBgeHjDxA1Tl9fqbmHpqrs3LmdH374nuXLwx/fWWjlo49m8fzzL5TYDeLPKnrPKZVgbl72tnlPQqeXOijyb2Jw/TAAxY2sKW7S7jFHQFGRiqVLj9K//3+4cuUPANLSbvPzz9nVGqsQQgghqt6bbw7kxRcdycu7W9uh1CuFhYW0adOWt98eWtuhlKDTU5SGGd+gUD9Y15Pf8o0H0wcVSE3NYfz4eE6cuKZp69r1aVatep1WrerHM8uFEEIIXaKvr8+IEaNrO4x6x8DAQLP1WV2i04Wv0Z/W9+a3LHu9Ejy4g3H79iRmzfqO3NwCAPT0FEyb9jL+/k7o6+v0xLkQQgghxD+C7ha+RfcxvLoPAJVxM4osupXZLSfnPjNm7Ccm5hdNW6tWpqxe/TpdujxdI6EKIYQQQognp7OFr8Fvh1AU5QGQ/6wHKPXK7Hfp0k127370qEpvb3sWL3alYUO58UEIIeojHb3nW4gaVxvvNZ39jt4w8xvNfxdU8LS2bt2ext+/G6amRqxf/wahof2k6BVCiHro4f6kBQX5tRyJELqhuPjBE+vKehJcddHZGV/DjG8BUOubUGD1qqb9ypU/ePbZRujpPUrCtGkvM2JER1q0qPptNYQQQtQNSqUeDRo0JDf3FgCGhkbyqPk6RqVSUFwsM/L1gVqt4s6dHAwNjVGW8617ddDZwleZ/+ApLAVPvwb6DVCr1WzadI6PPjrAtGkvM3nyozW/BgZ6UvQKIYQOaNy4KYCm+BV1i1KpRKWq2n18Re1RKJQ0bty0Rj9g6mzh+1D+c55kZ+cxdep/SUh48NjEJUuO4OraGgeH5rUcnRBCiJqkUCgwNTWnUSMzzdewom5QKMDMzIRbt+7KA2rqCX19gxr/VkWnC1+1Qo+E/3Vg0rTN/P77o42r3323A23bmlVwpBBCiPpMqVSiVMr9HHWJQgHGxsYYGBRK4SsqrU7c3LZlyxZ69+6Ng4MDgwcP5qeffqqwf3x8PO7u7jg4OODl5cXBgwe1vub9Qn0mfzuSt4d/qyl6zc0bsHnzmyxd+hpPPWVQqbEIIYQQQoi6qdYL37i4OIKCgpgwYQLR0dHY2dkxevRobty4UWb/U6dOMW3aNAYNGkRMTAxubm5MmDCBS5culdm/PK+u9iX8m2c1v/fu3ZoDB3zo16/tE41HCCGEEELUTbVe+G7cuJEhQ4bw1ltv8fzzzzN//nyMjY3ZuXNnmf03bdqEi4sL7733Hm3btsXf35/27dvz5ZdfanXdn69bAGBkpMfixa5s3ToAS0uTJx6PEEIIIYSom2p1jW9BQQEXLlxg3LhxmjalUkmPHj04ffp0mcecOXMGX1/fEm3Ozs7s27dPq2s3amSInZ05ISF9sbU11zp28c/wcM28UomsCdMBkm/dIvnWLZJv3VJd97zVauF769YtiouLMTcvWXiam5tz+fLlMo/Jzs6mWbNmpfpnZ2drde3MzGnaBSv+0Zo2le3odInkW7dIvnWL5Fs8iVpf6iCEEEIIIURNqNXC18zMDD09vVI3st24caPUrO5DzZo1KzW7W1F/IYQQQgghoJYLX0NDQ+zt7Tl69KimTaVScfToURwdHcs8plOnThw7dqxE25EjR+jUqVN1hiqEEEIIIf7han2pw8iRI9m+fTvR0dEkJycTGBjIvXv3GDhwIAAzZsxg2bJlmv4+Pj4cOnSIzz77jOTkZMLCwjh//jzDhg2rrSEIIYQQQoh/gFp/cpuHhwc3b94kNDSUrKws2rVrx/r16zVLF65du4ZS+ag+79y5M8HBwYSEhLB8+XJat25NREQENjY2tTUEIYQQQgjxD6BQq2VTECGEEEIIUf/V+lIHIYQQQgghaoIUvkIIIYQQQidI4SuEEEIIIXSCFL5CCCGEEEIn1MvCd8uWLfTu3RsHBwcGDx7MTz/9VGH/+Ph43N3dcXBwwMvLi4MHD9ZQpKIqaJPv7du3M3ToULp27UrXrl3x9fV97P8fom7R9v390N69e7G1tWX8+PHVHKGoStrm+/bt28yfPx9nZ2c6dOhAv3795N/0fxBt8/3555/Tr18/OnbsSK9evVi8eDH5+fk1FK14EsePH+f999/H2dkZW1tb9u3b99hjEhMTGTBgAB06dKBPnz5ERUVpfd16V/jGxcURFBTEhAkTiI6Oxs7OjtGjR5d6OtxDp06dYtq0aQwaNIiYmBjc3NyYMGECly5dquHIRWVom+/ExEQ8PT3ZtGkT27Zto0WLFowaNYrr16/XcOSiMrTN90MZGRl88skndOnSpYYiFVVB23wXFBQwcuRIMjMzWblyJQkJCSxcuBBLS8sajlxUhrb5jo2NZdmyZUycOJG4uDg+/vhj4uLiWL58eQ1HLiojLy8PW1tb5s2b97f6p6enM27cOJycnNi1axcjRoxg7ty5HDp0SLsLq+uZQYMGqefPn6/5vbi4WO3s7KyOjIwss/8HH3ygHjt2bIm2wYMHqz/88MNqjVNUDW3z/VdFRUVqR0dHdXR0dDVFKKpSZfJdVFSkfvvtt9Xbt29XBwQEqP38/GoiVFEFtM33V199pXZzc1MXFBTUVIiiCmmb7/nz56t9fHxKtAUFBam9vb2rNU5R9WxsbNT//e9/K+zz6aefqj09PUu0+fv7q0eNGqXVterVjG9BQQEXLlygR48emjalUkmPHj04ffp0mcecOXOG7t27l2hzdnbmzJkz1RmqqAKVyfdf3bt3j6KiIkxNTasrTFFFKpvviIgIzM3NGTx4cE2EKapIZfL93Xff0alTJxYsWECPHj144403WLNmDcXFxTUVtqikyuTb0dGRCxcuaJZDpKenc/DgQXr16lUjMYuaVVX1Wq0/ua0q3bp1i+LiYszNzUu0m5ubc/ny5TKPyc7O1jwl7s/9s7Ozqy1OUTUqk++/Cg4Opnnz5iX+sRV1U2XyfeLECXbs2EFMTEwNRCiqUmXynZ6ezrFjx/Dy8mLt2rWkpaUxf/58ioqKmDhxYk2ELSqpMvn28vLi1q1bDB06FLVaTVFREd7e3rz//vs1EbKoYWXVa82aNSM3N5f79+9jbGz8t85Tr2Z8hdDG2rVriYuLIzw8HCMjo9oOR1Sx3NxcZsyYwcKFC2natGlthyNqgFqtxtzcnIULF9KhQwc8PDx4//332bZtW22HJqpBYmIikZGRzJs3j6ioKMLDwzl48CARERG1HZqow+rVjK+ZmRl6enqlFsLfuHGj1KeEh5o1a1Zqdrei/qLuqEy+H9qwYQNr165l48aN2NnZVWeYoopom+/09HQyMzPx8/PTtKlUKgDat29PQkICzz33XPUGLSqtMu9vCwsL9PX10dPT07S1adOGrKwsCgoKMDQ0rNaYReVVJt8rV66kf//+mmVMtra25OXl8dFHH+Hn54dSKXN79UlZ9Vp2djYNGzb827O9UM9mfA0NDbG3t+fo0aOaNpVKxdGjR3F0dCzzmE6dOnHs2LESbUeOHKFTp07VGaqoApXJN8C6detYtWoV69evx8HBoSZCFVVA23y3adOG2NhYYmJiND+9e/fGycmJmJgYrKysajJ8oaXKvL87d+5MWlqa5gMOQGpqKhYWFlL01nGVyff9+/dLFbcPP/So1erqC1bUiqqq1+pV4QswcuRItm/fTnR0NMnJyQQGBnLv3j0GDhwIwIwZM1i2bJmmv4+PD4cOHeKzzz4jOTmZsLAwzp8/z7Bhw2prCEIL2uZ77dq1rFy5ksWLF/PMM8+QlZVFVlYWd+/era0hCC1ok28jIyNsbGxK/DRu3BgTExNsbGykEPoH0Pb9/c4775CTk8PHH39MSkoKBw4cIDIyknfffbe2hiC0oG2+XV1d2bp1K3v37iU9PZ0ffviBlStX4urqWmLWX9RNd+/eJSkpiaSkJODBtpNJSUlcvXoVgGXLljFjxgxNf29vb9LT0/n0009JTk5my5YtxMfH4+vrq9V169VSBwAPDw9u3rxJaGgoWVlZtGvXjvXr12u+Krl27VqJT4idO3cmODiYkJAQli9fTuvWrYmIiMDGxqa2hiC0oG2+t23bRmFhIZMnTy5xnokTJzJp0qQajV1oT9t8i382bfPdokULNmzYQFBQEP3798fS0hIfHx/GjBlTW0MQWtA2335+figUCkJCQrh+/TpNmzbF1dWVKVOm1NYQhBbOnz+Pj4+P5vegoCAABgwYwJIlS8jKyuLatWua11u2bElkZCRBQUFs2rQJKysrFi1ahIuLi1bXVajl+wAhhBBCCKEDZGpECCGEEELoBCl8hRBCCCGETpDCVwghhBBC6AQpfIUQQgghhE6QwlcIIYQQQugEKXyFEEIIIYROkMJXCCGEEELoBCl8hRBCCCGETpDCVwghgKioKLp06VLbYVSara0t+/btq7DPzJkzGT9+fA1FJIQQdU+9e2SxEEJ3zZw5k+jo6FLt3377La1ataqFiB6Jiopi1qxZACgUCpo3b84rr7zC9OnTMTc3f+LzHz58GFNTU+DBM+/d3NyIiYmhXbt2mj5z5syhuh/WGRYWRnh4OABKpZLmzZvTs2dPpk2bRpMmTf72eWbOnMnt27dZtWpVNUUqhNBFUvgKIeoVFxcXzTPfH2ratGktRVNSw4YNSUhIQKVScfHiRWbPns3vv//Ohg0bnvjcFhYWj+3TqFGjJ77O3/HCCy+wceNGVCoVycnJzJ49mzt37hASElIj1xdCiPLIUgchRL1iaGiIhYVFiR89PT02btyIl5cXnTp1olevXgQGBnL37t1yz3Px4kWGDx+Oo6MjnTt3ZuDAgZw7d07z+okTJxg6dCgdO3akV69eLFq0iLy8vApjUygUWFhYYGlpSa9evRg+fDhHjhzh/v37qFQqwsPD6dmzJx06dODNN9/k+++/1xxbUFDAggULcHZ2xsHBAVdXVyIjIzWv/3mpg5ubGwD/+te/sLW1Zfjw4UDJpQ7/+c9/cHZ2RqVSlYjRz89PMzMNsG/fPgYMGICDgwNubm6Eh4dTVFRU4Tj19PQ04+zRowfu7u4cOXJE83pxcTGzZ8+md+/edOzYkX79+vHFF19oXg8LCyM6Opr9+/dja2uLra0tiYmJAFy7do0PPviALl260K1bN/z8/MjIyKgwHiGEeEgKXyGETlAoFMyZM4c9e/awZMkSjh07xtKlS8vtP336dKysrNixYwdRUVGMGTMGAwMDANLS0hgzZgx9+/Zl9+7drFixgpMnT7Jw4UKtYjI2NkalUlFUVMSmTZvYuHEjAQEB7N69G2dnZ8aPH09qaioAmzdv5rvvviMkJISEhASWLl3KM888U+Z5v/76awA+//xzDh8+TFhYWKk+7u7u5OTkaApKgJycHA4dOkT//v2BB8V9QEAAPj4+xMXFsWDBAqKiolizZs3fHmNGRgaHDx/W/O0AVCoVVlZWrFy5kr179zJhwgRWrFhBXFwcAKNGjeL111/HxcWFw4cPc/jwYRwdHSksLGT06NGYmJiwZcsWtm7dylNPPcV7771HQUHB345JCKG7ZKmDEKJeOXDgAI6OjprfXVxcCA0NxdfXV9P27LPP4u/vz7x58wgMDCzzPFevXmX06NG0bdsWgNatW2tei4yMxMvLS3PO1q1bM2fOHIYPH05gYCBGRkaPjTM1NZWtW7fSoUMHGjZsyIYNGxgzZgyenp4A/Pvf/yYxMZEvvviCefPmce3aNVq1asVLL72EQqEot+iFR0s7mjRpUu4SCFNTU3r27ElsbCzdu3cH4JtvvsHMzAwnJycAwsPDGTt2LAMGDACgZcuWfPDBByxdupSJEyeWe/1Lly7h6OhIcXEx+fn5ACVmkQ0MDJg8ebLm95YtW3LmzBkSEhLw8PDAxMQEY2NjCgoKSsS/a9cuVCoVH3/8MQqFAoCgoCC6du3Kjz/+iLOzc7kxCSEESOErhKhnnJycShSzDRo0AODIkSNERkZy+fJlcnNzNUXZvXv3NH3+bOTIkcydO5ddu3Zpvq5/7rnngAfLIH755RdiY2M1/dVqNSqVioyMDE2x/Fd37tzB0dERlUpFfn4+L730EosWLSI3N5fff/+dzp07l+jfuXNnLl68CMCAAQMYNWoU7u7uuLi48Oqrrz5xoefl5cWHH35IYGAghoaGxMbG4unpiVKp1Izz1KlTJWZ4H/d3A7C2tmb16tXk5+eze/dukpKSGDZsWIk+W7ZsYefOnVy9epX8/HwKCwuxs7OrMN6LFy+SlpZW6u+Un59PWlpaZf4EQggdI4WvEKJeadCgQakdHDIyMhg3bhzvvPMOU6ZMwdTUlJMnTzJnzhwKCwvLLOAmTZrEG2+8wcGDB/n+++8JDQ1lxYoV9OnTh7y8PLy9vTVrZ/+sRYsW5cZmYmJCdHQ0SqUSCwsLjI2NAcjNzX3suOzt7dm/fz/ff/89R44cwd/fnx49ehAaGvrYY8vTu3dv5s6dy4EDB3BwcODEiRMlZmbz8vKYNGkSffv2LXVsRbPaBgYGmhxMnz6dsWPHEh4ejr+/PwB79+7lk08+ISAgAEdHR0xMTNiwYQNnz56tMN68vDzs7e0JDg4u9VpduYFRCFG3SeErhKj3Lly4gFqtZubMmZrZzPj4+MceZ21tjbW1Nb6+vkydOpWdO3fSp08f2rdvz6+//qr1FmlKpbLMYxo2bEjz5s05deoU3bp107SfOnWKjh07lujn4eGBh4cH/fr147333iMnJ6fUNmEP19MWFxdXGI+RkRF9+/YlNjaWK1euYG1tjb29veb19u3bk5KS8sRbwfn5+TFixAjeeecdLC0tOXXqFI6Ojrz77ruaPn+dsTUwMCh14529vT3x8fGYm5vTsGHDJ4pJCKGb5OY2IUS916pVKwoLC9m8eTPp6enExMSwbdu2cvvfv3+fBQsWkJiYSGZmJidPnuTcuXOaJQxjxozh9OnTLFiwgKSkJFJTU9m3bx8LFiyodIyjR49m3bp1xMXFcfnyZYKDg7l48SI+Pj4AbNy4kT179pCcnExKSgoJCQlYWFjQuHHjUucyNzfH2NiYQ4cOkZ2dzZ07d8q9rpeXFwcOHGDnzp14eXmVeG3ChAns2rWL8PBw/ve//5GcnMzevXtZsWKFVmNzdHTE1tZWswtFq1atOH/+PIcOHSIlJYWQkJASO2YAPPPMM/zyyy9cvnyZmzdvUlhYiJeXF2ZmZvj5+XHixAnS09NJTExk0aJF/Pbbb1rFJITQTTLjK4So9+zs7Jg1axbr1q1j+fLldOnShalTpxIQEFBmf6VSSU5ODgEBAWRnZ2NmZkbfvn01N2TZ2dmxefNmQkJCGDp0KPDgBi0PD49Kx+jj40Nubi5Llizh5s2btG3bllWrVmluqjMxMWH9+vVcuXIFpVKJg4MDa9eu1cxg/5m+vj5z584lIiKC0NBQunTpwubNm8u87ssvv4ypqSkpKSmlCl8XFxfWrFlDREQE69atQ19fnzZt2jB48GCtx+fr68vMmTMZM2YM3t7eJCUlMWXKFBQKBZ6engwdOrTE9m1Dhgzhxx9/5K233iIvL49Nmzbh5OTEl19+SXBwMBMnTuTu3btYWlrSvXt3mQEWQvwtCnV1P8ZHCCGEEEKIOkCWOgghhBBCCJ0gha8QQgghhNAJUvgKIYQQQgidIIWvEEIIIYTQCVL4CiGEEEIInSCFrxBCCCGE0AlS+AohhBBCCJ0gha8QQgghhNAJUvgKIYQQQgidIIWvEEIIIYTQCVL4CiGEEEIInfB/4x9psA3XZfMAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 HistGradientBoostingClassifier 0.85 0.85 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" HistGradientBoostingClassifier | \n",
" 0.85 | \n",
" 0.85 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 33
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = HistGradientBoostingClassifier\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"hgb_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"hgb_result_df"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"id": "9lb019IlDi3F",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 628
},
"outputId": "552ed603-c2ea-4443-8f50-a963850ca146"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkrUlEQVR4nOzdeVhUZf8G8PvMMDOAIAgoyiImBOKa5q6l4AouuaRprmWve5RbRb1lprlVmvuS/Sx8y7RccANRUTN3zbRyySUFUVFWWWeYmfP7Ax0YQQUZODPM/bmuroaHmTlf5jB48/Cc7yOIoiiCiIiIiKiSk0ldABERERFRRWDwJSIiIiKrwOBLRERERFaBwZeIiIiIrAKDLxERERFZBQZfIiIiIrIKDL5EREREZBUYfImIiIjIKjD4EhEREZFVYPAlqoSCg4PxwQcfSF2G1Rk2bBiGDRsmdRlPtWTJEgQEBCAlJUXqUsxOQEAAlixZYpLnunnzJgICArB582aTPB8AnDt3Dg0bNkRCQoLJntPUJk2ahHfeeUfqMoiKZSN1AUSWZvPmzQgPDzd8LJfL4erqinbt2mHSpElwd3eXsDrzlp2djbVr1yI6OhpxcXGwsbFBQEAABg4ciFdeeQWCIEhd4lNduXIFUVFR6Nu3L7y8vKQux4hOp8PWrVuxdetWXLp0CdnZ2ahRowZatWqF119/HY0aNZK6xDLbvn07kpOTMXLkSKlLMajImhYuXIgePXrA09PTMDZs2DCcOHHC8LFKpYKPjw/69++P4cOHQyYrOseVmpqK1atXIzY2Frdu3YKdnR0aNWqEoUOHIigoqNhjZ2Zm4rvvvkNMTAzi4+Oh0+lQu3ZtdOjQAcOHDzf87PvPf/6D/v374+LFi6hXr56JXwGismHwJXpGYWFh8PLygkajwR9//IEtW7bg9OnT2LFjB1QqlaS1RUdHm12ITEpKwsiRI3H16lWEhoZi6NChUKvViImJwfvvv4+DBw/iyy+/hFwul7rUJ7py5QqWLl2Kli1bFgm+3377rURVAbm5uZg4cSIOHTqEFi1aYMyYMXByckJCQgKioqKwZcsWHDhwADVr1pSsRlPYsWMHLl++XG4h89y5c6X+HnxcTZ6enjh37hxsbEzzT+2FCxdw5MgR/PTTT0U+V7NmTUyePBlAfqjdsWMH5syZg9TUVEyaNMnovteuXcPIkSORkpKCfv36oVGjRrh//z62b9+OsWPH4s0338T7779v9Jj4+HiMHDkSt2/fRvfu3fHaa69BoVDg0qVL+OWXX7B3717s3r0bAFC/fn00bNgQ//d//4f58+eb5GsnMhUGX6Jn9PLLLxtm0AYMGIBq1arhm2++wb59+xAaGippbUqlssKPqVaroVAoip1dAoD3338fV69exdKlS9GpUyfD+PDhwzFv3jz83//9HwIDAzF69OiKKhlA/iy0vb29SZ5Litf9ofnz5+PQoUMIDw8vEsAmTpyI7777rkLrEUURarUatra2FXrcZ6HX65GXlweVSmXSX1oFQTDp823atAkeHh544YUXinzO0dERr7zyiuHjwYMHIyQkBOvWrUNYWJghzOfl5eGdd97B/fv38cMPP6BJkyaGx4wcORJTp07F//3f/6FRo0aGn2NarRYTJ05EcnIyIiIi0Lx5c6NjT5o0Cd98843RWEhICJYsWYKsrCxUqVLFVC8BUZlxjS+RiTz8xyA+Pt5o/OrVqwgLC0PLli3RqFEj9OvXD/v27Svy+Pv372P27NkIDg5Gw4YN8fLLL+O9994zWoep0WiwePFidOnSBQ0bNkSHDh0wf/58aDQao+cqvMb3zz//REBAALZs2VLkmIcOHUJAQAD2799vGEtMTER4eDjatm2Lhg0bokePHvjll1+MHnf8+HEEBARg586dWLhwIV566SU0adIEmZmZxb42f/zxB3777Tf07dvXKPQ+NGXKFNSpUwdr1qxBbm4ugIL1kd9++y2+++47BAUFoXHjxhg6dCj++eefIs9Rktd58+bNCAgIwIkTJ/Dpp5+iTZs26NChAwAgISEBn376Kbp164bGjRujVatWCAsLw82bN40e/3Dt4vDhwxEQEICAgAAcP34cQNE1vg9fp127dmHFihWGX5ZGjBiBGzduFPkafvjhB3Tq1AmNGzfGq6++ilOnTpVo3fCdO3ewYcMGtGvXrtiZULlcjlGjRhWZ7c3IyMAHH3yA5s2b48UXX0R4eDhycnKM7rNp0yYMHz4cbdq0QcOGDREaGooff/yxyDGCg4MxZswYHDp0CP369UPjxo0NM5MlfQ4AOHjwIIYOHYqmTZuiWbNm6N+/P7Zv3254fQ8cOICEhATDax8cHGx4bEnfHwEBAfjss8+wbds29OjRA40aNcKhQ4cMnyu8xjczMxOff/654X3Zpk0bvPHGG/j777+fWtPj1vhevXoV77zzDlq3bo3GjRujW7duWLhwYbGvR2H79u1D69atS/TXHJVKhYYNGyIrKwvJycmG8ZiYGPzzzz/4z3/+YxR6gfzvk88++wxVq1Y1eg1iYmJw8eJFjB07tkjoBQAHB4cis8pt27ZFdnY2jhw58tRaiSoSZ3yJTOThxSZVq1Y1jF2+fBmDBw+Gu7s7/vOf/8De3h5RUVGYMGEClixZgi5dugAAsrKyMGTIEFy9ehX9+/dH/fr1kZqaitjYWCQmJsLFxQV6vR7jxo3D6dOnMXDgQPj6+uKff/7B999/j+vXr2P58uXF1tWoUSN4e3sb1qUWtmvXLjg5OaF9+/YA8pcjDBw4EIIgYMiQIXBxccGvv/6Kjz76CJmZmUVC1fLly6FQKDBq1ChoNBooFIpia3gYrPv06VPs521sbNCzZ08sXboUv//+O9q2bWv43NatW5GVlYXXX38darUa69atw4gRI7B9+3a4ubmV6nV+aMaMGXBxccGECROQnZ0NIP8XhDNnzqBHjx6oWbMmEhISsH79egwfPhw7d+6EnZ0dWrRogWHDhmHdunUYO3Ys6tatCwDw9fUt9ut66JtvvoEgCHjzzTeRmZmJNWvWYOrUqfj5558N9/nxxx/x2WefoXnz5hg5ciQSEhIwYcIEVK1a9anLE3799VdotVr07t37ifd71LvvvgsvLy9MnjwZ58+fx88//wwXFxdMmzbNcJ/169fj+eefR3BwMGxsbLB//37MmDEDoihiyJAhRs/377//YsqUKXjttdcwcOBAPPfcc6V6js2bN+PDDz/E888/jzFjxsDR0REXLlzAoUOH0KtXL4wdOxYZGRm4c+eOYZ39w9nE0r4/jh07hqioKAwZMgTVqlUzWjNb2PTp07F7924MHToUvr6+SEtLw+nTp3H16lU0aNDgiTUV5+LFixgyZAhsbGzw2muvwdPTE3FxcYiNjS0SHgtLTEzErVu3UL9+/cfe51EJCQkQBMHoZ1JsbCyAx78XHR0d0alTJ2zZsgU3btyAj4+P4RfIwjPKT+Pn5wdbW1v8/vvvRd5/RJISiahUNm3aJPr7+4tHjhwRk5OTxdu3b4vR0dFi69atxYYNG4q3b9823HfEiBFiz549RbVabRjT6/Xia6+9Jnbt2tUwtmjRItHf31+MiYkpcjy9Xi+Koihu3bpVrFevnnjy5Emjz69fv1709/cXT58+bRgLCgoS33//fcPHX331ldigQQMxLS3NMKZWq8XmzZuL4eHhhrEPP/xQbNeunZiSkmJ0jEmTJokvvviimJOTI4qiKB47dkz09/cXO3XqZBh7kvHjx4v+/v5ienr6Y+8TExMj+vv7ixEREaIoimJ8fLzo7+8vNm7cWLxz547hfmfPnhX9/f3F2bNnG8ZK+jo/PHeDBw8WtVqt0fGL+zrOnDkj+vv7i1u2bDGMRUVFif7+/uKxY8eK3H/o0KHi0KFDDR8/fJ1CQkKMavv+++9Ff39/8dKlS6Io5p+Lli1biv379xfz8vIM99u8ebPo7+9v9JzFmT17tujv7y+eP3/+ifd7aPHixaK/v7/RuRdFUZwwYYLYsmVLo7HiXpc333xT7NSpk9FYUFCQ6O/vL/76669F7l+S57h//77YtGlTccCAAWJubq7RfR++B0RRFEePHi0GBQUVeb7SvD/8/f3FevXqiZcvXy7yPP7+/uLixYsNH7/44ovijBkzityvsMfV9PB7eNOmTYaxIUOGiE2bNhUTEhIe+zUW58iRI6K/v78YGxtb5HNDhw4Vu3fvLiYnJ4vJycni1atXxXnz5on+/v7i6NGjje77yiuviC+++OITj7V27VrR399f3LdvnyiKotinT5+nPqY4Xbt2Fd96661SP46oPHGpA9EzGjlypOFP5WFhYbCzs8OKFSsMs3NpaWk4duwYQkJCkJmZiZSUFKSkpCA1NRXt27fH9evXkZiYCCD/T4n16tUrdmbk4Z81o6Oj4evri7p16xqeKyUlBa1btwYAw5/bixMaGoq8vDzExMQYxg4fPoz79+8b1vGJooiYmBgEBwdDFEWjY7Rv3x4ZGRmGP+8+1KdPnxKt4czKygLw5Jmwh597dLlE586djTplNG7cGE2aNMHBgwcBlO51fmjgwIFFLmAq/HXk5eUhNTUVtWvXRtWqVXH+/Pmnfo1P0q9fP6P1v48ui/nrr7+QlpaGgQMHGl0I1atXLzg5OT31+R++ZqVdSzlo0CCjj5s3b460tDSjc1D4dcnIyEBKSgpatmyJ+Ph4ZGRkGD3ey8sLL730UpHjlOQ5Dh8+jKysLIwePbrIutiS/Gm/tO+PFi1awM/P76nPW7VqVZw9e7bI99CzSElJwcmTJ9G/f394eHgYfe5pX2NqaqqhnuJcu3YNbdq0QZs2bRASEoJvv/0WwcHBmDNnjtH9SrLm9tH3YmZm5jOt03VycjLUTWQuuNSB6Bl98skneO6555CRkYFNmzbh5MmTRuEmLi4Ooihi0aJFWLRoUbHPkZycDHd3d8TFxaFr165PPN6NGzdw9epVtGnT5rHP9Tj16tVD3bp1ERUVhQEDBgDIX+ZQrVo1QzBISUnB/fv3sWHDBmzYsKHY53m072tJ23k9/EczKyvrsf9wPy4c+/j4FLlvnTp1EBUVBaB0r/OT6s7NzcWqVauwefNmJCYmQhRFw+ceDXil9WjIefga3L9/HwBw69YtAEDt2rWN7mdjY/PYP8EX5uDgAKDgNSxrXenp6YbnPH36NJYsWYI//vijyPrfjIwMODo6Gj5+3PdDSZ4jLi4OAPD888+X6mt4qLTvj5J+706dOhUffPABOnbsiAYNGqBDhw7o06cPvL29S13jw190/P39S/3Yhwp/Xxbm6emJWbNmQa/XIy4uDitXrkRqamqRXyKqVKny1DD66HvRwcGhyLULJa3V3LrLEDH4Ej2jxo0bG7o6dO7cGa+//jqmTJmC6OhoVKlSBXq9HgDw5ptvFjsLBhQNOk+i1+vh7+9v1EO4sKetAw0NDcXKlSuRkpICBwcHxMbGokePHoYZxof19u7du8ha4IcCAgKMPi7pFfu+vr7Yu3cvLl26hBYtWhR7n0uXLgFAiWbhCnuW17m4K+1nzpyJzZs3Y8SIEXjhhRfg6OgIQRAwadKkx4aNknpcp4uyPu9DD9caX7p0CYGBgSarKy4uDiNHjkTdunXxwQcfoFatWlAoFDh48CC+++47w2v/UHHfD6V9jmdV2vdHSb93Q0ND0bx5c+zZsweHDx/Gt99+i2+++QZLliwxXBhZEapVqwag4JelR9nb2xutjW/WrBn69euHhQsX4r///a9h3NfXFxcuXMCtW7eK/OLz0KPvxbp16+L8+fO4ffs2atWqVeKa79+/X+wvrkRSYvAlMgG5XI7Jkydj+PDh+OGHHzB69GjDjJBCoTD6B6k4tWvXxuXLl596n4sXL6JNmzbPNIsSGhqKpUuXIiYmBm5ubsjMzESPHj0Mn3dxcTEE9qfVW1odO3bEqlWrsHXr1mKDr06nw/bt2+Hk5IRmzZoZfa647gfXr183zISW5nV+kt27d6NPnz5GO96p1eois73lMYP1MIDExcUZZuCB/DZSD7sFPMnLL78MuVyO7du3P/aipWcRGxsLjUaDFStWGIWkJy2redbnePjLyeXLl58Ylh73+pf1/fEkNWrUwJAhQzBkyBAkJyejb9++WLlypSH4lvR4D79Xi+tK8jQPf7kp3GXkSerVq4fevXvjp59+wptvvml47Tt27IgdO3Zg69atGD9+fJHHZWZmYt++fahbt67hPAQFBWHHjh3Ytm0bxowZU6Lja7Va3L5926jrBpE54BpfIhNp1aoVGjdujO+//x5qtRqurq5o2bIlNmzYgLt37xa5f+FlA127dsXFixexZ8+eIvd7OPsWEhKCxMREbNy4sch9cnNzDd0JHsfX1xf+/v7YtWsXdu3aherVqxuFULlcjm7dumH37t3F/sNclu1tmzVrhrZt22Lz5s1GrdMeWrhwIa5fv4633nqryEzc3r17jdZXnjt3DmfPnsXLL78MAKV6nZ+kuE0L1q1bB51OZzRmZ2cHoOzLHwpr2LAhnJ2dsXHjRmi1WsP49u3bkZ6e/tTH16pVCwMGDMBvv/2GdevWFfm8Xq/H//3f/+HOnTulquvha/Loso9NmzaZ/Dnat2+PKlWqYNWqVVCr1UafK/xYOzu7Yl/7sr4/iqPT6Yocy9XVFTVq1DBqkfa4mh7l4uKCFi1aYNOmTYblLQ89bfbf3d0dtWrVwl9//VXi+t966y1otVqsXbvWMNatWzf4+fnhm2++wZ9//ml0f71ej+nTpyM9PR0TJ040eoy/vz9WrlyJM2fOFDlOZmZmkXZsV65cgVqtRtOmTUtcL1FF4IwvkQmNGjUK77zzDjZv3ozBgwdj+vTpeP3119GrVy8MHDgQ3t7eSEpKwh9//IE7d+5g27Zthsft3r0b77zzDvr3748GDRogPT0dsbGxmDFjBurVq4dXXnkFUVFRmD59Oo4fP45mzZpBp9Ph2rVriI6Oxpo1a566JW1oaCgWL14MlUqFV199tcifuqdMmYLjx49j4MCBGDBgAPz8/JCeno6///4bR48eNdoWtbTmzZuHkSNHYvz48ejZsyeaN28OjUaDmJgYnDhxAqGhoRg1alSRx9WuXRuDBw/G4MGDodFoEBERAWdnZ7z11luG+5T0dX6Sjh07IjIyEg4ODvDz88Mff/yBI0eOwNnZ2eh+gYGBkMvl+Oabb5CRkQGlUonWrVvD1dX1mV8bpVKJt99+GzNnzsSIESMQEhKChIQEbN68ucTLYT744APEx8dj1qxZiImJQVBQEKpWrYrbt28jOjoa165dM5rhL4l27dpBoVBg7NixGDRoELKysvDzzz/D1dUV9+7dM+lzODg4IDw8HP/973/x6quvomfPnqhatSouXryI3NxczJs3DwDQoEED7Nq1C3PmzEGjRo1gb2+P4OBgk7w/HpWVlYUOHTqgW7duqFevHuzt7XHkyBH8+eefRn8ZeFxNxfnvf/+LwYMHo2/fvnjttdfg5eWFhIQEHDhwAJGRkU+sp1OnTtizZ0+J1876+fmhQ4cO+OWXXzB+/HhUq1YNSqUSixcvxogRI/D666+jX79+aNiwITIyMrBjxw78/fffePPNN42+VxQKBZYuXYo33ngDQ4cORffu3dGsWTMoFApcvnwZO3bsQNWqVY3asR05cgR2dnYm/+sRUVkx+BKZUNeuXVG7dm383//9HwYOHAg/Pz9s2rQJS5cuxZYtW5CWlgYXFxfUr18fEyZMMDyuSpUq+OGHH7BkyRLs2bMHW7ZsgaurK9q0aWO4KEsmk2HZsmX47rvvEBkZiT179sDOzg5eXl4YNmyYoWfqk4SGhuLrr79GTk4OQkJCinzezc0NP//8M5YtW4Y9e/Zg/fr1cHZ2hp+fH6ZOnVqm16ZGjRr4+eefsXbtWkRHRyMmJgZyuRwBAQGYO3cu+vTpU+w/5n369IFMJsP333+P5ORkNG7cGB9//DFq1KhhuE9JX+cn+eijjyCTybB9+3ao1Wo0a9YMa9euNQrYAFC9enXMmDEDq1atwkcffQSdToeIiIgyBV8AGDp0KERRxNq1azFv3jzUq1cPK1aswKxZs0q0+5ednR2++eYbbN68GVu3bsXy5cuRm5uLGjVqoFWrVvjyyy+NLvAribp162Lx4sX4+uuvMW/ePLi5uWHw4MFwcXHBhx9+aPLnGDBgAFxdXbF69WosX74cNjY2qFu3rlH/6Ndffx0XLlzA5s2b8d1338HT0xPBwcEmeX88ytbWFoMHD8bhw4cRExMDURRRu3Ztwy9aT6upOPXq1cPGjRuxaNEirF+/Hmq1Gh4eHsW+Hx/Vv39//O9//8Pp06eL3UiiOKNGjcKBAwfwv//9D2+//TaA/L/+bNu2DatXr0ZsbCw2b94MW1tbNGzYECtWrCi2dh8fH2zduhXfffcd9uzZg3379kGv18PHxwcDBgwosslKdHQ0unTpYrhIkshcCKKprq4gIjKhmzdvolOnTnjvvfeKnQm2Bnq9Hm3atEGXLl0wa9YsqcshMzBixAjUqFEDX3zxhdSlPNaFCxfQt29fbNmypVQXWxJVBK7xJSIyA2q1usg6z61btyItLQ0tW7aUqCoyN5MnT0ZUVJRhp0hztHr1anTr1o2hl8wSlzoQEZmBP/74A3PmzEH37t3h7OyM8+fP45dffoG/vz+6d+8udXlkJpo0aVKqC9yk8OiFbkTmhMGXiMgMeHp6ombNmli3bh3S09Ph5OSEV155BVOnTjXaGIWIiJ4d1/gSERERkVXgGl8iIiIisgoMvkRERERkFRh8iYiIiMgqMPgSERERkVWw2q4OKSkZ0OulroLKmyAArq6OSE7OAC/jrPx4vq0Lz7d14fm2LjIZ4OLiaPLntdrgK4rgG8eK8HxbF55v68LzbV14vq1DeZ1jLnUgIiIiIqvA4EtEREREVoHBl4iIiIisAoMvEREREVkFBl8iIiIisgoMvkRERERkFRh8iYiIiMgqMPgSERERkVVg8CUiIiIiq8DgS0RERERWgcGXiIiIiKwCgy8RERERWQUGXyIiIiKyCgy+RERERGQVGHyJiIiIyCpIGnxPnjyJsWPHon379ggICMDevXuf+pjjx4+jb9++aNiwIbp06YLNmzdXQKVEREREZOkkDb7Z2dkICAjA9OnTS3T/+Ph4jBkzBq1atUJkZCRGjBiB//73vzh06FA5V0pEREREls5GyoN36NABHTp0KPH9f/rpJ3h5eeGDDz4AAPj6+uL06dP47rvv8NJLL5VXmURERERUHvQ6COokyLNvQ5ZzG7LsRCDrNv65lgXXsYtMfjhJg29p/fHHH2jTpo3RWPv27TF79uxSP5cg5P9HldvDc8xzbR14vq0Lz7d14fm2MKIeQm4SZIUCbf7/70CWcyd/PPsOZLl3IYg6w8Nu33fAGxv64Mw9fySONX1ZFhV8k5KS4ObmZjTm5uaGzMxM5ObmwtbWtsTP5eLiaOryyIy5uvJ8WxOeb+vC821deL4lJuqBnCQg8xaQdTv//5m3gKxbQObtB/+/BWQnAnptqZ468q8AvPVzbyRlVYGjY/lEVIsKvqaUkpIBvV7qKqi8CUL+D8nk5AyIotTVUHnj+bYuPN/Whee7nIl6COqUBzO0d/JnYwvfNszWJkIQSxdoiz2cIIPe1h16+5rIEDzw3k/18G10wS81NdyUZT5GcSwq+Lq5uSEpKcloLCkpCQ4ODqWa7QUAUQTfOFaE59u68HxbF55v68LzXUqimB9oCy0zkD8MtEZLDhIh6PPKfjhBBr1tdejtakFvXzP//3bu0Ns//PjBmG11QCbH2bOJGDduF65cSTU8R0iILxYt6lbmWopjUcH3hRdewK+//mo0duTIEbzwwgvSFEREREQkBUOgLVg7K390DW1OImQ5dyDoNWU/HASIttWhs6/1ILzWzA+y9rWMw61tdUD29Hip0+mxbPEJzJ17BFpt/p/g7e1tMHNmRwwd2ghyefks5pY0+GZlZSEuLs7w8c2bN3HhwgU4OTnBw8MDX331FRITEzF//nwAwKBBg/DDDz9g/vz56N+/P44dO4aoqCisWrVKqi+BiIiIyHREEYImNT+0PnJhmPzhkoMHnzNFoAUAvW116OwKzcgaZmoLhVvbGiUKtCWVm6vDDz/8ZQi9TZq4Y+XKUPj6VjPZMYojafD966+/MHz4cMPHc+bMAQD07dsXc+fOxb1793D79m3D5729vbFq1SrMmTMHERERqFmzJmbNmsVWZkRERGTeRBGCJs040D64LTeso73zINCqTXJIva2bYTbWMFNrX+uRcFsDkClMcrzSqFJFgZUrQ9Gr1waMG/cipk1rA6VSXu7HFUTROlfKJCfz4jZrIAiAm5sjkpJ4MYQ14Pm2Ljzf1sVsz7coQsi7X+gCsNuPLD8ouEhM0OWa5JB6leuDAOv+yExtoXBrWwOQl88FYs8iM1ODjAw1atUy7spx+3ZGkTEAkMnKp4OHRa3xJSIiIqoQogghL6PQetlHuxsUrKkVdDkmOaRe5WK0Xlb3INw+eqGYOQXakjh58hbGj49CjRpVEBk5EDY2BRsHFxd6yxODLxEREVkVIS+jSIiVPdLpQJ6TCEGbZZLj6ZXVHpmVrQVdkU4H7oC8dB2qzJ1Wq8fChcexYMEx6HQibtxIx5IlJzFpUivJamLwJSIiosohL/PBLGzhXcKK6XSgzTTJ4fRKZ+MlBg/WzuqMOh3UrHSBtiSuX0/D+PFROHWq4FqtFi080K9fPQmrYvAlIiIic5eXBVnubSA3A8rbVx9srnDHONzmJEKWl2GSw+kVTgVLCwp1OtAV7nRgVxOwsTPJ8SoTURSxceMFhIfHIjMzv+uEXC5g6tQ2eOedlkbLHKTA4EtERETS0GY/2FDhTpFOBwXLDu5Alnff8JCqZTicXlG16KYKhWZsdYZAa1/2r80KpaXlYtq0vYiM/Mcw5uPjhBUrQtC8uYeElRVg8CUiIiLT0uYYQqu8mE4HBYE23SSH0yscCwVY90dmamtB92AZAhRVTHI8KiojQ43g4HW4ebNg1n3QoAaYPTsIDg7mczEegy8RERGVjC7XaL2svJhOB7KcO5Bp0kxyONGmSqH+szVh6+KDTMHVKNzq7GoCCgeTHI+enaOjCqGhfli9+gycnVX48ssu6N3bX+qyimDwJSIisnY6dZF2XfJiOh2YLtDaF99/9uHtB+OioqDVlSAAtm6OyDW3Pr5k8N//voTcXB0mTWoFT8+KbVNWUgy+RERElZVOXWiJwSPb3hbudKBJNcnhRLmd0QxtkW1v7QoFWkEwyTGp4omiiHXr/oRcLmDIkEaGcVtbG3z5ZWcJK3s6Bl8iIiJLo9MUBNpCF4PJH91oQZ1iksOJcttC62WNOx0UDreioioDbSWXlJSNyZP3IDr6KuzsbNCihQf8/V2lLqvEGHyJiIjMhT7vQaB9EF4LdTooCLW3IVMnm+RwhkBrV7Ngl7BHOh3kB1onBlrC/v3X8fbbu3H3bv7GHjk5WsTEXGPwJSIiokL0eZDl3H1kHW1BpwP5g2UHQm4SBJR9AasoUxoFWF0xnQ70djUhKp0ZaOmpcnO1+Pzz37Bq1e+GMVdXO3z9dVd06+YrYWWlx+BLRET0rPRayHLvFt329pGLxITceyYKtArjAPtwptbwcf5tUVmNgZZM4vz5exg3LgoXLiQZxoKD62DRom5wd7e89nAMvkRERI/S6yDLvffkbW9zbkOWc9eEgbbwulnj/rOGGVqVCwMtVQhRFLFmzRl89tkhqNU6AIBKJcf06S9j1KgXIFjo9yGDLxERWQ+9DoI66cF62YJOB0bb3mbfhiz3LgRRX+bDiYLNg+BaeKlBoV3CjAKttFu5EhWWlZWHFStOG0Jv/fpuWLEiFIGBbhJXVjYMvkREZPlEPYTcQoG28La3hZcf5N6FIOrKfjhB/mCGtviLwXQPwq1o68pASxbJwUGJ5ctD0Lfvz3jrrab46KP2sLW1/Nho+V8BERFVXqIeQm7ygwvAim57i7y7qHY/AbKcRNMFWtsaBTOzj3Q6eNijVrR1Y6ClSiUrKw/Z2XmoXt3eMNa6tReOHn0Ddeo4S1eYiTH4EhFRxRP1ENQphfrPFu10kB9uEyGI2ic+lbwkhxNkDwJtrUfW0hZcGKazrwVR5QbISvKMRJXH2bOJGDduF2rVcsDPP78Kmaxg/W5lCr0Agy8REZmSKOYH2kKzsvJHt73NvgNZbiIEfV7ZjyfIoLetbrypwiPb3urtakFvW52BlugROp0ey5adwty5R6DV6nHlSipWrjyN8eObS11auWHwJSKipzME2juG9bLyIp0OHszQ6jVlPxwEiLbVC7a/LW7b2yq14OJVFykpORDL3liByKokJGRg4sQoHD580zDWpIm7xfXlLS0GXyIiayaKEDSphS4GKzxTa9zpwBSBFkChGdqinQ4M4da2OiBTPPF5BAGAjP+MEZVWZOQlTJ26F+npagD576WwsJaYNq0NlMrK/ZcR/sQgIqqMRBGCJs040D64LS/cizb7NgS92iSH1Nu6PQiw7o/M1BYOtzWeGmiJqHxkZKjx4Yf7sWHDecOYp6cjli3rjrZtvSWsrOIw+BIRWRJRhJB3v9htbx/uEvZw2YGgyzXJIfUqV+M2XY9se/uwrRfkSpMcj4hM7/59NTp1+h9u3Eg3jPXpE4D58zvB2dlWwsoqFoMvEZE5EEUIeRmP3fZWllOwplbQ5ZjkkHqVi/Gs7MNNFYwuFHMH5CqTHI+IpFO1qgovveSNGzfS4eCgxNy5wRgwINBid2B7Vgy+RETlTMjLeMy2twW35Tl3IGizTXI8vbJakVlZXZFOB+6A3HpmeYgI+OyzjsjJ0eL999tWujZlJcXgS0T0rPIyH+lsUFy4TYRMm2mSw+mVzkWXGNjXLNL5gIGWyLqJooiNGy9AoZChX796hnEHByVWrAiVsDLpMfgSET0qLys/0D5u29uHn8vLMMnh9AqnQpspFHQ60BXudGBXE7CxM8nxiKjySkvLxbRpexEZ+Q+qVFGgadOaeO45Z6nLMhsMvkRkPbTZD5YVFO10YDRDm3ffJIfTK6oW6mbg/shMba0H62lrAjb2T38yIqKnOHw4HhMmROHWrfy/MmVl5WH79n8QFtZS4srMB4MvEVk+bc6Di7/uAMlpsE28Bll24iPLDu5Alpf+9OcqAb3C8bHb3urta+Wvp7WrCSiqmOR4RERPotHoMG/eESxdetKwmYuTkwpffdUFvXv7S1ucmWHwJSLzpcs1Wi+bv572kUCbcwcyTZrRwxye8XCiTZWi/WcfCbc6u5qA4lmPQERkWleupGDs2F04d+6uYaxdOy8sXRoCT09HCSszTwy+RFTxdOoiF4PJi+l08GigfVaijf3j+88WCreigv9IEJFlEEURERF/4pNPDiAnRwsAUChkCA9vh/Hjm0Mms642ZSXF4EtEpqNTG22mYLTtbeFOB5pUkxxOlNsZbaog2tWEXfU6yBCrFVwYZvcg0FpZr0oiqtzu31fjiy+OGkKvn181rFwZisaN3SWuzLwx+BLR0+k0BYG20MVg8kc7HahTTHI4UW5baL2scaeD/DD7IOgqqhoFWkEA7NwcoU7KMKxzIyKqjJycbLF4cTcMGrQZI0Y0xowZHWBvz+3An4bBl8ia6fMKBVnjTgfywp0O1MkmOZwoUxXaIaz4Tgf5gdaJM7RERIXk5mqRk5OHatUK2hoGB9fBr78OR716bhJWZlkYfIkqI30eZDl3H1lHe9swayt/sOxAyE2CgLJPjYoypVGALbLt7YPPiUpnBloiolI6f/4exo3bBS+vqvjf//oYbTPM0Fs6DL5ElkSvhSz3btFtbx+5SEzIvWeiQKt4ZIlBoV3CCoVbUVmNgZaIyMT0ehFr1pzBzJmHoFbrcOFCMr777hzeeKOJ1KVZLAZfInOg10KWe+8J294+bN1114SBtqbxUoNC/WcNM7QqFwZaIiIJJCZmIixsN/bvv2EYq1/fDa1be0pYleVj8CUqT3odBHXSg/Wyj2ymUPhCsdy7EER9mQ8nCjYPgmvRi8F09o8GWpkJvkAiIjK1qKgrmDx5D5KTcwxjY8Y0w0cftYetLaNbWfDVI3oWoh5CbqFAW2Tb2wfhNvcuBFFX9sMJ8vzZ2SdsqqC3qwXR1pWBlojIQmVl5WH69IOIiDhnGHN3r4IlS7qjY0cfCSurPBh8iQoT9RBykx9cAFZwMZgs+9ElB4mmC7S2NQqF2KKdDnT2tSCqXAGZ3ARfIBERmaO0tFyEhq7HlSsFfc5DQnyxYEFXuLraPeGRVBoMvmQdRD2E3JRitr19JNzmJEIQtWU/nCB7EGgLt+oy7nSQH2jdGGiJiAjOzrZo3NgdV66kwt7eBrNmBWHIkIZGHRyo7Bh8qfLS5sDh6AQg6Thcs+5A0OeV+SlFCNDb1cgPsI9cGGYUbm2rM9ASEVGpzJsXjNxcLT7++CX4+laTupxKicGXKi3bK+tg++8vAICn/b4sQoBoW71gU4WHM7OPbq5gWx2Q8W1DRERlExl5CUqlHCEhfoYxJydbfPddbwmrqvz4LzhVWqq47Ybb2moNH4TaotveFgRabvVIRETlKyNDjQ8/3I8NG87D2VmFJk3c4eHhKHVZVoPBlyolITcZisTf8j9wqou0XochPnXel4iIqPycPHkL48ZFIS4uHQCQlqbGL79cQFhYS4krsx4MvlQpKROiC7ouPN8vfxOGsu/7QEREVGparR4LFhzDwoXHodPl/2Pk4KDE3LnBGDAgUOLqrAuDL1VKqhsFyxzg11e6QoiIyKpdv56G8eOjcOrUbcNYixYeWL48BD4+ThJWZp0YfKnyycuC8nYsAEBv5w6ZR2sgOUviooiIyJqIoogNG84jPDwWWVn5XYXkcgFTprTGu++2go0NNxuSAoMvVTrKW3sh6HIBAGrvHrDjTmZERFTB0tJy8emnBw2h18fHCStWhKB5cw+JK7NuTARU6RTu5qCp3VPCSoiIyFpVq2aHBQu6AgAGDWqA/fuHMfSaAc74UuWi00B5czcAQK9wQl7NlyUuiIiIrIFGo4NGo4ODg9IwFhrqhz17hqBJE3cJK6PCOONLlYoi8RBkefltYjRe3QC58imPICIiKpsrV1IQGroekybFQBSNWwgx9JoXBl+qVAovc1DX7iVhJUREVNmJoojvvz+HTp3+h3Pn7iIy8h9s3HhB6rLoCbjUgSoPUQ9l/M78m3JbaDw6c8sKIiIqF0lJ2Zg8eQ+io68axvz8qiEw0FXCquhpGHyp0rC5dxLynEQAgKZWMKCoInFFRERUGcXGXkdY2G7cvVvQKnPEiMaYMaMD7O0VElZGT8PgS5WG0TIHHy5zICIi08rN1eLzz3/DqlW/G8ZcXe3w9ddd0a2br4SVUUkx+FLlIIpQxecHX1GQQ+MVInFBRERUmaSm5qBPn59x4UKSYSw4uA4WLeoGd3f+hdFS8OI2qhTkaX9DnvEvACDPvT1ElYvEFRERUWXi7Gxr2GJYpZJj9uwgrF/fl6HXwnDGlyoF424O3LSCiIhMSxAELFzYFbm5uzBjRgcEBrpJXRI9AwZfqhRUcTsMtzXeDL5ERFQ20dFXoVTKERxcxzDm6mqHjRv7S1cUlRmDL1k8WcZ12KT+CQDIc20GfRVPiSsiIiJLlZWVh+nTDyIi4hzc3Oxx8OBwVK9uL3VZZCJc40sWTxVfMNurrt1bwkqIiMiSnT2biM6d/4eIiHMA8nv1rl//l8RVkSlxxpcsnurGNsNtDXdrIyKiUtLp9Fi27BTmzj0CrVYPALC3t8HMmR0xdGgjiasjU2LwJYsm5NyFzb3jAACtUwB0Ts9LXBEREVmShIQMTJgQhSNHbhrGmjRxx8qVofD1rSZhZVQeGHzJoqnid0KACABQc7aXiIhKITLyEqZO3Yv0dDUAQBCAsLCWmDatDZRKucTVUXlg8CWLVriNGbs5EBFRSSUn52Dy5D3IyNAAADw9HbFsWXe0bestcWVUnnhxG1ksQZMOxZ2DAACdvRe0rk0lroiIiCyFq6sd5s/vBADo0ycA+/cPY+i1ApzxJYulvLkbgj4PwINNKwRB4oqIiMhcabV6aDQ62NsrDGP9+wfCw8MRrVt7QuC/IVaBM75ksQq3MWM3ByIiepzr19PQu/cGhIfHFvlcmzZeDL1WhMGXLJM2B8qEPQAAvcoFeTXaSFwQERGZG1EUsWHDeQQFrcOpU7exfv3f2LbtH6nLIglxqQNZJOXtAxC0WQAAtVcoIOO3MhERFUhLy8W0aXsRGVkQdH18nODh4SBhVSQ1pgWySMrC3Rx8uMyBiIgKHD4cjwkTonDrVqZhbNCgBpg9OwgODkoJKyOpMfiS5dFrobq5K/+mjQM0tYIkLoiIiMyBRqPDvHlHsHTpSYj5Ld7h7KzCl192Qe/e/tIWR2aBwZcsjuLuEcjUKQAAjWcXQG4rcUVERCS1lJQcDBy4CefO3TWMtW/vjaVLu8PDw1HCysicMPiSxTFa5lCbm1YQERHg7GwLFxc7AIBCIUN4eDuMH98cMhk7NlABdnUgyyKKUMXtzL8pU0Dj2VXigoiIyBzIZAKWLOmGVq08ERU1GBMntmDopSI440sWxSb5DOTZNwEAmlodISqdJK6IiIiksH//ddja2qBNGy/DmLu7A7Zvf03CqsjcST7j+8MPPyA4OBiNGjXCgAEDcO7cuSfe/7vvvkO3bt3QuHFjdOjQAbNnz4Zara6gaklqysKbVnizmwMRkbXJzdXi448P4LXXNmPcuF1IS8uVuiSyIJIG3127dmHOnDmYMGECtmzZgnr16mHUqFFITk4u9v7bt2/HV199hYkTJ2LXrl34/PPPsWvXLixYsKCCKyepqOK2AQBECFB7h0pcDRERVaQ//0xEt24/YtWq3wEAt25lIiLiyRNmRIVJGnzXrl2LgQMHon///vDz88OMGTNga2uLTZs2FXv/M2fOoFmzZujVqxe8vLzQvn179OzZ86mzxFQ5yNP/gU16fiNybY3WEO1qSFwRERFVBL1exKpVv6NFi29w/nwSAEClkmP27CC8/XYLiasjSyLZGl+NRoO///4bY8aMMYzJZDK0bdsWZ86cKfYxTZs2xbZt23Du3Dk0btwY8fHxOHjwIF555ZVSH18Q8v8jy6GKL+jmoK7dq0Tn7+F9eK6tA8+3deH5tg537mQiLGw39u+/YRirX98NK1eGIjDQTcLKqDyV1/tasuCbmpoKnU4HV1dXo3FXV1dcu3at2Mf06tULqampeP311yGKIrRaLQYNGoSxY8eW+vguLuzpZ3Fu7TLcdHhhEBycSn4OXV15vq0Jz7d14fmuvCIjL+Ktt7YjKSnbMDZpUmvMnt0Jtra8Pp9Kz6K+a44fP45Vq1Zh+vTpaNy4MeLi4vD5559j2bJlmDBhQqmeKyUlA3p9ORVKJifLugmXOycBAFqXxkjLcwOSMp76OEHI/0cxOTnDsIsPVV4839aF57tyS0rKxuuvb0Z2dh4AwN29CiIi+uLFF2sgMzMHmZlPeQKyaDJZ+UxSShZ8q1WrBrlcXuRCtuTkZLi5Ff+ni0WLFqF3794YMGAAACAgIADZ2dn45JNPMG7cOMhkJV+yLIrgD0oLorhR0M1B7d2z1OeO59u68HxbF57vysnV1R6zZnXE5Ml70L27L77+uisCAmogKYm/6FiD8jrHkl3cplQq0aBBAxw9etQwptfrcfToUTRt2rTYx+Tm5hYJt3K5HAAg8l1QqakKtTFT12YbMyKiykan00Ot1hqNDRnSED/91Bfff98brq52ElVGlYmkXR3eeOMNbNy4EVu2bMHVq1fx6aefIicnB/369QMAvPfee/jqq68M9w8KCsL69euxc+dOxMfH4/Dhw1i0aBGCgoIMAZgqHyE3GYrEwwAAneNz0DnXl7giIiIypYSEDLz66i/49NNfjcYFQUBw8HMQeAUjmYika3xDQ0ORkpKCxYsX4969ewgMDMSaNWsMSx1u375tNMM7btw4CIKAr7/+GomJiXBxcUFQUBAmTZok1ZdAFUB5MxqCqAMAqL178RJuIqJKJDLyEqZO3Yv0dDUOH76JTp3qoHPnulKXRZWUIFrpGoHkZF7cZimqxg6C6mZ+R4fUkD3QVm9V4scKAuDm5sg1YVaC59u68HxbtowMNT78cD82bDhvGPP0dMSKFSFo3dqryP15vq2LTFY+HVssqqsDWaG8TChv7QMA6OxqQuvGRuVERJbu5MlbGD8+CjdupBvG+vQJwPz5neDsbCthZVTZMfiSWVPe2gtBrwYAaLx7AIKky9KJiKgMtFo9Fi48jgULjkGny5+2dXBQYu7cYAwYEMi1vFTuGHzJrKniCu/W1lPCSoiIqCxSUnIwdOhWnDp12zDWooUHli8PgY+Pk4SVkTVh8CXzpdNAeTMGAKBXOCHP/SWJCyIiomfl5KSCjU3+X+3kcgFTprTGu++2MowRVQR+t5HZUtz5FbK8/PVfGu/ugFwpcUVERPSs5HIZli0LQePGNbB9+2uYOrUNQy9VOM74ktkyWubgzU0riIgsyZEj8bC1tUGzZrUMY97eVbFnzxCu5SXJ8FctMk96HVTxOwEAotwWGo9OEhdEREQlodHoMGvWIfTt+zPGjNmFzEyN0ecZeklKDL5klmySTkKWexcA8kOvoorEFRER0dNcuZKC0ND1WLz4JEQRuHEjHWvXnpW6LCIDLnUgs8RuDkRElkMURaxb9yc+/vgAcnK0AACFQobw8HYYP765xNURFWDwJfMjiobgKwpyaLxCJC6IiIgeJykpG5Mn70F09FXDmJ9fNaxcGYrGjd0lrIyoKAZfMjvy1L8gz7wOAMhzfwmiykXagoiIqFixsdcRFrYbd+9mGcZGjGiMGTM6wN5eIWFlRMVj8CWzw2UORETm7+7dLIwcGYncXB0AwNXVDl9/3RXduvlKXBnR4/HiNjI7qvgdhtsaBl8iIrNUo0YV/Pe/+RsLBQX54MCB4Qy9ZPY440tmRZbxL2xS/wIA5Lm9CL29h8QVERERAOj1InQ6PRQKuWHsrbeaolYtB/To8TxkMrYpI/PHGV8yK6q4gtleblpBRGQeEhMzMWjQZsyZc9hoXCYT0KuXP0MvWQwGXzIrhdf3anwYfImIpBYVdQUdOkTgwIEbWLbsFA4dipO6JKJnxqUOZDaEnETY3DsOANA61YOu6vMSV0REZL2ysvIwffpBREScM4xVr87NhMiyMfiS2VDF74QAEQC7ORARSens2USMHbsLV6+mGsa6d/fFwoVd4epqJ2FlRGXD4Etmw2iZQ20ucyAiqmg6nR7Llp3C3LlHoNXqAQD29jaYObMjhg5tBEHgWl6ybAy+ZBYETToUd34FAOiqeEPr8oK0BRERWZnk5By89dZ2HD580zDWpIk7Vq4Mha9vNQkrIzIdBl8yC8qbuyHo8wA8WObAWQUiogpVtaoSWVn5P4cFAQgLa4lp09pAqZQ/5ZFEloNdHcgsGC1zYBszIqIKp1DIsWJFKPz9XbBlywB89FF7hl6qdDjjS9LT5kB5aw8AQK9yRV6NNhIXRERU+Z08eQt2dgo0bFjdMObrWw2//jqCfXmp0uKML0lOeXs/BG02AEDtHQrIOMNARFRetFo9vvjiKHr33oCxY3ciOzvP6PMMvVSZMfiS5Iy7ObCNGRFRebl+PQ29e2/AF18chU4n4p9/UrB27VmpyyKqMFzqQNLSa6GM35V/08YBmlpBEhdERFT5iKKIjRsvIDw8FpmZGgCAXC5g6tQ2GDOmmcTVEVUcBl+SlCLxMGSa/AbpGs+ugNxW4oqIiCqXtLRcTJu2F5GR/xjG6tRxwvLlIWje3EPCyogqHoMvSYrLHIiIys/hw/GYMCEKt25lGsYGD26Azz8PgoODUsLKiKTB4EvSEUUo43fm35Qp82d8iYjIJBITM/Haa5uh0egAAM7OKnz5ZRf07u0vcWVE0uHFbSQZm+TfIc9OAABoanWAqKwqcUVERJWHu7sDpk5tDQBo394bBw4MZ+glq8cZX5KMKm6H4bamdm8JKyEisnyiKEKvFyGXF8xpvf12C3h4OOLVVwPZpowInPElCSnjtgEAREEGtVeoxNUQEVmupKRsjBixDQsWHDcal8tlGDiwPkMv0QOc8SVJyNMuweb+ZQBAXvXWEO2qP+URRERUnNjY6wgL2427d7OwZ881dOzogxYt2K2BqDgMviQJVTy7ORARlUVurhaff/4bVq363TDm7Gxr6NNLREUx+JIklIXamKlr95KwEiIiy3P+/D2MGxeFCxeSDGNBQT5YvLg73N2rSFgZkXlj8KUKJ8uMhyL5DAAgz6UJ9A4+EldERGQZ9HoRa9acwcyZh6BW57cpU6nk+OSTlzBqVFOu5SV6CgZfqnCq+MLdHLjMgYioJFJScjBu3C7s33/DMBYY6IaVK0MRGOgmYWVEloPBlyqcslAbM7U3lzkQEZWEvb0Cd+4U7MA2ZkwzfPRRe9ja8p9yopJiOzOqUEJuMhR3DwMAtI51oXMOlLgiIiLLYGtrgxUrQlG7thM2bOiHmTM7MvQSlRLfMVShlDejIIh6AICmdi9A4Ho0IqLinD2bCHt7BZ5/3sUwVr9+dRw79gZsbDhvRfQs+M6hCqUy6ubA9b1ERI/S6fRYvPgEQkLWY8yYnVCrtUafZ+glenZ891DFycuE8lYsAEBnVxNatxYSF0REZF4SEjLQv/8vmDXrN2i1evz11z2sXXtW6rKIKg0udaAKo0zYA0GvBgBovHsAAn/vIiJ6KDLyEqZO3Yv09Pyfk4IAhIW1xJtvviBtYUSVCIMvVRgVN60gIioiI0ONDz/cjw0bzhvGPD0dsWxZd7Rt6y1hZUSVD4MvVQydBsqEGACAXumMvJovSVwQEZH0Tp68hfHjo3DjRrphrE+fAMyf3wnOzrYSVkZUOTH4UoVQ3DkIWd59AIDGqxsgU0hcERGRtG7fzkDfvj9Do8nfgc3BQYm5c4MxYEAgBHa8ISoXXGRJFUJVeNOK2r0lrISIyDzUquWI8eNfBAC0aOGB/fuHYeDA+gy9ROWIM75U/vQ6wzbFotwOGo9OEhdERFTxRFEEAKNgO21aG3h6VsWQIQ3ZpoyoAvBdRuXO5t4JyHLvAUB+6LWxl7giIqKKlZaWi9Gjd2L58tNG4wqFHCNGNGboJaognPGlcqeK56YVRGS9Dh+Ox4QJUbh1KxO7dl3Byy/XRqNGNaQui8gqMfhS+RJFw/peUZBD49Vd4oKIiCqGRqPDvHlHsHTpSTxY5YAqVRS4ezdL2sKIrBiDL5UreepfkGdeBwDk1XwZosrlyQ8gIqoErlxJwdixu3Du3F3DWPv23li6tDs8PBwlrIzIujH4UrlSxW0z3FZ7c5kDEVVuoigiIuJPfPLJAeTkaAEACoUM4eHtMH58c8hk7NhAJKUyBV+1Wg2VSmWqWqgSKtzGTFO7h4SVEBGVr9TUHLzzTgyio68axvz8qmHlylA0buwuYWVE9FCpLyPV6/VYtmwZXnrpJTRt2hTx8fEAgK+//ho///yzyQskyyXLuAabtL8BAHluzaG395C4IiKi8qNU2uDy5RTDxyNHNsHevUMZeonMSKmD7/Lly7FlyxZMmzYNCkXB7lv+/v745ZdfTFocWTbjTSt6SVgJEVH5q1JFgRUrQlCzZhWsW/cK5s/vBHt77lJJZE5KHXwjIyMxc+ZM9O7dGzJZwcMDAgJw7do1kxZHlk0VV9DGTMM2ZkRUyZw/fw/Xr6cZjb3wQk2cPDkK3br5SlMUET1RqYNvYmIiateuXWRcFEVotVqTFEWWT5Z9B4p7xwEAWudA6Ko+L3FFRESmodeLWL36d3Tr9iPGjYuCVqs3+rxKxevGicxVqYOvn58fTp06VWQ8OjoagYGBJimKLJ8yfqfhNrs5EFFlkZiYiUGDNuO//z0AtVqH06dv47vvzkpdFhGVUKl/LR0/fjw++OADJCYmQhRFxMTE4N9//8XWrVuxatWq8qiRLJDxMgeu7yUiyxcVdQWTJsUgJSXXMDZmTDMMHdpIwqqIqDRKHXw7d+6MlStXYtmyZbCzs8PixYtRv359rFy5Eu3atSuPGsnCCJo0KO78CgDQVakNrUsTiSsiInp2WVl5mD79ICIizhnG3N2rYPHibggKqiNdYURUas+0EKl58+ZYu3atqWuhSkJ5czcEMX+9t7p2D0Bgw3YiskxnzyZi7NhduHo11TAWEuKLBQu6wtXVTsLKiOhZlHqNb6dOnZCamlpk/P79++jUqZNJiiLLZrzMobeElRARPbuEhAz06PGTIfTa29tgwYIu+O673gy9RBaq1ME3ISEBer2+yLhGo0FiYqJJiiILps2B8tZeAIDe1g151VtLXBAR0bPx9HTEG2/kL9Vq0sQd+/YNw9ChjSDwr1hEFqvESx327dtnuH3o0CE4OjoaPtbr9Th69Cg8PT1NWx1ZHOWtWAjabACA2isUkMklroiIqOREUTQKth991B6eno54880XoFTy5xmRpStx8J0wYQIAQBAEfPDBB8ZPYmMDT0/PIuNkfVTx3LSCiCxPRoYaH364H02b1sSbb75gGLe1tcHYsS9KVxgRmVSJg+/FixcBAMHBwfjll1/g4uJSbkWRhdJroYyPyr9p4wBNrY7S1kNEVAInT97CuHFRiItLR2TkJbRv7w1/f1epyyKiclDqNb6xsbEMvVQsReJhyDT5F4FovLoCcluJKyIiejytVo/584+gd+8NiItLBwDY2Mhx/Xq6xJURUXl5pnZm2dnZOHnyJG7duoW8vDyjzw0fPtwkhZHlUcVtM9zWeHPTCiIyX9evp2H8+CicOnXbMNaihQeWLw+Bj4+ThJURUXkqdfA9f/48Ro8ejZycHOTk5MDJyQmpqamws7ODi4sLg6+1EvWGbYpFmRIazy4SF0REVJQoitiw4TzCw2ORlZU/cSOXC5gypTXefbcVbGxK/YdQIrIgpX6Hz5kzB0FBQTh58iRUKhU2btyI/fv3o0GDBnj//ffLo0ayADbJv0OefQsAoKnVEaKyqsQVEREZS0/PxejROxEWttsQen18nLB9+2uYOrUNQy+RFSj1u/zChQt44403IJPJIJfLodFoUKtWLUybNg0LFiwojxrJAqjidhhua2pzmQMRmR9BEPD773cMHw8a1AD79w9D8+YeElZFRBWp1MHXxsYGMln+w1xdXXHrVv4sn4ODA+7cufOkh1JlJYpQPljfKwqy/P69RERmpmpVFZYt6w5XVzusWdMTixd3g4ODUuqyiKgClXqNb/369fHnn3+iTp06aNGiBRYvXozU1FRERkbi+eefL48ayczJ0y/B5v4VAEBejTYQ7apLXBEREXDlSgrs7RXw8CjYcKl1ay+cOvUWqlRRSFgZEUml1DO+kyZNQvXq1Q23q1atik8//RSpqan47LPPTF4gmT9VXKFNK7y5aQURSUsURXz//Tl06vQ/TJwYDb1eNPo8Qy+R9Sr1jG+jRo0Mt11dXfHtt9+atCCyPMr4gvW9au7WRkQSSkrKxuTJexAdfRUA8Ntv8YiIOIeRI5tIXBkRmQOTXcL6999/Y8yYMaZ6OrIQssx4KJLPAADyXJpA7+AjcUVEZK1iY6+jY8d1htALACNGNMbAgfUlrIqIzEmpgu+hQ4cwb948LFiwAPHx8QCAq1evYvz48Xj11Veh1+tLXcAPP/yA4OBgNGrUCAMGDMC5c+eeeP/79+9jxowZaN++PRo2bIhu3brh4MGDpT4umYYqnt0ciEhaublafPzxAQwatBl372YBAFxd7bBu3Sv44ovOsLfn0gYiylfipQ4///wzPv74Yzg5OeH+/fv4+eef8cEHH2DWrFkICQnBjh074OvrW6qD79q1C3PmzMGMGTPQpEkTfP/99xg1ahSio6Ph6lp0n3SNRoM33ngDrq6uWLRoEdzd3XHr1i1UrcqesVJRFlrfq2bwJaIK9uefiRg06BecP59kGAsK8sHixd3h7l5FwsqIyByVOPhGRERg6tSpeOutt7B792688847WL9+PbZv346aNWs+08HXrl2LgQMHon///gCAGTNm4MCBA9i0aRNGjx5d5P6bNm1Ceno6fvrpJygU+b/Be3l5PdOxqeyE3CQo7h4BAGgdfaFzqidxRURkTeLj76NNm7VQq3UAAJVKjk8+eQmjRjWFTCZIXB0RmaMSB9/4+Hh0794dANC1a1fY2Nhg2rRpzxx6NRpNkXXBMpkMbdu2xZkzZ4p9TGxsLF544QV89tln2LdvH1xcXNCzZ0/85z//gVwuL9XxBSH/P3p2qptREMT85S0an14QzPAfmofnmOfaOvB8W5fatati+PAm+Oab31G/vhtWrgxFYKCb1GVROeH727qU13kucfDNzc2FnZ3dg2IEKBQK1KhR45kPnJqaCp1OV2RJg6urK65du1bsY+Lj43Hs2DH06tULq1evRlxcHGbMmAGtVouJEyeW6vguLo5PvxM92aEow037Rq/B3s18X1NXV/OtjUyP59t6LFzYDT4+TpgypS1sbUvdqIgsEN/fVBal+inx888/w97eHgCg0+mwefNmVKtWzeg+w4cPN111jxBFEa6urpg5cybkcjkaNmyIxMREfPvtt6UOvikpGXiGa/HoASEvAy7X90AAoLOriVRFIJCUIXVZRQhC/g/J5OQMiOLT70+Wjee78srKysP06Qfx4ou1MHhwAwAF53vs2KbIzMxBZqbERVK54vvbushk5TNJWeLg6+HhgY0bNxo+dnNzQ2RkpNF9BEEocfCtVq0a5HI5kpOTjcaTk5Ph5lb8n6qqV68OGxsbo2UNdevWxb1796DRaKBUlnzrSVEE3zhloLy5B4JeDQDQ1O4JETLAjF9Pnm/rwvNduZw9m4hx43bhypVU/PLLBbRq5YnnnnM2fJ7n27rwfFuH8jrHJQ6+sbGxJj2wUqlEgwYNcPToUXTu3BkAoNfrcfToUQwdOrTYxzRr1gw7duyAXq+HTJbfie369euoXr16qUIvlZ1RNwdvdnMgItPT6fRYtuwU5s49Aq02/090oiji4sUko+BLRFRSJtvA4lm88cYb2LhxI7Zs2YKrV6/i008/RU5ODvr16wcAeO+99/DVV18Z7j948GCkpaXh888/x7///osDBw5g1apVGDJkiFRfgnXSqaFMiAEA6JXOyKvZXuKCiKiySUjIQP/+v2DWrN8MobdJE3fs2zcMISF+EldHRJZK0isBQkNDkZKSgsWLF+PevXsIDAzEmjVrDEsdbt++bZjZBYBatWrh22+/xZw5c9C7d2+4u7tj+PDh+M9//iPVl2CVlHcOQpaXv55X49UdkLE5PBGZTmTkJUyduhfp6fnLqQQBCAtriWnT2kCpLF0HHyKiwgRRtM6VMsnJvLjtWTkcDYPd5e8AAOkdfzDrHdsEAXBzc0RSEi+GsAY835YtM1OD8PBYbNhw3jDm6emIZcu6o21b7yL35/m2Ljzf1kUmK58OHuz9QqWj1xm2KRbldtB4dJK4ICKqLNRqHQ4cuGH4uE+fAMyf3wnOzrYSVkVElYmka3zJ8ijuHYcsN39rUI1nZ8DGXuKKiKiycHW1w5Il3eHoqMTSpd2xalUoQy8RmdQzzfjGxcVh06ZNiI+Px0cffQRXV1ccPHgQHh4eeP75501dI5kR424OPSWshIgs3fXrabC3V6BGjSqGsY4dffD772/ByYmBl4hMr9QzvidOnECvXr1w7tw5xMTEIDs7GwBw6dIlLFmyxOQFkhkRxYJlDoJN/oVtRESlJIoifvrpbwQFrcO778bg0UtNGHqJqLyUOvh+9dVXePfdd7F27VooFAVX87du3Rp//PGHKWsjMyNP/RPyzPz1d3k1X4KoqvaURxARGUtLy8Xo0TsRFrYbWVl52Lv3X6xf/7fUZRGRlSh18P3nn38MG04U5uLigtTUVJMUReZJVXiZgxl3ciAi83T4cDw6doxAZOQ/hrFBgxqgd29/CasiImtS6jW+jo6OuHfvHry9jVvLXLhwAe7u7iYrjMxP4eCr8e4hYSVEZEk0Gh3mzTuCpUtPGtpQOTur8OWXXRh6iahClXrGt0ePHvjyyy9x7949CIIAvV6P06dPY968eejTp085lEjmQHb/KmzS8ntr5rm1gN6+lsQVEZEluHw5BaGh67FkSUHobd/eGwcODGfoJaIKV+oZ30mTJuGzzz5Dx44dodPp0KNHD+h0OvTs2RPjxo0rjxrJDKjidhhuc5kDEZXE9etp6Nz5f8jJ0QIAFAoZwsPbYfz45pDJBImrIyJrVOrgq1QqMWvWLIwfPx6XL19GVlYW6tevjzp16pRDeWQuVPGFljnUZhszInq6OnWcERrqh02bLsLPrxpWrgxF48ZcEkdE0il18D116hSaN28ODw8PeHh4lEdNZGZk2XeguHcCAKB1rg9dVT+JKyIiSzFvXid4e1fFu++2gr294ukPICIqR6Ve4zty5EgEBwdjwYIFuHLlSnnURGZGGV94mQNne4moqNxcLT7++AC2bfvHaLxqVRU+/LA9Qy8RmYVSB99ff/0Vb775Jk6cOIGePXvilVdewZo1a3Dnzp3yqI/MgHE3B67vJSJj58/fQ7duP2LVqt8xZcoeJCRkSF0SEVGxSh18XVxcMHToUPz000/Ys2cPunfvjq1btyI4OBjDhw8vjxpJQoI6FYo7hwAAuiq1oXVpLHFFRGQu9HoRq1f/jm7dfsSFC0kA8md+//iDEyFEZJ5Kvca3MG9vb4wePRr16tXDokWLcPLkSVPVRWZCmbAbgph/Rba6dk9A4JXYRAQkJmYiLGw39u+/YRgLDHTDypWhCAx0k7AyIqLHe+bge/r0aWzfvh27d++GWq1Gp06dMHnyZFPWRmagcBszDduYERGAqKgrmDx5D5KTcwxjY8Y0w0cftYetbZnmU4iIylWpf0J99dVX2LlzJ+7evYt27drho48+QqdOnWBnZ1ce9ZGUtNlQJuwBAOht3ZBXvbXEBRGRlLKy8jB9+kFERJwzjLm7V8Hixd0QFFRHusKIiEqo1MH35MmTGDVqFEJCQuDi4lIeNZGZUN6KhaDLn9FRe/UAZHKJKyIiKWVmqrFz52XDxyEhvliwoCtcXTnxQUSWodTB96effiqPOsgMGXVzYBszIqvn7u6ABQu6YNy4XZg1KwhDhjSEwHX/RGRBShR89+3bh5dffhkKhQL79u174n07depkksJIYvo8KG9G5d9UOEJTq6O09RBRhUtIyIC9vQ2qVSuY0Q0J8cPJk2+henV7CSsjIno2JQq+EyZMwOHDh+Hq6ooJEyY89n6CIODChQsmK46ko0g8DJkmDQCg8ewCyFXSFkREFSoy8hKmTt2Ll1+ujTVrehrN7DL0EpGlKlHwvXjxYrG3qfJSxW0z3NbU7i1hJURUkTIy1Pjww/3YsOE8AGD79svYtOkiXn01UOLKiIjKrtQbWGzduhUajabIuEajwdatW01RE0lN1EMZtzP/pkyVP+NLRJXeyZO3EBT0P0PoBYA+fQLQufNzElZFRGQ6pQ6+4eHhyMgouh1lVlYWwsPDTVIUScsm6TTkObcBAJpaHSEqHCWuiIjKk1arxxdfHEXv3hsQF5cOAHBwUGLp0u5YtSoUzs62EldIRGQape7qIIpisVfxJiYmwtGRAaky4KYVRNbj+vU0jB8fhVOnbhvGWrTwwPLlIfDxcZKwMiIi0ytx8O3Tpw8EQYAgCBgxYgRsbAoeqtPpcPPmTbz00kvlUiRVIFGE8sH6XlGQQe0dKnFBRFRerl1LRefOPyAzM3/5mlwuYMqU1nj33VawsSn1HwSJiMxeiYNv586dAQAXLlxA+/btUaVKFcPnFAoFPD090bVrV9NXSBVKnn4RNhlXAQB5NdpCtHWTuCIiKi/PPeeMl17yRlTUVfj4OGHFihA0b+4hdVlEROWmxMF34sSJAABPT0+EhoZCpWJ7q8qIm1YQWQ9BELBgQVd4ex/DBx+0g4ODUuqSiIjKVan/ltW3b1+G3kpMWWh9r9qbwZeostBodJg58xD27LlmNO7qaodZs4IYeonIKpRoxrdly5aIjo6Gi4sLWrRo8cQtKk+cOGGy4qhiyTLjoEj5AwCQ5/IC9A61pS2IiEziypUUjB27C+fO3cX69X/jwIFhqFGjytMfSERUyZQo+IaHh8PBwcFwm3uzV06q+MLdHDjbS2TpRFFERMSf+OSTA8jJ0QIA0tNzceLELfTs+bzE1RERVbwSBd++ffsabvfr16/ciiFpGS1z4G5tRBYtKSkbkyfvQXT0VcOYn181rFwZisaN3SWsjIhIOqXu4/v333/DxsYGAQEBAIC9e/di8+bN8PPzw8SJE6FUcp2YJRJyk6C4ewQAoK3qB51TgMQVEdGzio29jrCw3bh7N8swNnJkE3z66cuwt1dIWBkRkbRKfXHbJ598guvXrwMA4uPjMWnSJNjZ2SE6OhpffPGFqeujCqKK3wVB1AMANN69AC5nIbI4ublafPzxAQwatNkQel1d7bBu3SuYP78TQy8RWb1SB9/r168jMDAQABAVFYWWLVviq6++wpw5cxATE2PyAqliKAu1MVNzfS+RRUpKysb69X8bPg4OroMDB4ajWzdfCasiIjIfpQ6+oihCr8+fGTx69ChefvllAECtWrWQmppq2uqoQgh5GVDe3g8A0NnVgtbtRYkrIqJn4eVVFfPnd4JKJcfs2UFYv74v3N3ZvYGI6KFSr/Ft2LAhVqxYgTZt2uDkyZP49NNPAQA3b96Emxt3+bJEyoQ9EPT5W5ZqavcABG5VSmQJEhMzYW+vgKNjQW/1fv3qoVUrT3h6OkpYGRGReSp1wvnwww9x/vx5zJw5E2PHjoWPjw8AYPfu3WjatKnJC6Typ4zbZrjNbg5EliEq6go6dlyHDz/cX+RzDL1ERMUTRFEUTfFEarUaMpkMCoVlXDyRnJyBBys2rJtODdeNdSHLy4Be6YzkgVcBmWWcw5IQBMDNzRFJSRkwzXc6mTNrON9ZWXmYPv0gIiLOGca+/bYnevXyl7AqaVjD+aYCPN/WRSYDXF1N/0t8qZc6PPTXX3/h6tX8/pB+fn5o0KCByYqiiqO8fQCyvAwAgMYrpFKFXqLK5uzZRIwduwtXrxZcTxES4ou2bb0lrIqIyHKUOvgmJyfj3XffxcmTJ1G1alUAwP3799GqVSssXLgQLi4uJi+Syo/xphW9JKyEiB5Hp9Nj2bJTmDv3CLTa/D9V2dvbYNasIAwZ0pC7aRIRlVCp1/jOnDkT2dnZ2LlzJ06cOIETJ05gx44dyMzMxKxZs8qjRioveh1UN3cCAES5HTQewRIXRESPSkjIQP/+v2DWrN8MobdJE3fs2zcMQ4c2YuglIiqFUs/4Hjp0CGvXroWvb0FfSD8/P0yfPh1vvvmmSYuj8qW4dwyy3CQAgMazC2BjL3FFRFTY1aup6N79R6SnqwHkr3EMC2uJadPaQKmUS1wdEZHlKfWMr16vL/YCNhsbG0N/X7IM3LSCyLw995wzmjWrCSC/U8OWLQPw0UftGXqJiJ5RqYNv69at8fnnnyMxMdEwlpiYiDlz5qBNmzYmLY7KkShC9WB9ryjYQOPZTeKCiOhRMpmAxYu7YdiwRti/fxgvYiMiKqNSL3X45JNPMG7cOHTq1Ak1a+bPRNy5cwfPP/88vvjiC5MXSOXDJuUc5FlxAIC8mi9BVFWTuCIi66bV6rFw4XG0bu2Jl16qbRh3d3fAV191kbAyIqLKo9TBt1atWtiyZQuOHj1qaGfm6+uLtm3bmrw4Kj/K+MLLHNjNgUhK16+nYfz4KJw6dRu1ajngwIFhqFbNTuqyiIgqnVIF3127dmHfvn3Iy8tDmzZtMGzYsPKqi8qZ6sH6XhECNN5c30skBVEUsXHjBYSHxyIzM3/b8Lt3s/Dbb/FWuSEFEVF5K3Hw/fHHH/HZZ5/Bx8cHtra22LNnD+Li4vD++++XZ31UDuT3r8Am7QIAQFu9BfT2NSWuiMj6pKXlYtq0vYiM/Mcw5uPjhBUrQtC8uYeElRERVV4lvrjthx9+wMSJE7F7925ERkZi7ty5WL9+fXnWRuXEaNMKby5zIKpohw/Ho2PHCKPQO2hQA+zfP4yhl4ioHJU4+MbHx6NPnz6Gj3v16gWtVou7d++WR11UjlRsY0YkCY1Gh1mzDqFfv59x61YmAMDJSYU1a3pi8eJucHBQSlwhEVHlVuKlDhqNBvb2BRscyGQyKBQKqNXqcimMyocs+zYUSScBAFrn+tBX9X3KI4jIVG7dysCaNX9AFPM/btfOC0uXhsDT01HawoiIrESpLm77+uuvYWdXcKVxXl4eVqxYAUfHgh/a4eHhpquOTM5omQO7ORBVqDp1nPH55x3x3nv7EB7eDuPHN4dMxi2HiYgqSomDb4sWLfDvv/8ajTVt2hTx8fGGj7lnvPlTxTP4ElWU5OQc2NnZwN6+YLfL119viDZtvFC3LntnExFVtBIH33Xr1pVnHVQBBHUqFHcOAQB0Dj7QVWskcUVElVds7HWEhe1Gjx5+mDevk2FcEASGXiIiiZR6y2KyXMqb0RBELQBA7d0T4Aw9kcnl5mrx8ccHMGjQZty9m4W1a89iz55rUpdFRER4hp3byHIVXuag4TIHIpM7f/4exo2LwoULSYax4OA6aNzYXcKqiIjoIQZfa6HNhjJhLwBAb1sdedVbSVwQUeWh14tYs+YMZs48BLVaBwBQqeSYPv1ljBr1Aq9/ICIyEwy+VkJ5ax8EXQ4AQO3dA5DJJa6IqHJITMxEWNhu7N9/wzAWGOiGlStDERjoJmFlRET0KAZfK1F40woNN60gMokrV1LQq9cGJCfnGMbGjGmGjz5qD1tb/nglIjI3z3Rx26lTpzB16lS89tprSExMBABs3boVp06dMmlxZCL6PChvRuffVDhCU7ODxAURVQ7PPecMf38XAIC7exVs2NAPM2d2ZOglIjJTpQ6+u3fvxqhRo2Bra4vz589Do9EAADIzM7Fq1SqTF0hlp7jzG2SaNACAxrMrIFdJWxBRJSGXy7BsWQgGDAjEgQPDERRUR+qSiIjoCUodfFesWIEZM2Zg1qxZsLEpmNVo1qwZzp8/b9LiyDRU8YWXObCbA9Gz0On0WLz4BE6cuGU07uVVFcuWhcDV1e4xjyQiInNR6r/H/fvvv2jevHmRcUdHR9y/f98kRZEJiXrDNsWiTAWNZxeJCyKyPAkJGZgwIQpHjtxE7dpO2L9/KBwd+ZcTIiJLU+oZXzc3N8TFxRUZP336NLy9vU1SFJmOTdIpyHPuAAA0HkEQFY4SV0RkWSIjL6FjxwgcOXITABAfn44DB2485VFERGSOSh18Bw4ciM8//xxnz56FIAhITEzEtm3bMG/ePAwePLg8aqQyUMUV2rTCm8sciEoqI0ONt9+Oxn/+sxPp6WoAgKenI7ZsGYBevfwlro6IiJ5FqZc6jB49Gnq9HiNHjkROTg6GDh0KpVKJN998E8OGDSuPGulZiSKUD9qYiYIMau8QiQsisgwnT97C+PFRuHEj3TDWp08A5s/vBGdnWwkrIyKisih18BUEAePGjcOoUaMQFxeH7Oxs+Pr6okqVKuVRH5WBPP0ibDKuAgDyarSFaMtm+kRPotXqsXDhcSxYcAw6nQgAcHBQYu7cYAwYEMgd2IiILNwzN5tUKpXw8/MzZS1kYqq4bYbb7OZA9HTXr6dh8eIThtDbooUHli8PgY+Pk8SVERGRKZQ6+A4bNuyJsx4RERFlKohMR1lofa/am7u1ET2Nn58LPvnkJXzyyUFMmdIa777bCjY2z7TPDxERmaFSB9/AwECjj7VaLS5cuIDLly+jT58+pqqLykiWeQOKlLMAgDzXptA7sOMG0aPS0nJhZ2cDlargR+FbbzVF+/a1ERjIpUFERJVNqYPvhx9+WOz4kiVLkJ2dXeaCyDSMuzlwtpfoUYcPx2PChCj06ROATz8t2MZbEASGXiKiSspkf8Pr3bs3Nm3aZKqnozJSxhda5sD1vUQGGo0Os2YdQr9+P+PWrUwsX34av/5atDc5ERFVPs98cdujzpw5A6VSaaqnozIQcu5BkXgEAKCt+jx0TgESV0RkHq5cScHYsbtw7txdw1j79t7w86smYVVERFRRSh18J06caPSxKIq4d+8e/vrrL4wfP95khdGzU93cBQH5V6VravcC2IKJrJwoioiI+BOffHIAOTlaAIBCIUN4eDuMH98cMhnfI0RE1qDUwdfR0XjLW0EQ8NxzzyEsLAzt27c3WWH07B5uWgEA6tpc30vWLSkpG5Mn70F09FXDmJ9fNaxcGYrGjd0lrIyIiCpaqYKvTqdDv3794O/vDycn9rU0R4LmPpS3DwAAdPYe0Lo2k7YgIglduZKCPn1+xt27WYaxkSOb4NNPX4a9vULCyoiISAqlurhNLpfjzTffxP37901axA8//IDg4GA0atQIAwYMwLlz50r0uJ07dyIgIIBLLApRJuyBoNcAADTePQCBPUjJevn4OMHT0wEA4Opqh3XrXsH8+Z0YeomIrFSpU9Hzzz+PmzdvmqyAXbt2Yc6cOZgwYQK2bNmCevXqYdSoUUhOTn7i427evIl58+ahefPmJqulMjBe5tBbwkqIpKdQyLFiRSh69PDDgQPD0a2br9QlERGRhEodfN99913MmzcP+/fvx927d5GZmWn0X2mtXbsWAwcORP/+/eHn54cZM2bA1tb2ia3RdDodpk6dirfffhve3tyYwUCXC2VCDABAr6yGPPd2EhdEVHH0ehGrV/+OM2duG43XrVsNa9f2hrt7FYkqIyIic1HiNb5Lly7Fm2++idGjRwMAxo0bZ7R1sSiKEAQBFy5cKPHBNRoN/v77b4wZM8YwJpPJ0LZtW5w5c+axj1u2bBlcXV0xYMAAnD59usTHK0wQKl+zA8WdA5Bp83/50HiHQJCbrFudxXp4jivbuSZjd+5kIixsN/bvv4F16/5CTMxg2NlxOUNlx/e3deH5ti7ldZ5LnIyWLVuGwYMHIyIiwmQHT01NhU6ng6urq9G4q6srrl27VuxjTp06hV9++QVbt24t07FdXByffidLc3q34aZtw4GwdauEX+MzcnXla1FZRUZexFtvbUdSUv7OkRcvJuHEiTvo37++xJVRReH727rwfFNZlDj4imJ+X9iWLVuWWzFPk5mZiffeew8zZ86Ei4tLmZ4rJSUDer2JCjMHeh1crkRCBkC0sUeyQxsgKUPqqiQnCPk/JJOTM/DgW5gqiaysPEyffhDff19wMay7exVERPTFiy/WQBK//ys9vr+tC8+3dZHJymeSslR/CxdMPO9crVo1yOXyIheyJScnw83Nrcj94+PjkZCQgHHjxhnG9A/Sa/369REdHY3atWuX6NiiiEr1xlHcPQZZbhIAQOPRGaLcDqhEX19ZVbbzbe3Onk3E2LG7cPVqqmEsJMQXCxd2RUBAfujl+bYefH9bF55v61Be57hUwbdbt25PDb8nTpwo8fMplUo0aNAAR48eRefOnQHkB9mjR49i6NChRe5ft25dbN++3Wjs66+/RlZWFj766CPUrFmzxMeubJRx2wy31bV7SVgJUfnR6fRYtuwU5s49Aq02/5dee3sbzJzZEUOHNuIObERE9ESlCr5vv/12kZ3byuqNN97A+++/j4YNG6Jx48b4/vvvkZOTg379+gEA3nvvPbi7u2PKlClQqVTw9/c3enzVqlUBoMi4VRFFqOJ25N8UbKDx6iZxQUTl4/LlFKPQ26SJO1auDIWvbzWJKyMiIktQquDbo0ePIheilVVoaChSUlKwePFi3Lt3D4GBgVizZo1hqcPt27chk3EThiexSTkLeVY8ACCv5ssQlc7SFkRUTurVc8MHH7TF55//hrCwlpg2rQ2USrnUZRERkYUQRLFkqygCAwPx22+/mTz4SiU5ufJc3GZ/Ziaq/PkFACCj1ULkBoySuCLzIQiAm5sj13xaqMxMDWxtbWBjU/DLr06nx59/3sULLxRd2sTzbV14vq0Lz7d1kcnKp4NHiadSS5iPSQKq+AfLHCDkb1NMVAmcPHkLQUHrsGDBMaNxuVxWbOglIiJ6mhIH34sXL1aa2d7KRH7/MmzS8jcN0VZvCb09AwFZNq1Wjy++OIrevTfgxo10LFhwHCdO3JK6LCIiqgS4tZeFUz64qA1gNweyfNevp2H8+CicOlWw7fCLL9bidsNERGQSDL4WThVX0N5NXbunhJUQPTtRFLFx4wWEh8ciM1MDAJDLBUyZ0hrvvtvKaI0vERHRs2LwtWCy7FtQJJ0CAGidG0DvWFfiiohKLy0tF++9tw9bt14yjPn4OGHFihA0b+4hYWVERFTZMPhaMGXcTsNtzvaSJbpyJQUDBmxCQkLB9sKDBjXA7NlBcHBQSlgZERFVRgy+Fsx4mUNvCSshejZeXlVRtaoKCQkZcHZW4csvu6B3byvejIaIiMoVF85ZKEGdAkXiIQCAzqEOdNUaSlwRUenZ2tpg5cpQdO78HA4cGM7QS0RE5YrB10Ipb0ZDEHUAHixzEASJKyJ6MlEUERFxDpcuJRuNBwa64ccf+8LDw/SNyomIiArjUgcLpSrcxsybbczIvCUlZWPy5D2Ijr6KBg2qIzp6MFQq/vghIqKKxRlfS5SXBeWtfQAAvW11aKu3lLggoseLjb2Ojh3XITr6KgDg77/vISbmmsRVERGRNeKUiwVS3toHQZcDAFB79wRkcokrIioqN1eLWbMOYfXqM4YxV1c7fP11V3Tr5ithZUREZK0YfC2QKp6bVpB5O3/+HsaN24ULFwrW8wYF+WDx4u7chY2IiCTD4Gtp9HlQ3tydf1NRFXk1O0hcEFEBvV7EmjVnMHPmIajV+RdfqlRyfPLJSxg1qilkMl6ESURE0mHwtTCKO4cg06QBADSeXQE5m/yT+Th/PgmffHIQer0IIL9jw8qVoQgMdJO4MiIiIl7cZnGMN61gNwcyLw0bVse77+ZfbDlmTDPs3v06Qy8REZkNzvhaElEPZXz+NsWiTAWNZxeJCyJrl52dB1tbG6MlDFOmtEbHjj5o3dpLwsqIiIiK4oyvBbFJOgl5zh0AgMYjGFA4SFwRWbOzZxPRqdP/sHz5KaNxhULO0EtERGaJwdeCGG1awWUOJBGdTo/Fi08gJGQ9rl5NxZw5h3HuXKLUZRERET0VlzpYClGE8sH6XlGQQeMVInFBZI0SEjIwYUIUjhy5aRirX786qlThRZZERGT+GHwthDztAmwy8ne7yqvRDqKtq8QVkbWJjLyEqVP3Ij1dDQAQBCAsrCWmTWsDpZKbqBARkflj8LUQhTet0HDTCqpAGRlqfPjhfmzYcN4w5unpiGXLuqNtW28JKyMiIiodBl8LobzBNmZU8a5cScHgwVtw40a6YaxPnwB88UUnODnZSlgZERFR6TH4WgBZxnUoUs8BAPJcm0JfhVfMU8WoVcsRNjb518A6OCgxd24wBgwIhCBwBzYiIrI87OpgAVTxBd0cNJztpQpUpYoCK1eGol07L+zfPwwDB9Zn6CUiIovF4GsBlIXbmHkz+FL5EEURGzacx7//phmNN2nijs2bB8DHx0mawoiIiEyEwdfMCTl3obh7FACgrfo8dM4BEldElVFaWi5Gj96Jt9+Oxvjxu5CXpzP6PGd5iYioMmDwNXOq+F0QIAIANLV7S1wNVUaHD8ejY8cIREb+AwA4ffoOYmKuSVwVERGR6fHiNjOnjC/czYFtzMh0NBod5s07gqVLT0LM/90Kzs4qfPVVF/To8by0xREREZUDBl8zJmjuQ3n7IABAZ+8JrWsziSuiyuLKlRSMHbsL587dNYy1b++NpUu7w8PDUcLKiIiIyg+DrxlTJsRA0GsAABrvHvlbZRGVgSiKiIj4E598cgA5OVoAgEIhQ3h4O4wf3xwyGb/HiIio8mLwNWNG3RzYxoxM4M8/72LatL2Gj/38qmHlylA0buwuYVVEREQVgxe3mStdLpQJMQAAvbIa8tzbSVwQVQaNG7tj7NgXAQAjRzbB3r1DGXqJiMhqcMbXTClv74dMmwkA0HiHAjKeKio9tVoLpVJu1I7so4/aITi4Djp29JGwMiIioorHGV8zxWUOVFbnz99D164/YO3as0bjKpUNQy8REVklBl9zpNdCFb8LACDaVIGmVpDEBZEl0etFrF79O7p1+xEXLiTj008P4tKlZKnLIiIikhz/fm6GFHePQabODyoaj86AjZ3EFZGlSEzMRFjYbuzff8Mw9txz1SSsiIiIyHww+JohZdw2w21uWkElFRV1BZMn70Fyco5hbMyYZvjoo/awteVbnYiIiP8amhtRhCp+Z/5NmQIar24SF0TmLisrD9OnH0RExDnDmLt7FSxe3A1BQXWkK4yIiMjMMPiaGZuUPyDPigcA5NV8GaLSWdqCyKxdvZqKoUO34urVVMNYSIgvFizoCldXLpEhIiIqjMHXzCjjthtus5sDPU316vbIy9MBAOztbTBrVhCGDGlo1L6MiIiI8rGrg5lRPWhjJkKA2ruHxNWQuataVYVly0Lw4os1sW/fMAwd2oihl4iI6DEYfM2IPP0ybNIvAgC01VtCtOOOWmRs27Z/kJCQYTTWqpUndu0aDF9fdm8gIiJ6EgZfM2K8zKG3hJWQucnIUOPtt6Px1ls7MHFiFHQ6vdHnOctLRET0dAy+ZkQVXzj4so0Z5Tt58haCg/+HDRvOAwAOH76JmJhrEldFRERkeXhxm5mQZd+CIuk0AEBbrSH0js9JXBFJTavVY+HC41iw4Bh0OhEA4OCgxNy5weje3Vfi6oiIiCwPg6+ZUD64qA0A1N6c7bV216+nYfz4KJw6ddsw1qKFB5YvD4GPj5OElREREVkuBl8zoSocfNnGzGqJooiNGy8gPDwWmZkaAIBcLmDKlNZ4991WsLHh6iQiIqJnxeBrBoTcZCgSDwEAdA51oKvWUOKKSCp//JGIt9+ONnzs4+OEFStC0Ly5h4RVERERVQ6cPjIDyoRoCGL+JgTq2r0AXqFvtZo2rYnhwxsDAAYNaoD9+4cx9BIREZkIZ3zNAJc5WK+8PB1sbGRG7chmzOiAzp2f4wVsREREJsYZX6nlZUF5ax8AQG9bA9rqLSUuiCrKlSspCAlZb2hT9lCVKgqGXiIionLA4Csx5a19EHS5AJC/RbHAU1LZiaKI778/h06d/odz5+4iPDwW166lSl0WERFRpcelDhJTxW0z3OYyh8ovKSkbkyfvQXT0VcNYrVoOyM3VSlgVERGRdWDwlZJOA+XN3QAAvcIJeTVflrggKk+xsdcRFrYbd+9mGcZGjGiMGTM6wN5eIWFlRERE1oHBV0KKxEOQ5aUDADReXQG5UuKKqDzk5mrx+ee/YdWq3w1jrq52+PrrrujWjWt5iYiIKgqDr4TYzaHyu3YtFW+8sR0XLiQZxoKD62DRom5wd68iYWVERETWh8FXKqIeyvj84CvKVNB4dJa4ICoPzs62SE3NAQCoVHJMn/4yRo16wah9GREREVUMthCQiM29k5DnJAIANB7BgMJB4oqoPLi42GHx4u5o0KA6YmKG4K23mjL0EhERSYTBVyKquO2G2+ravSWshExp9+6rSEzMMhrr2NEHe/cOQWCgm0RVEREREcDgKw1RhCo+P/iKghwar+4SF0RllZWVh6lT92LYsEi8++5uiKJo9Hm5nG81IiIiqfFfYwnI085DnvEvACDPvR1EW1eJK6KyOHs2EZ07/w8REecAAPv2XUdMzDWJqyIiIqJH8eI2CRgtc/DuKWElVBY6nR7Llp3C3LlHoNXqAQD29jaYNSsIXbvWlbg6IiIiehSDrwQKB19NbQZfS5SQkIEJE6Jw5MhNw1iTJu5YuTIUvr7VJKyMiIiIHofBt4LJMq7DJvVPAECeazPoq3hJXBGV1tatlzBt2l6kp6sBAIIAhIW1xLRpbaBUyiWujoiIiB6HwbeCqeK5aYUlO3XqFkaP3mn42NPTEcuWdUfbtt4SVkVEREQlwYvbKpjxMgcGX0vTvLkHBgwIBAD06ROA/fuHMfQSERFZCM74ViAh5y5s7h4DAGid/KFz8pe4InoavV6ETGa84cTcucHo0qUuXnnFn5tREBERWRDO+FYgVfxOCMjv76rx5myvubt+PQ09e/6EyMhLRuOOjir06RPA0EtERGRhOONbgYx3a2PwNVeiKGLjxgsID49FZqYGly/vRfPmHvD0dJS6NCIiIioDBt8KImjSobhzEACgs/eC1rWpxBVRcdLScjFt2l5ERv5jGHN2tkVKSg6DLxERkYVj8K0gyoQYCPo8AIC6do/8HlhkVg4fjseECVG4dSvTMDZoUAPMnh0EBwelhJURERGRKTD4VhBlXEEbM3ZzMC8ajQ7z5h3B0qUnIeYvwYaTkwpffdUFvXvzAkQiIqLKgsG3IuhyoUqIAQDoVS7Iq9FW4oLooevX0/DWWztw7txdw1i7dl5YujSESxuIiIgqGQbfCqC8tR+CNgsAoPYKBWR82c2FnZ0NEhIyAAAKhQzh4e0wfnzzIi3MiIiIyPKxnVkFUHLTCrPl7u6AhQu74vnnXRAVNRgTJ7Zg6CUiIqqkOPVY3vRaqG7uAgCINlWg8QiSuCDrdvDgDTRqVAMuLnaGse7dfdGpUx0oFHIJKyMiIqLyZhYzvj/88AOCg4PRqFEjDBgwAOfOnXvsfTdu3IjXX38dLVq0QIsWLTBy5Mgn3l9qirtHIVOnAAA0nl0Aua3EFVmn3FwtPv74AAYM2ISpU/dCfHgV2wMMvURERJWf5MF3165dmDNnDiZMmIAtW7agXr16GDVqFJKTk4u9//Hjx9GjRw9ERETgp59+Qq1atfDmm28iMTGxgisvmcLLHNTePSWsxHr9+WciunX7EatW/Q4A2LHjMmJjr0tbFBEREVU4yYPv2rVrMXDgQPTv3x9+fn6YMWMGbG1tsWnTpmLv/9VXX2HIkCEIDAyEr68vZs2aBb1ej6NHj1Zw5SUgilA9aGMmyhTQeHWTuCDroteLWLXqd7Ro8Q3On08CAKhUcsyeHYTg4DrSFkdEREQVTtI1vhqNBn///TfGjBljGJPJZGjbti3OnDlToufIycmBVquFk5NTqY4tCOW/h4RN8hnIs28CAPJqdQBUTuBlUxXjzp1MhIXtxv79Nwxj9eu7YeXKUAQGuklYGZWnh+9p7g9jHXi+rQvPt3Upr/MsafBNTU2FTqeDq6ur0birqyuuXbtWouf48ssvUaNGDbRtW7reuC4uFdCj9WKM4aay/gC4ubEvbEXYtu0SRo3ahqSkbMPYpEmtMXt2J9ja8npOa+DqyveaNeH5ti4831QWFp0CVq9ejV27diEiIgIqlapUj01JyYBeX06FPeB8cRNsAIgQkFKtE8SkjPI9IOH48QS88soGw8c1alTBunV98eKLNZCZmYPMzCc8mCyeIOT/o5icnIFHrl+kSojn27rwfFsXmax8JiklDb7VqlWDXC4vciFbcnIy3Nye/Ofob7/9FqtXr8batWtRr169Uh9bFFGubxx5+j+wSb8EANBWbwW9bQ2Ab9Ry16KFB0JD/bBr1xV07+6Lr7/uioCAGkhK4g9Ka1Le728yLzzf1oXn2zqU1zmW9OI2pVKJBg0aGF2Y9vBCtaZNmz72cd988w2WL1+ONWvWoFGjRhVRaqkZdXPgphXl5tG2ZIIgYMGCLli8uBu+/743XF3tHvNIIiIisjaSd3V44403sHHjRmzZsgVXr17Fp59+ipycHPTr1w8A8N577+Grr74y3H/16tVYtGgRZs+eDU9PT9y7dw/37t1DVlaWVF9CsVRGwZdtzMpDQkIG+vX7GTExxuvBXVzsMGhQAwi8AoKIiIgKkXyNb2hoKFJSUrB48WLcu3cPgYGBWLNmjWGpw+3btyGTFeTzn376CXl5eQgLCzN6nokTJ+Ltt9+u0NofR5aVAEVyfs9YbbVG0Ds+J3FFlU9k5CVMnboX6elqXLqUjP37h8PdvYrUZREREZEZkzz4AsDQoUMxdOjQYj+3bt06o49jY2MroqQyUcbvMNzmbK9pZWSo8eGH+7Fhw3nDmEplg8TETAZfIiIieiKzCL6VzcNNKwCu7zWlkydvYdy4KMTFpRvG+vQJwPz5neDszK2giYiI6MkYfE1MyE2GIvE3AIDOoQ50zg0krsjyabV6LFhwDAsXHodOl38xm4ODEnPnBmPAgECu5SUiIqISYfA1MeXNaAiiDgCgrt2bW8yUUVxcOsaO3YVTp24bxlq08MDy5SHw8Sndbn1ERERk3Rh8TUzFNmYmJZMJ+OefFACAXC5gypTWePfdVrCxkbwhCREREVkYpgdTysuC8nb+xXc6O3doq7eQuCDL5+VVFV980Qk+Pk7Yvv01TJ3ahqGXiIiInglnfE1IeWsvBF0uAEDj3QMQGNBK69ixm2jQoDocHQu2oO7btx5CQvxga8tvVyIiInp2TGYmpIrbZrit9mYbs9LQaHSYOfMQXnllI8LD9xf5PEMvERERlRWDr6noNFDejAEA6BVOyKv5ssQFWY4rV1IQGroeS5achCgCGzeex/7916Uui4iIiCoZTqOZiOLOr5Dl5feX1Xh1A+RKiSsyf6IoIiLiT3zyyQHk5GgBAAqFDOHh7dChg4/E1REREVFlw+BrIqp4blpRGklJ2Zg8eQ+io68axvz8qmHlylA0buwuYWVERERUWTH4moKohzJ+Z/5NuS00Hp0lLsi8xcZeR1jYbty9m2UYGzmyCT799GXY2yskrIyIiIgqMwZfE7C5dxLynEQAgKZWMKCoInFF5uvYsZsYNGiz4WNXVzt8/XVXdOvmK2FVREREZA14cZsJGHVz8OEyhydp1coTwcF1AADBwXVw4MBwhl4iIiKqEJzxLStRNOzWJgpyaLxCJC7IvAmCgEWLumHXrisYObIxBG7pTERERBWEM75lJE/7G/LM6wCAPPf2EFUu0hZkRhITs/D661vw669xRuPu7lXwxhtNGHqJiIioQnHGt4wezvYCgLo2N614KDr6KiZNikFycg7+/vse9u8fBhcXO6nLIiIiIivG4FtGqriCNmYa7taGrKw8TJ9+EBER5wxjer2I+Pj7DL5EREQkKQbfMpBl/Aub1D8BAHmuzaCv4ilxRdI6ezYR48btwpUrqYaxkBBfLFjQFa6uDL1EREQkLQbfMig826uu3VvCSqSl0+mxbNkpzJ17BFqtHgBgb2+DWbOCMGRIQ67lJSIiIrPA4FsGhdf3aqx0t7ZbtzIwYUIUDh++aRhr0sQdK1eGwte3moSVERERERlj8H1GQs5d2Nw7DgDQOgVA5/S8xBVJIzdXizNn8jfvEAQgLKwlpk1rA6VSLnFlRERERMbYzuwZqeJ3QoAIAFBb6WwvANStWw2zZwfB09MRW7YMwEcftWfoJSIiIrPEGd9nVHi3Nmvq5vD777dRr54b7O0VhrHBgxugd29/ODgoJayMiIiI6Mk44/sMBE06FHd+BQDo7L2gdW0qcUXlT6vV44svjqJHj5/w6ae/Gn1OEASGXiIiIjJ7DL7PQHlzNwR9HoAHm1ZU8q4F16+noXfvDfjii6PQ6UR8991Z/PZb3NMfSERERGRGuNThGajiC21aUYnX94qiiI0bLyA8PBaZmRoAgFwuYMqU1mjd2kvi6oiIiIhKh8G3tLQ5UCbsAQDoVS7Iq9FG4oLKR1paLt57bx+2br1kGPPxccKKFSFo3txDwsqIiIiIng2Dbykpb++HoM0CAKi9QgFZ5XsJjxyJx4QJ0UhIyDCMDRrUALNnB3EtLxEREVmsypfaypnRphU+lW+Zw5Ej8ejb92eI+Z3a4OyswpdfdkHv3v7SFkZERERURry4rTT0WihvRuXftHGAplaQxAWZXqtWnmjTJn/9bvv23jhwYDhDLxEREVUKnPEtBcXdI5CpUwAAGs8ugNxW4opMTy6XYdmyEGzb9g/GjGkGmaxyd6wgIiIi68EZ31JQFl7mUNvyN61ISsrGG29sw/HjCUbjnp6OGDfuRYZeIiIiqlQ441tSoghVXH4bM1GmgMazq8QFlU1s7HWEhe3G3btZ+PPPu9i/fxgcHVVSl0VERERUbjjjW0I2yb9Dnp0/M6qp1RGi0kniip5Nbq4W//3vfgwatBl37+Z3p8jKysPVq6kSV0ZERERUvjjjW0IPZ3sBQONtmd0czp+/h3HjduHChWTDWHBwHSxa1A3u7lUkrIyIiIio/DH4lpAyPn99rwgBau9QiaspHb1exJo1ZzBz5iGo1ToAgEolx/TpL2PUqBcgVPItl4mIiIgABt8Skaf/A5v0fwAA2hqtIdrVkLiikktMzERY2G7s33/DMBYY6IaVK0MRGOgmYWVEREREFYvBtwQKd3NQ17asZQ6pqbk4cuSm4eMxY5rho4/aw9aWp56IiIisCy9uKwFV3DbDbbW3ZbUxq1fPDdOnv4waNapgw4Z+mDmzI0MvERERWSUmoKeQZd2EIvkMACCvWmPoHetIW9BT/PXXPTz/fDWoVAWndtSoF/Dqq4Fwdq58G24QERERlRRnfJ9CWbibgxlvWqHT6bF48Ql07foDZs8+bPQ5QRAYeomIiMjqMfg+hSq+IPia6/rehIQM9O//C2bN+g1arR4rVpzGsWMJT38gERERkRXhUocnEHKToUjMnz3VOT4HnXN9iSsqKjLyEqZO3Yv0dDUAQBCAsLCWaNaspsSVEREREZkXBt8nUN6MgiDm971Ve/fKT5VmIiNDjQ8/3I8NG84bxjw9HbFsWXe0bestYWVERERE5onB9wlUhduY+ZjPMoeTJ29h/Pgo3LiRbhjr0ycA8+d34lpeIiIiosdg8H2cvEwob8UCAHR2NaF1ayFxQfkOH47Hq6/+Ap1OBAA4OCgxd24wBgwI5A5sRERERE/Ai9seQ3lrLwR9/rpZjXcPQDCPl6plSw80aeIOAGjRwgP79w/DwIH1GXqJiIiInoIzvo9htMzBjNqYKRRyLF8egsjIf/D22y1gY2MegZyIiIjI3DH4FkengfLmbgCAXuGEPPeXJCkjLS0XH3wQi3HjXjTM8gJA3brVMGlSK0lqIiKq7ERRhF6vg16vl7oUKkQQgNzcXOTlaSCKUldDpiCX20Amq9gJPAbfYijuHIQs7z4AQOPdHZArK7yGw4fjMWFCFG7dysS5c4nYu3co7O0VFV4HEZE10WrzkJ6egry8XKlLoWKkpMj4C0mlIqBatepQqewq7IgMvsVQFdqtTe1dsd0cNBod5s07gqVLTxp+o01KysalS8lo2pS9eYmIyosoikhOvgOZTAYnJzfI5Ta8fsLMyOWC4eJusmyiKCIzMx2pqfdQo4ZXhc38Mvg+Sq+DKn4nAECU20Lj0anCDn3lSgrGjt2Fc+fuGsbat/fG0qXd4eHhWGF1EBFZI602D6Koh5NTdSiVbA1pjmxsZNBqOeNbWTg4OCElJQc6nRYyWcX8dZ3B9xE2SSchy80PnhqPToCiSrkfUxRFRET8iU8+OYCcHC0AQKGQITy8HcaPbw6ZjDMOREQVRTCTLj5ElZ0Uf1Fh8H2EKm6b4XZFdHNISsrG5Ml7EB191TDm51cNK1eGonFj9yc8koiIiIhKg7/WFiaKhvW9oiCHxiuk3A9561YG9u791/DxyJFNsHfvUIZeIiIiIhNj8C1EnvoX5JnXAQB57i9BVLmU+zEbN3bHBx+0haurHdatewXz53di9wYiIqIKEhd3Hb17d0N2dpbUpVQqeXl5ePXVXrh48bzUpRjhUodCKmLTisuXU1CnjhMUCrlhbMKE5hg8uCGqV7cvl2MSEVHl9vnnnyIqKv8vlnK5HDVquCMoqBNGjRoLlUpldN/Dhw9h/fp1uHTpIvR6HZ57zhf9+g1AaGjRLkYHDuzDL79swOXLl6DX6+Hh4YmOHTuhf/+BqFrVqUK+tvK2cuUy9O8/EPb25X9Nj1Q2bdqI9evXISUlGb6+z2PSpGmoX7/hEx+zceOP2LLlFyQmJsLZ2RkdOwZjzJiJRb6fAGDduu+watVSDBgwGO+8MwUAoFAoMHjwUKxYsQSLFq0ol6/rWXDGtxBVfEEbM42Jg69eL2L16t8RHLwOCxYcN/qcXC5j6CUiojJp1aotIiOjsXFjJN5+ezIiIzfj229XGd3nl19+Qnj4FDRq1ASrV3+H77//CZ06dcWXX87B0qVfG9131aplmD79QwQGNsCXXy5GRMQGTJz4Lq5c+QfR0bsq7OvKy8srt+e+c+cOjhw5VGzoL43yrLGs9u2LwdKlC/HGG//Bt9/+D35+/pg8+W2kpqY89jExMdFYuXIp3nhjNH744Wd88MHH2LdvD1avXlbkvhcu/I1t2zbD1/f5Ip/r0iUE5879gWvXrhb5nFQ44/uALOMabFL/AgDkub0Ivb2HyZ47MTETYWG7sX//DQDAwoXH0aXLc2jWrJbJjkFERNZNqVTA1dUNAODuXhO7d7fEqVMFEy2JiXewdOnXGDBgMMaMmWAYHzx4KBQKG3z99ZcICuqMBg0a4vz5v7Bu3VqEhU3BwIGDDfetVcsDLVq0RkZGxmPruHs3EcuWLcKJE8eQl6eBj89zmDz5fTRo0BCff/4pMjMzMGfOV4b7L1r0FS5fvoSlS1cDACZOHI26dX0hl9sgJmYX6tb1g6urG/R6PWbPnmd4nFarxSuvdMPEiZMQEtITer0eP/zwPbZt24Lk5GR4e9fGyJGjEBTU+bG1xsbugZ+fP6pXr2EYS09Pw4IF83H27BlkZNyHp6cXhg17A126dDfcp7galyxZhWvXrmDZssU4d+4MbG3t0LJlK7z99hQ4OzsDAI4dO4Lvv/8W//57FTKZHA0bNsI770yFp6fXY2ssq59++gG9evVBjx69AQDTpoXj6NHfsGPHNgwbNrLYx/z111k0atQEXbvmf821anmgc+duOH/+L6P7ZWdnY8aMj/Heex/h+++/LfI8VatWRaNGTbBvXwzq1h1n2i/sGTH4PlBem1ZERV3B5Ml7kJycYxj7z3+aon796iY7BhERlR/l9S2ocvZzCHmZFXZMUeGArBf+C41Pn2d6/LVrV/DXX+fg7l4wwXLgwD5otVoMHjysyP1feaU/Vq1ajr17d6NBg4aIiYmGnZ09+vUbUOzzOzoW31s+OzsbEyeORvXqNTB37gK4urri0qWLEMXS9d6NitqJvn37Y8WK/DB18+ZNfPzx+8jOzjb0WD5+/Chyc3PRoUMQAGDdurWIiYnC1Knh8PLyxtmzZzBz5idwdq6Gpk1fLPY4586dQb16gUZjGo0GAQGBGDp0BOztq+Do0d8wa9Z0eHp6GS0PeLTGjIwMhIWNQ69efRAWNhlqdS5WrFiCTz75AIsXrwQA5ObmYNCgIfD1fR45OdlYs2YlPvxwKtau/fGxGzhERPwf1q1b+8TXa926n1GzZtFNrvLy8vDPPxcxbNgbhjGZTIbmzVvi77/PPfb5GjZsgpiYKJw//xfq12+IhISbOHbsMLp1CzW634IF89C2bTu0aNGq2OALAIGBDXD27Jkn1l+RGHwfKLy+V+NT9uCblZWH6dMPIiKi4BurRo0qWLKkG4KC6pT5+YmIqGLY/70INun/SHLc0gTfI0d+Q5cuL0Gn00Gj0UAmk2HSpPcMn4+Pj4ODgwPc3NyKPFahUMDDwxPx8fl/mbx5Mw4eHp6wsSldTNizJxppaWlYsybCsAbYy8u7VM8BAN7e3hg//h3Dxx4eXrCzs8PBg7Ho0iXUcKz27V+GvX0VaDQarFu3Fl9/vRwNGzYGAHh6euHcuT8QGbn5scH3zp07qFevvtFY9eo18PrrBb8cvPrqIJw4cQyxsXuNgu+jNX733Rr4+wcYzaaHh3+Cfv16IC7uBmrX9kHHjsabYoWHT0fPnp1x/fo11K3rV2yNffr0R3Bwlye+XsWdUyB/9lqn08HFxfhifRcXF9y4cf2xz9e1a3ekp6dh/Pi3IIoidDod+vTpj+HD3zTcZ+/e3fjnn4v45puIp9RWHYmJd554n4rE4AtAyEmEzb0TAACtUz3oqhZdp1IaZ88mYuzYXbh6NdUw1r27LxYu7ApX14rbj5qIiMouu+G7qPLHrAqf8c1u8M7T71hI06YvYurUcOTk5GDjxh8hl8uLBK0SH/8ZdwW+fPkf+PsHlPnCt4AA41lYGxsbBAV1we7dUejSJRQ5OTn47beD+PTT2QCAmzfjkZubi0mTJhg9Li8vD88/H/DY46jVuVAqjXcM0+l0WLduLWJj9+DevXvQavOg0WigUhnv5vdojVeuXMbvv59Cly4vFTlOQsJN1K7tg/j4OKxZsxLnz/+N9PQ0w0x4YuKdxwbfqlWdKvxCwt9/P/X/7d15WFRl+8Dx7wyrgiIOKGaGW4ACBqaiBhqSShiWlkaoiLu4peIrmpa4W27I4m4WZpol4AZW2qvhq1Jqmvq6vOECqBmIpMjOzO8Pf04RuAwiKHN/rovrYs55zjn3w+N43fPMfZ7Dhg3rCQ6eQsuWTqSlpbJs2SI++2wtgYFDuX79d5YtW8zSpVFl3uz2dyYmJuTl5VVS5A8niS9gkroLBXff5Y+7mkNiYgrvvhujfaRizZqGzJ79Kv37O8sz34UQ4hlUYPtWuUsOKlONGjW0s6tTp35EYOB77NwZxxtvvAVAo0YvkJ2dTUZGOlZWJcvtCgsLuXo1jdat22jb/vrrcYqKinSa9X1YEqRQKND8I6suKioq1c7UtPQkUbdu3owZM4KbNzP5+eckTExMaN++IwC5uXfLCT/5JKxEvS7cnc2+nzp16pSqV/7yyw18/fUmxo0LpmnT5tSoUYPw8MUUFZW8ge2fMebm5vLKKx4EBY0rdZ17tdchIROwsWlASMg0rKysUavVBAS8S2Fh6b/BPY9T6mBhUQcDAwMyM0veyJaZmYlKpbrv+dauXUn37j74+r4FQLNmzcnLy+WTT+YSEDCYc+fOcvNmJkOG9NceU1xczIkTvxATs4UffjiIgcHd1atu3fpTW+P8NJDEl3+UObzweGUO7do9h51dXf773wxeeqk+K1f60KyZ5eOGKIQQQjwypVLJgAGDiIxcSteu3piYmNK5sxcrVkSwadMXjB07oUT7uLit5Obm8tpr3QHo2tWbb77ZTEzM1yVubrvn9u3bZdb5Nm/+Ijt3xnHr1p9lzlLWqWPJxYsl7/D/7bdzGBg8PB1xdn6J+vXrs3fvdxw+fBBPz9e0SXmTJk0wNjbm+vXf71vWUJYXX7Tn0qULJbadPHkCd/fO2npWtVpNSkoKTZo0eeC57Ozs2b//B2xsGpT5YeHPP7NISblMSMh0XnrJFYATJ44/NMbHKXUwMjLCzs6Bo0d/olOnV7X9OXr0Z3r37nvf8+Xl5ZWarLtXg6zRaGjTpi3R0ZtL7J83bxa2trb06zdQm/QCXLyYjJ3d/WfdK5veJ76KgiyMru0HoNisEUV1XR7rfCYmhqxc6UNs7DmCg9tjbGzw8IOEEEKICubp+RrLl4ezdevX+PsPwMbGhlGjxhEZGYaxsTHe3j0wNDQkMXEfq1cvx8+vP46Od2tYHR2d8PcPICoqjIyMP+jUyRMrK2vS0lKJi9tKq1YuZSbEr73WnejoT5k6dRIjRoxGpbLif/87h5WVNU5OrXj55bZs2rSBhISdODm14rvvErhwIfmB5Qh/162bN3FxMaSmXiY8/K+l2mrWNMPPrz8REUvQaDS0auVCdnY2J08ex8zMnNdfL/vb3HbtOvDxx3MoLi7WJmuNGjXi3//ey8mTJ6hVqzZffbWRmzdvPDTxffvtvuzYEUdo6DT69Qugdm0L0tJS2bv3O0JCplOrVm0sLCzYvj0GlcqK69d/Z+XKiIf2+XFLHfz8+jF3bigODi1p0cKRLVu+JDc3lx49/promz37I6yt6zFy5BgAXnnFg6+++hI7O/v/v7ktlbVrV/LKK50wMDCgZk2zUqUZpqam1K5dp9T2EyeOM3ToyHLHX9H0PvE1TvsWhebuVwz5L7wBOpQj3L6dz4wZ+xk+vDUODn992nJwsGLq1LI/fQkhhBCVwdDQkN69+/Lll9H06vUONWrUoG9ff557riGbNn3BN99sprhYTZMmTQkOnqJd7uqeUaPGYW/fgtjYr4mLi0GjUfPcc8/j6el130TSyMiIpUujiIxcyr/+9T7FxcU0btyUiRPv3mTn5taBwMChrFgRQUFBPj169MTbuwfJyb89Up+6d3+dzz5bh41NA1q1eqnEvmHDgqhTx5ING9Zz9eoVzM1rYWfnQEDAoPucDdq374iBgQFHjvyEm1sHAAYOHMLVq1eYOHEspqam9OzZCw+PV7lz58E13lZW1qxYsY4VKyKYMGEMhYUF2Ng0wM2tA0qlEoVCQWjoPJYtW0RAwLs0amTL+PGTGDt2xCP1vby8vLqRlXWTtWtXkpl5g+bN7Vi8OIK6df8qdbh+/fcSq0oMHDgEhULBmjUrSE9Pp06dOrzySieGDx+l07VPnfqV7OxsPD3LV2v+JCg0/yy20RM3btxGrYba+wZgkrINgKxu8RTauD/S8T//fJVRoxK4fPlPWra04ttv/TEx0fvPEU8dhQKsrGqRkXG73DdriGeHjLd+qejxLiws4MaNa6hUDTAyMn74AaLSGRoqtffQVJStW7fwn//8yJIlkRV6XgEffTSV5s1fLLEaxN896D2nVIJKVfayeY9Dv5/cVpSL8dXvAVCbqCis1+HhhxSpWbjwED17fsXly38CkJJyi//+N+OJhiqEEEKIivfmm7156SVXcnLuVHUo1UphYSFNmzbj3Xf9qzqUEvR6itL42r9RFOUAkN/IB5QPrse9dCmLUaMSOHLkmnZb27bPsXz569jaVo9nlgshhBD6xNDQkIEDh1R1GNWOkZERgYFDqzqMUvQ68TVJ2a79veABy5hpNBq2bDnD1Kk/kJ1dAICBgYLg4PaMH++GoaF+T5wLIYQQQjwL9DfxVRdhnJpw91dDcwoaeJbZLCsrj8mT9xIXd067zdbWghUrXqdNm+cqJVQhhBBCCPH49DbxNfwjCWXB3SerFTTsBgamZbY7fz6T7dv/elSln58j8+Z5Ym4uNz4IIUR1pKf3fAtR6arivaa339EbpyVof39QmUO7ds8xfnw7LCxMWLv2DcLDu0vSK4QQ1dC9dVwLCvKrOBIh9ENx8d3lZP++lNqTprczvsapuwHQKI3vzvj+v8uX/+T552thYPDXIAQHt2fgwFY0aFDxy2oIIYR4OiiVBtSoYU529t1vA42NTeRR808ZtVpBcbHMyFcHGo2a27ezMDY2RfmQxQUqkt4mvga5d1dmKGjQGY1xbTQaDdHRJ/noo30EB7dn3Lh22rZGRgaS9AohhB6oXbsugDb5FU8XpVKJWl2x6/iKqqNQKKldu26lfsDU28T3noIXepKRkcPEid+ze/fd54cvWHAQT8/GODvXq+LohBBCVCaFQoGFhYpatSy1X8OKp4NCAZaWZty8eUceUFNNGBoaVfq3Knqd+GoUShKSXRg7aQN//PHXwtX9+jnRrJllFUYmhBCiKimVSpRKuZ/jaaJQgKmpKUZGhZL4inJ7Km5u27hxI126dMHZ2Zk+ffrw66+/PrB9QkIC3t7eODs74+vry/79+3W+Zl6hIeO+Hci7AXu1Sa9KVYMNG95k4cLXqFnTqFx9EUIIIYQQT6cqT3zj4+OZP38+o0ePJjY2FgcHB4YMGcKNGzfKbH/s2DGCg4N55513iIuLw8vLi9GjR3P+/Pky29/PqysCifzOVvu6S5fG7NsXQPfuzR6rP0IIIYQQ4ulU5Ynv+vXr6du3L2+//TbNmzdn5syZmJqasnXr1jLbR0dH4+HhwdChQ2nWrBnjx4+nZcuWfPHFFzpd97/XrQEwMTFg3jxPNm3qRf36Zo/dHyGEEEII8XSq0hrfgoICTp8+zYgRI7TblEolHTt25JdffinzmOPHjxMYGFhim7u7O3v27NHp2rVqGePgoCIsrBv29iqdYxfPhns180olUhOmB2S89YuMt36R8dYvT+qetypNfG/evElxcTEqVcnEU6VSceHChTKPycjIwMrKqlT7jIwMna595UqwbsGKZ1rdurIcnT6R8dYvMt76RcZbPI4qL3UQQgghhBCiMlRp4mtpaYmBgUGpG9lu3LhRalb3Hisrq1Kzuw9qL4QQQgghBFRx4mtsbIyjoyOHDh3SblOr1Rw6dAhXV9cyj3FxceHw4cMlth08eBAXF5cnGaoQQgghhHjGVXmpw6BBg9iyZQuxsbEkJycTGhpKbm4uvXv3BmDy5MksXrxY2z4gIIDExEQ+/fRTkpOTiYiI4NSpU/Tv37+quiCEEEIIIZ4BVf7kNh8fHzIzMwkPDyc9PZ0WLVqwdu1abenCtWvXUCr/ys9bt27NokWLCAsLY8mSJTRu3JioqCjs7OyqqgtCCCGEEOIZoNBoZFEQIYQQQghR/VV5qYMQQgghhBCVQRJfIYQQQgihFyTxFUIIIYQQekESXyGEEEIIoReqZeK7ceNGunTpgrOzM3369OHXX399YPuEhAS8vb1xdnbG19eX/fv3V1KkoiLoMt5btmzB39+ftm3b0rZtWwIDAx/670M8XXR9f9+za9cu7O3tGTVq1BOOUFQkXcf71q1bzJw5E3d3d5ycnOjevbv8n/4M0XW8P/vsM7p3706rVq3o3Lkz8+bNIz8/v5KiFY/j559/ZuTIkbi7u2Nvb8+ePXseekxSUhK9evXCycmJrl27EhMTo/N1q13iGx8fz/z58xk9ejSxsbE4ODgwZMiQUk+Hu+fYsWMEBwfzzjvvEBcXh5eXF6NHj+b8+fOVHLkoD13HOykpiR49ehAdHc3mzZtp0KABgwcP5vr165UcuSgPXcf7nrS0ND7++GPatGlTSZGKiqDreBcUFDBo0CCuXLnCsmXL2L17N7Nnz6Z+/fqVHLkoD13He8eOHSxevJgxY8YQHx/P3LlziY+PZ8mSJZUcuSiPnJwc7O3tmTFjxiO1T01NZcSIEbi5ubFt2zYGDhzI9OnTSUxM1O3CmmrmnXfe0cycOVP7uri4WOPu7q5ZtWpVme3ff/99zfDhw0ts69Onj+bDDz98onGKiqHreP9TUVGRxtXVVRMbG/uEIhQVqTzjXVRUpHn33Xc1W7Zs0YSEhGiCgoIqI1RRAXQd7y+//FLj5eWlKSgoqKwQRQXSdbxnzpypCQgIKLFt/vz5Gj8/vycap6h4dnZ2mu+///6BbT755BNNjx49SmwbP368ZvDgwTpdq1rN+BYUFHD69Gk6duyo3aZUKunYsSO//PJLmcccP36cDh06lNjm7u7O8ePHn2SoogKUZ7z/KTc3l6KiIiwsLJ5UmKKClHe8o6KiUKlU9OnTpzLCFBWkPOP9ww8/4OLiwqxZs+jYsSNvvPEGK1eupLi4uLLCFuVUnvF2dXXl9OnT2nKI1NRU9u/fT+fOnSslZlG5Kipfq/Int1WkmzdvUlxcjEqlKrFdpVJx4cKFMo/JyMjQPiXu7+0zMjKeWJyiYpRnvP9p0aJF1KtXr8R/tuLpVJ7xPnLkCN988w1xcXGVEKGoSOUZ79TUVA4fPoyvry+rV68mJSWFmTNnUlRUxJgxYyojbFFO5RlvX19fbt68ib+/PxqNhqKiIvz8/Bg5cmRlhCwqWVn5mpWVFdnZ2eTl5WFqavpI56lWM75C6GL16tXEx8cTGRmJiYlJVYcjKlh2djaTJ09m9uzZ1K1bt6rDEZVAo9GgUqmYPXs2Tk5O+Pj4MHLkSDZv3lzVoYknICkpiVWrVjFjxgxiYmKIjIxk//79REVFVXVo4ilWrWZ8LS0tMTAwKFUIf+PGjVKfEu6xsrIqNbv7oPbi6VGe8b5n3bp1rF69mvXr1+Pg4PAkwxQVRNfxTk1N5cqVKwQFBWm3qdVqAFq2bMnu3bt54YUXnmzQotzK8/62trbG0NAQAwMD7bamTZuSnp5OQUEBxsbGTzRmUX7lGe9ly5bRs2dPbRmTvb09OTk5fPTRRwQFBaFUytxedVJWvpaRkYG5ufkjz/ZCNZvxNTY2xtHRkUOHDmm3qdVqDh06hKura5nHuLi4cPjw4RLbDh48iIuLy5MMVVSA8ow3wJo1a1i+fDlr167F2dm5MkIVFUDX8W7atCk7duwgLi5O+9OlSxfc3NyIi4vDxsamMsMXOirP+7t169akpKRoP+AAXLp0CWtra0l6n3LlGe+8vLxSye29Dz0ajebJBSuqREXla9Uq8QUYNGgQW7ZsITY2luTkZEJDQ8nNzaV3794ATJ48mcWLF2vbBwQEkJiYyKeffkpycjIRERGcOnWK/v37V1UXhA50He/Vq1ezbNky5s2bR8OGDUlPTyc9PZ07d+5UVReEDnQZbxMTE+zs7Er81K5dGzMzM+zs7CQRegbo+v5+7733yMrKYu7cuVy8eJF9+/axatUq+vXrV1VdEDrQdbw9PT3ZtGkTu3btIjU1lf/85z8sW7YMT0/PErP+4ul0584dzpw5w5kzZ4C7y06eOXOGq1evArB48WImT56sbe/n50dqaiqffPIJycnJbNy4kYSEBAIDA3W6brUqdQDw8fEhMzOT8PBw0tPTadGiBWvXrtV+VXLt2rUSnxBbt27NokWLCAsLY8mSJTRu3JioqCjs7OyqqgtCB7qO9+bNmyksLGTcuHElzjNmzBjGjh1bqbEL3ek63uLZput4N2jQgHXr1jF//nx69uxJ/fr1CQgIYNiwYVXVBaEDXcc7KCgIhUJBWFgY169fp27dunh6ejJhwoSq6oLQwalTpwgICNC+nj9/PgC9evViwYIFpKenc+3aNe3+Ro0asWrVKubPn090dDQ2NjbMmTMHDw8Pna6r0Mj3AUIIIYQQQg/I1IgQQgghhNALkvgKIYQQQgi9IImvEEIIIYTQC5L4CiGEEEIIvSCJrxBCCCGE0AuS+AohhBBCCL0gia8QQgghhNALkvgKIYQQQgi9IImvEEIAMTExtGnTpqrDKDd7e3v27NnzwDZTpkxh1KhRlRSREEI8fardI4uFEPprypQpxMbGltr+3XffYWtrWwUR/SUmJoapU6cCoFAoqFevHq+88gqTJk1CpVI99vkPHDiAhYUFcPeZ915eXsTFxdGiRQttm2nTpvGkH9YZERFBZGQkAEqlknr16tGpUyeCg4OpU6fOI59nypQp3Lp1i+XLlz+hSIUQ+kgSXyFEteLh4aF95vs9devWraJoSjI3N2f37t2o1WrOnj3LBx98wB9//MG6dese+9zW1tYPbVOrVq3Hvs6jePHFF1m/fj1qtZrk5GQ++OADbt++TVhYWKVcXwgh7kdKHYQQ1YqxsTHW1tYlfgwMDFi/fj2+vr64uLjQuXNnQkNDuXPnzn3Pc/bsWQYMGICrqyutW7emd+/enDx5Urv/yJEj+Pv706pVKzp37sycOXPIycl5YGwKhQJra2vq169P586dGTBgAAcPHiQvLw+1Wk1kZCSdOnXCycmJN998kx9//FF7bEFBAbNmzcLd3R1nZ2c8PT1ZtWqVdv/fSx28vLwAeOutt7C3t2fAgAFAyVKHr776Cnd3d9RqdYkYg4KCtDPTAHv27KFXr144Ozvj5eVFZGQkRUVFD+yngYGBtp8dO3bE29ubgwcPavcXFxfzwQcf0KVLF1q1akX37t35/PPPtfsjIiKIjY1l79692NvbY29vT1JSEgDXrl3j/fffp02bNrRr146goCDS0tIeGI8QQtwjia8QQi8oFAqmTZvGzp07WbBgAYcPH2bhwoX3bT9p0iRsbGz45ptviImJYdiwYRgZGQGQkpLCsGHD6NatG9u3b2fp0qUcPXqU2bNn6xSTqakparWaoqIioqOjWb9+PSEhIWzfvh13d3dGjRrFpUuXANiwYQM//PADYWFh7N69m4ULF9KwYcMyz/v1118D8Nlnn3HgwAEiIiJKtfH29iYrK0ubUAJkZWWRmJhIz549gbvJfUhICAEBAcTHxzNr1ixiYmJYuXLlI/cxLS2NAwcOaP92AGq1GhsbG5YtW8auXbsYPXo0S5cuJT4+HoDBgwfz+uuv4+HhwYEDBzhw4ACurq4UFhYyZMgQzMzM2LhxI5s2baJmzZoMHTqUgoKCR45JCKG/pNRBCFGt7Nu3D1dXV+1rDw8PwsPDCQwM1G57/vnnGT9+PDNmzCA0NLTM81y9epUhQ4bQrFkzABo3bqzdt2rVKnx9fbXnbNy4MdOmTWPAgAGEhoZiYmLy0DgvXbrEpk2bcHJywtzcnHXr1jFs2DB69OgBwL/+9S+SkpL4/PPPmTFjBteuXcPW1paXX34ZhUJx36QX/irtqFOnzn1LICwsLOjUqRM7duygQ4cOAHz77bdYWlri5uYGQGRkJMOHD6dXr14ANGrUiPfff5+FCxcyZsyY+17//PnzuLq6UlxcTH5+PkCJWWQjIyPGjRunfd2oUSOOHz/O7t278fHxwczMDFNTUwoKCkrEv23bNtRqNXPnzkWhUAAwf/582rZty08//YS7u/t9YxJCCJDEVwhRzbi5uZVIZmvUqAHAwYMHWbVqFRcuXCA7O1ublOXm5mrb/N2gQYOYPn0627Zt035d/8ILLwB3yyDOnTvHjh07tO01Gg1qtZq0tDRtsvxPt2/fxtXVFbVaTX5+Pi+//DJz5swhOzubP/74g9atW5do37p1a86ePQtAr169GDx4MN7e3nh4ePDqq68+dqLn6+vLhx9+SGhoKMbGxuzYsYMePXqgVCq1/Tx27FiJGd6H/d0AmjRpwooVK8jPz2f79u2cOXOG/v37l2izceNGtm7dytWrV8nPz6ewsBAHB4cHxnv27FlSUlJK/Z3y8/NJSUkpz59ACKFnJPEVQlQrNWrUKLWCQ1paGiNGjOC9995jwoQJWFhYcPToUaZNm0ZhYWGZCdzYsWN544032L9/Pz/++CPh4eEsXbqUrl27kpOTg5+fn7Z29u8aNGhw39jMzMyIjY1FqVRibW2NqakpANnZ2Q/tl6OjI3v37uXHH3/k4MGDjB8/no4dOxIeHv7QY++nS5cuTJ8+nX379uHs7MyRI0dKzMzm5OQwduxYunXrVurYB81qGxkZacdg0qRJDB8+nMjISMaPHw/Arl27+PjjjwkJCcHV1RUzMzPWrVvHiRMnHhhvTk4Ojo6OLFq0qNS+p+UGRiHE000SXyFEtXf69Gk0Gg1TpkzRzmYmJCQ89LgmTZrQpEkTAgMDmThxIlu3bqVr1660bNmS3377Tecl0pRKZZnHmJubU69ePY4dO0a7du20248dO0arVq1KtPPx8cHHx4fu3bszdOhQsrKySi0Tdq+etri4+IHxmJiY0K1bN3bs2MHly5dp0qQJjo6O2v0tW7bk4sWLj70UXFBQEAMHDuS9996jfv36HDt2DFdXV/r166dt888ZWyMjo1I33jk6OpKQkIBKpcLc3PyxYhJC6Ce5uU0IUe3Z2tpSWFjIhg0bSE1NJS4ujs2bN9+3fV5eHrNmzSIpKYkrV65w9OhRTp48qS1hGDZsGL/88guzZs3izJkzXLp0iT179jBr1qxyxzhkyBDWrFlDfHw8Fy5cYNGiRZw9e5aAgAAA1q9fz86dO0lOTubixYvs3r0ba2trateuXepcKpUKU1NTEhMTycjI4Pbt2/e9rq+vL/v27WPr1q34+vqW2Dd69Gi2bdtGZGQk//vf/0hOTmbXrl0sXbpUp765urpib2+vXYXC1taWU6dOkZiYyMWLFwkLCyuxYgZAw4YNOXfuHBcuXCAzM5PCwkJ8fX2xtLQkKCiII0eOkJqaSlJSEnPmzOH333/XKSYhhH6SGV8hRLXn4ODA1KlTWbNmDUuWLKFNmzZMnDiRkJCQMtsrlUqysrIICQkhIyMDS0tLunXrpr0hy8HBgQ0bNhAWFoa/vz9w9wYtHx+fcscYEBBAdnY2CxYsIDMzk2bNmrF8+XLtTXVmZmasXbuWy5cvo1QqcXZ2ZvXq1doZ7L8zNDRk+vTpREVFER4eTps2bdiwYUOZ123fvj0WFhZcvHixVOLr4eHBypUriYqKYs2aNRgaGtK0aVP69Omjc/8CAwOZMmUKw4YNw8/PjzNnzjBhwgQUCgU9evTA39+/xPJtffv25aeffuLtt98mJyeH6Oho3Nzc+OKLL1i0aBFjxozhzp071K9fnw4dOsgMsBDikSg0T/oxPkIIIYQQQjwFpNRBCCGEEELoBUl8hRBCCCGEXpDEVwghhBBC6AVJfIUQQgghhF6QxFcIIYQQQugFSXyFEEIIIYRekMRXCCGEEELoBUl8hRBCCCGEXpDEVwghhBBC6AVJfIUQQgghhF6QxFcIIYQQQuiF/wM7WUrh4LOPggAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Model F1-Score AUC-Score Assessment\n",
"0 AdaBoostClassifier 0.85 0.84 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" F1-Score | \n",
" AUC-Score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" AdaBoostClassifier | \n",
" 0.85 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 34
}
],
"source": [
"# Specify the model and its parameters\n",
"model_class = AdaBoostClassifier\n",
"model_params = {'random_state': 42}\n",
"\n",
"# Call the train_ml_model function\n",
"adb_result_df = train_ml_model(X_train_preprocessed,y_train,X_eval_preprocessed,y_eval, model_class, **model_params)\n",
"adb_result_df"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"id": "7PIzF-hPDT7R"
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "xEHcwdhkhXln"
},
"source": [
"### Models Comparison"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"id": "fo_cHliuhXlo",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238
},
"outputId": "4ab464f0-d32d-4f05-d403-608a7ad7bb7e"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" model f1_score AUC_score Assessment\n",
"3 Logistic Regression 0.85 0.85 Overfitting\n",
"2 AdaBoost 0.84 0.84 Overfitting\n",
"4 HistGradientBoosting 0.85 0.84 Overfitting\n",
"5 GradientBoosting 0.85 0.84 Overfitting\n",
"1 Random Forest 0.78 0.80 Overfitting\n",
"0 Decision Tree 0.73 0.76 Overfitting"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" model | \n",
" f1_score | \n",
" AUC_score | \n",
" Assessment | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" Logistic Regression | \n",
" 0.85 | \n",
" 0.85 | \n",
" Overfitting | \n",
"
\n",
" \n",
" 2 | \n",
" AdaBoost | \n",
" 0.84 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
" 4 | \n",
" HistGradientBoosting | \n",
" 0.85 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
" 5 | \n",
" GradientBoosting | \n",
" 0.85 | \n",
" 0.84 | \n",
" Overfitting | \n",
"
\n",
" \n",
" 1 | \n",
" Random Forest | \n",
" 0.78 | \n",
" 0.80 | \n",
" Overfitting | \n",
"
\n",
" \n",
" 0 | \n",
" Decision Tree | \n",
" 0.73 | \n",
" 0.76 | \n",
" Overfitting | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 35
}
],
"source": [
"results = {'model': ['Decision Tree', 'Random Forest', 'AdaBoost', 'Logistic Regression', 'HistGradientBoosting', 'GradientBoosting'],\n",
" 'f1_score': [dt_result_df['F1-Score'].iloc[0], rf_result_df['F1-Score'].iloc[0], lr_result_df['F1-Score'].iloc[0], hgb_result_df['F1-Score'].iloc[0], sgd_result_df['F1-Score'].iloc[0], adb_result_df['F1-Score'].iloc[0]],\n",
" 'AUC_score': [dt_result_df['AUC-Score'].iloc[0], rf_result_df['AUC-Score'].iloc[0], lr_result_df['AUC-Score'].iloc[0], hgb_result_df['AUC-Score'].iloc[0], sgd_result_df['AUC-Score'].iloc[0], adb_result_df['AUC-Score'].iloc[0]],\n",
" 'Assessment': [dt_result_df['Assessment'].iloc[0], rf_result_df['Assessment'].iloc[0], lr_result_df['Assessment'].iloc[0], hgb_result_df['Assessment'].iloc[0], sgd_result_df['Assessment'].iloc[0], adb_result_df['Assessment'].iloc[0]]\n",
" }\n",
"\n",
"results_df = pd.DataFrame(results)\n",
"results_df = results_df.sort_values(by='AUC_score', ascending=False)\n",
"results_df"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"id": "gUkJzmAQhXlo",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 580
},
"outputId": "0ce0fb5e-828a-46ab-a647-5dbf6fdebf6f"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzd0lEQVR4nOzdd1xW9f//8ed1geBWxJkzJVBxj1IxNaXcC7eSudJc5Z5Zaq5yr9wDcS9MzZWWpoUNs/xkjsK9EVABUfTi+v3hj+srggbG4RJ53G83b8W5zrnO68CLw3le55z3MVmtVqsAAAAAAECyM9u7AAAAAAAAXlaEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAECCPDw8NHv2bHuX8Z9t2bJF9erVk6enpypVqmTvcpBEL/rPb9iwYapdu3acaZGRkRo5cqS8vLzk4eGh8ePHS5Ju3rypDz/8UG+88YY8PDy0fPlyO1T8ckno+59Y7777rt59991krggA4nO0dwEA8KK6cOGCFi9erB9++EE3btxQunTp5O7urvr166tNmzZKnz69vUvEvwgKCtLw4cP15ptvqnv37on+mX3xxRdasmSJ6tevrxkzZsR7/aefflLHjh01c+ZM1atXL97rY8eO1apVq3Tq1Kk40y0Wi7Zs2aItW7bo1KlTunv3rnLnzq033nhD7du3V+nSpZ9ZV2hoqL788ksdOnRIV65cUaZMmZQ/f3698cYb6tWrlzJlypSo7Ustnvfn97xmz56tOXPm2L5Onz69XFxcVLx4cb399ttq3LixnJyc/vV9FixYoICAAPXq1UsFCxZUsWLFJEkTJ07UwYMH1adPH+XMmVOlSpUybFv+q1WrVilDhgzy8fFJ1PweHh6SpJYtW9o+ZHjc9OnTNX/+fElSYGCgcuTIkXzFAsALjtANAAnYv3+/PvroIzk5Oalp06Zyd3fXgwcPdOTIEU2ePFn//POPPvvsM3uXaahjx47JwcHB3mX8Jz///LNiYmI0cuRIFS5cOFHLWK1Wff3118qfP7++++47RUREKHPmzP+5lnv37qlPnz46ePCgKleurB49eihbtmy6fPmydu7cqYCAAO3fv1958+ZNcPlbt26pRYsWioiIUIsWLVS0aFHdunVLp06d0po1a9SuXbuXLnQ/z88vOYwePVoZM2ZUdHS0rl+/rkOHDmnEiBHy8/PTggULlC9fPtu8n332maxWa5zlDx8+rLJly6pPnz7xptepU0ddu3ZNke34L9asWSMXF5dEh25JcnZ21p49e/Tpp5/G+3Bi+/btcnZ21v3795O7VAB44RG6AeAJFy9eVP/+/fXKK6/Iz89PuXPntr3WoUMHnT9/Xvv377dfgQaKiYnRgwcP5OzsLGdnZ3uX85+FhIRIkrJkyZLoZX766Sddu3ZNfn5+6tatm7755hs1b978P9fyxRdf6ODBgxo+fLg6deoU57U+ffr866XGGzdu1JUrV7RmzRpVqFAhzmsRERFKly7df64xse7evauMGTMavp7n+fn9m6ioKGXIkOGZ89StWzfOmdg+ffpo69atGjp0qD766COtX7/e9lpC3/eQkBC5ubklOD1r1qz/ofq4Hj58qJiYmESdfU8Jb775pr799lt9//338vb2tk3/7bffdOnSJdWtW1e7d++2Y4UAYB/c0w0AT1i8eLHu3r2r8ePHxwncsQoXLqz33nvP9vXDhw81d+5ceXt7q1SpUqpdu7amTZum6OjoOMvVrl1bPXr00E8//SQfHx+VKVNGjRs31k8//SRJ2rNnjxo3bqzSpUvLx8dHf/31V5zlhw0bpvLly+vixYvq2rWrypUrp+rVq2vOnDnxzrQtWbJEbdu21RtvvKEyZcrIx8dHu3btirctHh4eGjt2rLZu3aqGDRuqdOnSOnjwoO21x+/pjoiI0Pjx41W7dm2VKlVKVatWVefOnXX8+PE477lz507b9r3xxhsaNGiQrl+/nuC2XL9+Xb169VL58uVVpUoVff7557JYLE/92Txu1apVatiwoUqVKqXq1atrzJgxunPnTpzvd2z9VatWTfQ96tu2bZObm5uqVKmiqlWratu2bYmq51muXbumdevWycvLK17gliQHBwd17dr1qWe5pUe3Ozg4OKhcuXLxXsucOXO8D0n++OMPvf/++6pcubLKlSunxo0by8/PL848gYGBat++vcqVK6dKlSqpZ8+eCgoKijPP7Nmz5eHhoX/++UcDBw5U5cqV1b59e9vrX331le3n/frrr6t///66evVqnPc4d+6c+vbtKy8vL5UuXVo1atRQ//79FR4e/tTt/bef37/9/KVH9+w2atRIf/75pzp06KCyZctq2rRpT13nszRp0kStWrXSH3/8oR9++ME2/fF7in/66Sd5eHjo0qVL2r9/vzw8POTh4aHNmzfLw8NDVqtVq1atsk2PdefOHY0fP141a9ZUqVKl9Pbbb2vhwoWKiYmxzXPp0iV5eHhoyZIlWr58uby9vVW6dGnbzysoKEgffvihXn/9dds+ZN++fXG2IbaOI0eOaOLEiapSpYrKlSun3r17KzQ0NM73/u+//9bPP/9sqzUx9z7nyZNHlSpV0vbt2+NM37Ztm9zd3fXaa68luFxi9hmStHfvXjVq1EilS5dWo0aN9M033yT4fjExMVq+fLltn1atWjV98sknun379r9ug7+/vxo2bKiyZcuqcuXK8vHxSZZ9AIC0jTPdAPCE7777TgULFox3NvFpPv74YwUEBKhu3brq3Lmzjh07pgULFigoKEhz586NM+/58+c1cOBAtW3bVk2aNNHSpUv1wQcfaMyYMZo+fbratWsnSVq4cKH69eunXbt2yWz+v89HLRaLunXrprJly2rw4ME6ePCgZs+eLYvFoo8++sg234oVK1S7dm01btxYDx480Ndff62PPvpICxYsUK1ateLUdPjwYe3cuVMdOnSQi4uL8ufPn+B2fvrpp9q9e7d8fX1VrFgx3bp1S0eOHFFQUJA8PT0lPTqoHz58uEqXLq0BAwYoJCREK1as0G+//aYtW7bEOctnsVjUtWtXlSlTRkOGDFFgYKCWLl2qggULxgl1CYm997ZatWpq166dzp49qzVr1uh///uf1qxZo3Tp0mnEiBHasmWLvvnmG9vlwo8HnYRER0drz5496ty5sySpYcOGGjFihIKDg5UrV65nLvss33//vR4+fKgmTZo893vkz59fFotFX3311b+eef/hhx/Uo0cP5c6dWx07dlTOnDkVFBSk/fv32z4w+vHHH/X++++rQIEC6tOnj+7du6eVK1eqXbt22rx5swoUKBDnPT/66CMVLlxY/fv3t33IM2/ePM2cOVP169dXy5YtFRoaqpUrV6pDhw62n3d0dLS6du2q6Oho+fr6KmfOnLp+/br279+vO3fuPPUs9rN+fon5+ce6deuW3n//fTVs2FBNmjSRq6vrc/8MmjRponXr1unQoUPy8vKK93qxYsX0xRdfaOLEicqbN6+tj0qWLKkvvvhCQ4YMkZeXl5o2bWpbJioqSr6+vrp+/bratm2rfPny6ejRo5o2bZqCg4M1cuTIOOvYvHmz7t+/r9atW8vJyUnZsmXT33//rXbt2ilPnjx6//33lTFjRu3cuVO9e/fW7Nmz9fbbb8d5j3Hjxilr1qzq06ePLl++LD8/P40dO9Y2fsGIESP02WefKWPGjPrggw8kSTlz5kzU96hx48YaP368IiMjlSlTJj18+FC7du1S586dE7y0PLH7jEOHDqlv375yc3PTwIEDFRYWpuHDhyf4QdUnn3yigIAA+fj46N1339WlS5e0atUq/fXXX/H643Hr16/XuHHjVLduXXXs2FH379/XqVOn9Mcff6hx48aJ2n4ASJAVAGATHh5udXd3t/bs2TNR8584ccLq7u5uHTlyZJzpkyZNsrq7u1sDAwNt09566y2ru7u79bfffrNNO3jwoNXd3d1apkwZ6+XLl23T165da3V3d7cePnzYNm3o0KFWd3d362effWabFhMTY+3evbvV09PTGhISYpseFRUVp57o6Ghro0aNrB07dowz3d3d3Vq8eHHr33//HW/b3N3drbNmzbJ9XbFiReuYMWOe+r2Ijo62Vq1a1dqoUSPrvXv3bNO/++47q7u7u3XmzJnxtmXOnDlx3qNZs2bW5s2bP3UdVqvVGhISYvX09LR26dLFarFYbNNXrlxpdXd3t27cuNE2bdasWVZ3d/c435tn2bVrl9Xd3d167tw5q9X6qB9Kly5tXbZsWZz5Dh8+bHV3d7fu3LkzwfcZM2aM1d3d3fb1hAkTrO7u7ta//vorUXUkJDg42FqlShWru7u7tV69etZPPvnEum3bNuudO3fizPfw4UNr7dq1rW+99Zb19u3bcV6LiYmx/X/Tpk2tVatWtYaFhdmmnThxwlq8eHHrkCFDbNNiv4cDBgyI816XLl2ylihRwjpv3rw400+dOmUtWbKkbfpff/31zO/VsyT080vKz9/X19fq7u5uXbNmzXOv73G3b9+2uru7W3v37m2bNnToUOtbb70VZ7633nrL2r1793jLu7u7x/sdmjt3rrVcuXLWs2fPxpk+ZcoUa4kSJaxXrlyxWq1W68WLF63u7u7WChUqxKvvvffeszZq1Mh6//5927SYmBhrmzZtrO+8845t2qZNm6zu7u7WTp06xemFCRMmWEuUKBGnlxo2bGj19fVN8PuQkNhtu3XrltXT09O6ZcsWq9Vqte7fv9/q4eFhvXTpUrzvb1L2GU2bNrV6eXnFqfHQoUNWd3f3ON//X375xeru7m7dunVrnPq+//77eNN9fX3jbGPPnj2tDRs2TPQ2A0BicXk5ADwmIiJCkhI9INWBAwckyXZGK1aXLl3ivB7Lzc1N5cuXt31dtmxZSVKVKlX0yiuvxJt+8eLFeOvs0KGD7f9NJpM6dOigBw8eKDAw0Db98VGeb9++rfDwcFWsWDHeJeuSVLly5QTvP31S1qxZ9ccffyR42ack/fnnnwoJCVG7du3iXOpcq1YtFS1aNMH74GPP7MeqWLGiLl269Mw6fvzxRz148EAdO3aMcxVAq1atlDlz5njf86TYtm2bSpUqZRu0K3PmzKpVq9Z/vrw0qX2VkJw5c+qrr75S27ZtdefOHa1du1YDBw5U1apVNXfuXNvZ57/++kuXLl1Sx44d490/bDKZJEk3btzQiRMn1Lx5c2XPnt32evHixVWtWrUEv4dt27aN8/U333yjmJgY1a9fX6GhobZ/OXPmVOHChW23TcQOQnfo0CFFRUU99/bHSurP38nJKUmDgT1L7H3skZGRyfJ+krRr1y5VrFhRWbNmjfN9rFatmiwWi3755Zc487/zzjtx7je/deuWDh8+rPr16ysiIsK2fFhYmKpXr65z587F+51t3bq1rRckqVKlSrJYLLp8+fJ/3p5s2bLpzTff1Ndffy3p0e9U+fLlE7yCJrH7jMf79fErI7y8vOLtu3bt2qUsWbLIy8srzvfT09NTGTNmtPVlQrJmzapr167p2LFj/+VbAADxcHk5ADwmNiAk9qD68uXLMpvNKlSoUJzpuXLlUtasWeMdxD4+6rH0fwNEPXmJZGwdT96jajabVbBgwTjTXn31VVstsb777jvNmzdPJ06ciHNv+eMH2rGevIz4aQYNGqRhw4apVq1a8vT0VM2aNdWsWTNbPVeuXIlTz+OKFi2qI0eOxJnm7Owc77FB2bJl+9f7LmPXU7Ro0TjTnZycVLBgwecODnfu3NGBAwfk6+ur8+fP26ZXqFBBu3fv1tmzZxPctsRIal89Te7cuTVmzBiNHj1a586d06FDh7Ro0SLNmjVLuXPnVqtWrWwf1Li7uz/1fZ71sypWrJgOHToUb7C0J/vk3LlzslqteueddxJch6Pjo0OMggULqnPnzlq2bJm2bdumSpUqqXbt2mrSpMlzDZCW1J9/njx5km2gsbt370r6bx+ePOn8+fM6deqUqlatmuDrj99rLcX/OVy4cEFWq1UzZ87UzJkzE3yPkJAQ5cmTx/b14x/wSbJ9OPPk/uZ5NW7cWEOGDNGVK1e0b98+DRo0KMH5ErvPiJ0voRHsX3311TgfJp4/f17h4eFP/X7GDs6XkPfff18//vijWrVqpcKFC8vLy0uNGjVSxYoVn7oMACQGoRsAHpM5c2blzp1bf//9d5KWSyjMJuRpj+B62nTrEwOkJcavv/6qnj17qnLlyvr000+VK1cupUuXTps2bYo3wJGkRD/7uEGDBqpUqZK++eYb/fDDD1qyZIkWLVqk2bNnq2bNmkmu80V7HNmuXbsUHR2tpUuXaunSpfFe37Ztmz788ENJsp2Vu3fvXoLvFRUVFefMXWxAPHXqlEqUKPGfazWZTHr11Vf16quvqlatWnrnnXe0detWtWrV6j+/99M8OVBbTEyMTCaTFi1alODP8vHAPmzYMDVv3lz79u3TDz/8oHHjxmnBggVav379MwePSw7J+Wzv06dPS1K8D9n+i5iYGHl5ealbt24Jvl6kSJE4Xz+5PbGDrXXp0kVvvvlmgu/xZL2PXyHwuOfZ3ySkdu3aSpcunYYOHaro6GjVr18/Wd43MWJiYuTq6qopU6Yk+Pqzng9erFgx7dq1S/v379fBgwe1Z88erV69Wr1797b97gPA8yB0A8AT3nrrLa1bt05Hjx6Ncyl4QvLnz6+YmBidP39exYoVs02/efOm7ty589RByZ5XTEyMLl68GOfM0NmzZ221SNLu3bvl7OysJUuWxDnDt2nTpv+8/ty5c6tDhw7q0KGDQkJC1Lx5c82fP181a9a0nT07e/ZsvLNMZ8+ejXd27XnFvs+ZM2finPWPjo7WpUuXVK1ated639gRlnv37h3vtXXr1mn79u22A+/HtzUhT25vjRo15ODgoG3btqlZs2bPVd/TFCxYUFmzZlVwcLDta+lRQHza9+JZ9Z85c0YuLi7/+kiwQoUKyWq1qkCBAom6AiB2FOxevXrpt99+U7t27bRmzRr179//X5dNqPbk/vknxtatWyXpqeH2eRQqVEh379597rpjvwfp0qVL1m1P7AeJCUmfPr28vb21detW1ahR46lBN7H7jNj/Pn4FyuPzPa5QoUIKDAxUhQoVnusDl4wZM6pBgwZq0KCBoqOj1bdvX82fP189evR4KR6jCMA+uKcbAJ7QrVs3ZcyYUR9//LFu3rwZ7/ULFy7YHr0Ue4b3yUcxLVu2LM7ryWnVqlW2/7f+/0cQpUuXznbQ6uDgIJPJFOfRW5cuXYr3+KCksFgs8R7v5Orqqty5c9suXy9VqpRcXV21du3aOJe0HzhwQEFBQfFGTX9e1apVU7p06eTv7x/nzNzGjRsVHh7+XN/zq1ev6pdfflG9evUS/Ofj46Pz58/rjz/+kPTow4cSJUpo27Zt8S7J/fPPP/XHH3+oRo0atmn58uVTq1atdOjQIfn7+8dbf0xMjJYuXapr1649tcY//vjDdnnz444dO6Zbt27Zgq+np6cKFCigFStWxKst9vsVW/+WLVvizHP69Gn98MMPifoevvPOO3JwcEjwkXVWq1VhYWGSHt3P/vDhwzivu7u7y2w2x3usXmIY8fNPjG3btmnDhg0qX778Uy9dfh7169fX0aNHbY/qe9ydO3fife+e5Orqqtdff13r1q3TjRs34r3+5OXpiZUhQ4b/dLl5165d1adPH/Xq1eup8yR2nxHbrwEBAXH2Qz/88IP++eefOO9Zv359WSwWffnll/HW9/Dhw2duU2zPxnJyclKxYsVktVr14MGDZ24vADwLZ7oB4AmFChXSlClT1L9/fzVo0EBNmzaVu7u7oqOjdfToUe3atcs2MFPx4sXVvHlzrVu3Tnfu3FHlypX1v//9TwEBAfL29laVKlWStTZnZ2cdPHhQQ4cOVZkyZXTw4EHt379fH3zwge1sUs2aNbVs2TJ169ZNjRo1UkhIiFavXq1ChQrp1KlTz7XeyMhI1axZU3Xr1lXx4sWVMWNG/fjjj/rf//6nYcOGSXp0pm3QoEEaPny4fH191bBhQ9vjf/Lnz5/g86mfR44cOdSjRw/NmTNH3bp1U+3atXX27FmtXr1apUuXfq7Hcm3btk1Wq1V16tRJ8PWaNWvK0dFR27Ztsw1yN2zYMHXr1k3NmjVT8+bNlTt3bgUFBWn9+vXKlSuXevToEec9hg0bposXL2rcuHHas2eP3nrrLWXNmlVXr17Vrl27dObMGTVs2PCpNX711Vfatm2b7Xnw6dKlU1BQkDZt2iRnZ2fbo53MZrNGjx6tnj17qlmzZvLx8VGuXLl05swZ/fPPP1qyZIkkaciQIXr//ffVpk0btWzZ0vbIsCxZsqhPnz7/+j0rVKiQ+vXrp6lTp+ry5cvy9vZWpkyZdOnSJe3du1etW7dW165ddfjwYY0dO1b16tVTkSJFbI89c3BwUN26dRP183mcET//J+3evVsZM2bUgwcPdP36dR06dEi//fabihcv/tT7pp9X165d9e233+qDDz5Q8+bN5enpqaioKJ0+fVq7d+/Wvn37nnlJtPTocX7t27dX48aN1bp1axUsWFA3b97U77//rmvXrtnO0CeFp6en1qxZoy+//FKFCxdWjhw5kvRhQ/HixVW8ePFnzpOUfcaAAQPUo0cPtW/fXi1atNCtW7e0cuVKvfbaa3E+jHr99dfVpk0bLViwQCdOnJCXl5fSpUunc+fOadeuXRo5cqTq1auXYD1du3ZVzpw5VaFCBbm6uurMmTNauXKlatasaRuXAQCeB6EbABJQp04dbd26VUuWLNG+ffu0Zs0aOTk5ycPDQ8OGDVPr1q1t844bN04FChRQQECA9u7dq5w5c6pHjx6JCi5J5eDgoMWLF2v06NGaPHmyMmXKpD59+sS5JLpq1aoaP368Fi1apAkTJqhAgQIaNGiQLl++/NyhO3369GrXrp1++OEH7dmzR1arVYUKFbId7Mfy8fFR+vTptWjRIk2ZMkUZM2aUt7e3Bg8eHG8k7f+ib9++ypEjh1auXKmJEycqW7Zsat26tQYMGPDUZ/A+y7Zt2/TKK688NSRkzZpVFSpU0I4dOzRs2DA5OjqqSpUqWrVqlebNmyd/f39FRkbK1dVVjRo1Ut++feM9DzpDhgxatGiRNm/erC1btujLL7/UvXv3lDt3br3xxhuaMmVKnMGuntSmTRulT59ehw8f1rfffquIiAi5uLjIy8tLPXr0UMmSJW3zvvnmm/Lz89PcuXO1dOlSWa1WFSxYME7fVqtWTYsXL9asWbM0a9YsOTo6qnLlyho8eHC8wfqepnv37ipSpIiWL19ueyZ93rx55eXlpdq1a0t6dFl59erV9d133+n69evKkCGDPDw8tGjRIpUrVy5R63lScv/8nzR69GhJjz7kcnFxUYkSJTRhwgQ1btw42QZli5UhQwb5+/trwYIF2rVrl7Zs2aLMmTOrSJEi6tu3b6IGm3Nzc9OmTZs0Z84cBQQE6NatW8qRI4dKliyZ4O0SidG7d29duXJFixcvVmRkpF5//fVkPcMfK7H7jBo1amjmzJmaMWOGpk6dqkKFCmnixInat2+ffv755zjvOXbsWJUqVUpr167V9OnT5eDgoPz586tJkyaqUKHCU2tp06aNtm3bpmXLlunu3bvKmzev3n333WeerQeAxDBZk2vUDACAoYYNG6bdu3fr6NGj9i4FAAAAicQ93QAAAAAAGITQDQAAAACAQQjdAAAAAAAYhHu6AQAAAAAwCGe6AQAAAAAwCKEbAAAAAACDELoBAAAAADAIoRsAAAAAAIM42rsAewkJCRdDyAEAAAAAnofJJLm6ZvnX+dJs6LZaRegGAAAAABiKy8sBAAAAADAIoRsAAAAAAIMQugEAAAAAMAihGwAAAAAAg6TZgdTSsk2b1mvNGn+FhoaoWLHX1L//YJUsWeqp869fv1oBARt1/fp1Zc+eXbVq1VaPHn3k7OwsSVqyZIGWLVsUZ5lChQpr9epNhm4HAAAAALzoCN1pzL59ezRnznQNGjRcJUuW0vr1azRgQF+tWbNJLi454s2/Z88uzZ8/R8OGfaLSpcvo4sULGj9+tEwmk/r2HWCb79VXi2rGjC9tXzs40FoAAAAAwOXlaczatavUuHEzNWzYRK++WlSDBw9X+vTptX371gTn//PPP1S6dFm980495cv3il5/vYq8vevqr7+Ox5nPwcFRrq45bf+yZ8+eAlsDAAAAAC82Qnca8uDBA50+fVKVKr1hm2Y2m1Wp0us6fvxYgsuUKlVWp06d0F9//SlJunz5kg4f/kFVq3rFme/SpQtq2rSeWrVqqjFjPta1a9eM2xAAAAAASCUI3WnI7du3ZLFYlCNH3MvIc+TIoZCQkASXeeedeura9QP16tVNNWu+oTZtmql8+Yrq2LGLbZ6SJUtpxIjRmjp1tgYNGqarV6+od+9uuns30tDtwYtr06b1atmysWrXrqb333/P9qHN06xfv1rt2vmodm0v+fg01KxZU3X//v0E5/X3X67q1Stp5sypRpSOVIQ+g9HoMQBAciB045l+++1X+fsv08CBw7R06SqNHz9ZP/54SMuXL7bNU7Wql2rX9pab22t6442qmjx5piIiwvXtt9/YsXLYS+y4AZ07v68lS1bKzc1dAwb0VVhYaILzx44b0Llzd61atUHDho3Svn3faOHCufHmPXHiuLZu3axixV4zejPwgqPPYDR6DACQXAjdaUi2bNnl4OCg0NC4BwyhoaFydXVNcJnFi+erbt0Gaty4mYoVc1PNmm+pR4/e8vdfppiYmASXyZIliwoWLKxLly4l+zbgxWfUuAF3797VmDGjNGTISGXJkiUlNgUvMPoMRqPHAADJhdCdhqRLl07u7sV15MjPtmkxMTE6cuQXeXqWSXCZe/fuyWQyxZlmNj9qG6vVmuAyd+/e1eXLl+TqmjOZKkdqYeS4AdOmfa5q1bxUufIbCb0N0hD6DEajxwAAyYnnOqUxbdt20Pjxo1W8eEmVKOGp9etXKyoqSg0bNpYkffbZJ8qVK7c++KCPJMnL602tW7da7u4eKlmylC5fvqjFi+fLy6uGHBwcJElz5syQl9ebyps3n27eDNaSJQvk4GCWt3ddu20n7ONZ4wacP38uwWXeeaeebt++pV69uslqtcpisahZsxZxxg3Yu3e3Tp8+qUWLVhhZPlIJ+gxGo8cAAMmJ0J3G1Knzjm7dCtPixfMVGhoiNzd3TZ06WzlyPLq8/Pr1a7Yz2ZL03ntdZTKZtGjRPAUHByt79uzy8qqh7t172eYJDr6u0aNH6s6d28qe3UVlypTVggXL5eLikuLbh9Tn8XEDSpYspUuXLmrmzClavnyxOnXqpuvXr2nmzKmaPn2unJ2d7V0uUin6DEajxwAAT0PoToNatGijFi3aJPjanDkL43zt6OioLl26q0uX7k99vzFjJiZrfUi9/uu4AZJUrJib7t2L0hdfjFfHjl106tRJhYWFqmtXX9syFotFf/xxVJs3r9e33/5ou+oCaQN9BqPRYwCA5EToBpBsHh83oEaNWpL+b9wAH5/WCS7zb+MGVKpUWStWrI3z+oQJY1W4cGF16PAeB6lpEH0Go9FjAIDkROh+DmazSWaz6d9nRKoWE2NVTEzCg8Xh6ZJ73ICMGTOpaFG3OOtInz69smbNHm860g76DEajxwAAyYXQnURms0nZs2eUgwMDv7/sLJYY3bp1l+CdREaMGwA8iT6D0egxAEByMVmf9tynl9zNm+F6ni13dDTLxSWTpoxZo4vnbyR/YXghFCycW4M+baewsEg9fJjw88gBAAAApF0mk5QzZ5Z/nY8z3c/p4vkbCjp92d5lAAAAAABeYIRu4AXEuAFpgz3HDaDH0gZ6DEZj/BMA+HeEbuAFw7gBaYe9xg2gx9IOu/aYS0Y5mOmxl50lJka3whj/BACehdANvGDMZpMcHMwaPy9AF67ctHc5MEihV3JqZM/mMptNdglEDg5mjVqzWWdv0GMvq1dz59Rn7Xzs12Nms0bs3qgzofTYy6pojpyaULelXXoMAFITQjfwgrpw5ab+Pn/N3mXgJXb2xk2dukKPwThnQm/qZPBVe5cBAIBdcd0XAAAAAAAGIXQDAAAAAGAQLi8HAAAAXgCbNq3XmjX+Cg0NUbFir6l//8EqWbLUU+dfv361AgI26vr168qePbtq1aqtHj36yNnZOQWrBvBvONMNAAAA2Nm+fXs0Z850de78vpYsWSk3N3cNGNBXYWGhCc6/Z88uzZ8/R507d9eqVRs0bNgo7dv3jRYunJvClQP4N4RuAAAAwM7Wrl2lxo2bqWHDJnr11aIaPHi40qdPr+3btyY4/59//qHSpcvqnXfqKV++V/T661Xk7V1Xf/11PIUrB/BvCN0AAACAHT148ECnT59UpUpv2KaZzWZVqvS6jh8/luAypUqV1alTJ/TXX39Kki5fvqTDh39Q1apeKVIzgMTjnm4AAADAjm7fviWLxaIcOXLEmZ4jRw6dP38uwWXeeaeebt++pV69uslqtcpisahZsxbq2LFLClQMICk40w0AAACkMr/99qv8/Zdp4MBhWrp0lcaPn6wffzyk5csX27s0AE/gTDcAAABgR9myZZeDg4NCQ+MOmhYaGipXV9cEl1m8eL7q1m2gxo2bSZKKFXPTvXtR+uKL8erYsYvMZs6tAS8KfhsBAAAAO0qXLp3c3YvryJGfbdNiYmJ05Mgv8vQsk+Ay9+7dk8lkijMtNmhbrVbjigWQZJzpBgAAAOysbdsOGj9+tIoXL6kSJTy1fv1qRUVFqWHDxpKkzz77RLly5dYHH/SRJHl5val161bL3d1DJUuW0uXLF7V48Xx5edWQg4ODPTcFwBPsHrpXrVqlJUuWKDg4WMWLF9eoUaNUpkzCn+hJ0vLly7VmzRpdvXpVLi4uqlu3rgYOHChnZ+cUrBoAAABIPnXqvKNbt8K0ePF8hYaGyM3NXVOnzlaOHI8uL79+/VqcS8bfe6+rTCaTFi2ap+DgYGXPnl1eXjXUvXsve20CgKewa+jesWOHJk6cqDFjxqhs2bLy8/NT165dtWvXrgTvX9m2bZumTp2qCRMmqHz58jp37pyGDRsmk8mk4cOH22ELAAAAgOTRokUbtWjRJsHX5sxZGOdrR0dHdenSXV26dE+J0gD8B3a9p3vZsmVq3bq1WrRoITc3N40ZM0bp06fXpk2bEpz/6NGjqlChgho3bqwCBQqoevXqatSokY4dS/j5hQAAAAAA2JPdznRHR0fr+PHj6tGjh22a2WxWtWrVdPTo0QSXKV++vLZu3apjx46pTJkyunjxog4cOKCmTZsmef1PjDsBPBW9AqPRYzAaPQaj2aPHzGZTvIHE8HKyWq2KiWFwOLx4ErsLslvoDgsLk8ViiXcZuaurq86cOZPgMo0bN1ZYWJjat28vq9Wqhw8fqm3btvrggw+SvH5X1yzPVTfSFheXTPYuAS85egxGo8dgNHv1WIw1RmYTD+JJC/hZI7Wz+0BqSfHTTz9pwYIF+vTTT1WmTBlduHBB48eP19y5c9W7d+8kvVdISLie52kKDg5mDmDSkLCwSFksMSm6TnosbaHHYDR6DEazZ4/N/W2VLkfcSNF1I2Xlz5xbvSt0sEufAf/GZErcyVy7hW4XFxc5ODgoJCQkzvSQkBDlzJkzwWVmzpypJk2aqFWrVpIkDw8P3b17V5988ol69uwZZ0THf2O16rlCN9Ie+gRGo8dgNHoMRrNXj12OuKFzty/bZ+VIcezLkFrZ7ToNJycneXp6KjAw0DYtJiZGgYGBKl++fILL3Lt3L16wjn0OoZXfQgAAAADAC8aul5d37txZQ4cOValSpVSmTBn5+fkpKipKPj4+kqQhQ4YoT548GjhwoCTprbfe0rJly1SyZEnb5eUzZ87UW2+9ZQvfAAAAAAC8KOwauhs0aKDQ0FDNmjVLwcHBKlGihBYvXmy7vPzq1atxzmz37NlTJpNJM2bM0PXr15UjRw699dZb6t+/v702AQAAAABeSJs2rdeaNf4KDQ1RsWKvqX//wSpZslSC8/bp012///5bvOlVq3pp8uSZtq/PnTurefNm6ffff5PFYlGRIkU1btwXyps3r2HbkdrZfSA1X19f+fr6Jviav79/nK8dHR3Vp08f9enTJyVKAwAAAIBUad++PZozZ7oGDRqukiVLaf36NRowoK/WrNkkF5cc8eafMGGyHjx4YPv69u3b6ty5vd56y9s27fLlS+rVq5saNWqirl17KFOmzDp7NkjOzk4psk2pld1DNwAAAAAgea1du0qNGzdTw4ZNJEmDBw9XYOAhbd++Ve++2yne/FmzZovz9b59e+TsnD5O6F64cK6qVq2mXr0+sk3Ln7+AMRvwEuGBdwAAAADwEnnw4IFOnz6pSpXesE0zm82qVOl1HT9+LFHvsX37V6pT5x1lyJBB0qNBr3/88QcVLFhYAwb0UaNGb+v999/T99/vN2ITXiqEbgAAAAB4idy+fUsWi0U5csS9jDxHjhzxHtmckL/++lNnzgSpceOmtmlhYaGKirqrlSuX6403qmr69DmqUeMtjRw5WEePHkn2bXiZcHk5AAAAAMBm+/avVKyYW5xB12If0Vy9ek21adNBkvTaax76888/tGXLJpUvX9EutaYGnOkGAAAAgJdItmzZ5eDgoNDQ0DjTQ0ND5erq+sxlo6KitG/fHjVs2DTO9Nj3LFLk1TjTCxd+VTduXEuewl9ShG4AAAAAeImkS5dO7u7FdeTIz7ZpMTExOnLkF3l6lnnmst99t1cPHjxQ3br1471niRKeunjxfJzpFy9eUJ48+ZKv+JcQoRsAAAAAXjJt23bQtm1btHPndp07d1ZTpkxUVFSUGjZsLEn67LNPNH/+nHjLbd/+ld58s6ayZcse77V27d7Vvn3faOvWAF26dFGbNq3Tjz8eVPPmrYzenFSNe7oBAAAA4CVTp847unUrTIsXz1doaIjc3Nw1deps5cjx6PLy69evyWyOew72woVzOnbsd02fHj+MS1LNmm9p0KDhWrlyuWbMmKJChQpr3LjPVbZsOaM3J1UjdAMAAADAS6hFizZq0aJNgq/NmbMw3rRChYro0KFfn/mejRo1VaNGTZ85D+Li8nIAAAAAAAzCmW4AAAAAeILZbJLZbLJ3GUgBMTFWxcRYDXt/QjcAAAAAPMZsNsnFJYPMZgd7l4IUEBNjUVhYlGHBm9ANAAAAAI95dJbbQd/+PVW3oi7auxwYKHuGgqr92kCZzSZCNwAAAACkpFtRFxUSecbeZSCVYyA1AAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAgL0ToXrVqlWrXrq3SpUurVatWOnbs2FPnfffdd+Xh4RHvX/fu3VOwYgAAAAAA/p2jvQvYsWOHJk6cqDFjxqhs2bLy8/NT165dtWvXLrm6usabf/bs2Xrw4IHt61u3bqlp06aqV69eSpYNAAAAAMC/svuZ7mXLlql169Zq0aKF3NzcNGbMGKVPn16bNm1KcP7s2bMrV65ctn8//PCD0qdPT+gGAAAAALxw7HqmOzo6WsePH1ePHj1s08xms6pVq6ajR48m6j02bdqkhg0bKmPGjElat8mUpNmRhtErMBo9BqPRYzAaPYaUQJ/BaEntscTOb9fQHRYWJovFEu8ycldXV505c+Zflz927JhOnz6t8ePHJ3ndrq5ZkrwM0h4Xl0z2LgEvOXoMRqPHYDR6DCmBPoPRjOwxu9/T/V9s3LhR7u7uKlOmTJKXDQkJl9Wa9HU6OJj5pU9DwsIiZbHEpOg66bG0hR6D0egxGI0eQ0pI6T6jx9Ke5+kxkylxJ3PtGrpdXFzk4OCgkJCQONNDQkKUM2fOZy579+5dff311/rwww+fa91Wq54rdCPtoU9gNHoMRqPHYDR6DCmBPoPRjOoxuw6k5uTkJE9PTwUGBtqmxcTEKDAwUOXLl3/msrt27VJ0dLSaNGlidJkAAAAAADwXu19e3rlzZw0dOlSlSpVSmTJl5Ofnp6ioKPn4+EiShgwZojx58mjgwIFxltu4caO8vb3l4uJij7IBAAAAAPhXdg/dDRo0UGhoqGbNmqXg4GCVKFFCixcvtl1efvXqVZnNcU/InzlzRkeOHNHSpUvtUTIAAAAAAIli99AtSb6+vvL19U3wNX9//3jTihYtqlOnThldFgAAAAAA/4ld7+kGAAAAAOBlRugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCB2D92rVq1S7dq1Vbp0abVq1UrHjh175vx37tzRmDFjVL16dZUqVUp169bVgQMHUqhaAAAAAAASz9GeK9+xY4cmTpyoMWPGqGzZsvLz81PXrl21a9cuubq6xps/OjpanTt3lqurq2bOnKk8efLoypUrypo1qx2qBwAAAADg2ewaupctW6bWrVurRYsWkqQxY8Zo//792rRpk7p37x5v/k2bNun27dtau3at0qVLJ0kqUKBAitYMAAAAAEBi2e3y8ujoaB0/flzVqlX7v2LMZlWrVk1Hjx5NcJlvv/1W5cqV09ixY1WtWjU1atRI8+fPl8ViSamyAQAAAABINLud6Q4LC5PFYol3Gbmrq6vOnDmT4DIXL17U4cOH1bhxYy1cuFAXLlzQmDFj9PDhQ/Xp0ydJ6zeZnrt0pDH0CoxGj8Fo9BiMRo8hJdBnMFpSeyyx89v18vKkslqtcnV11WeffSYHBweVKlVK169f15IlS5Icul1dsxhUJV4mLi6Z7F0CXnL0GIxGj8Fo9BhSAn0GoxnZY3YL3S4uLnJwcFBISEic6SEhIcqZM2eCy+TKlUuOjo5ycHCwTStatKiCg4MVHR0tJyenRK8/JCRcVmvS63ZwMPNLn4aEhUXKYolJ0XXSY2kLPQaj0WMwGj2GlJDSfUaPpT3P02MmU+JO5trtnm4nJyd5enoqMDDQNi0mJkaBgYEqX758gstUqFBBFy5cUEzM/30zzp07p1y5ciUpcEuS1fp8/5D2PG+v0GNILHoMRqPHYDR6DCmBHoPRjOoVuz6nu3Pnzlq/fr0CAgIUFBSk0aNHKyoqSj4+PpKkIUOGaOrUqbb527Vrp1u3bmn8+PE6e/as9u/frwULFqhDhw722gQAAAAAAJ7Krvd0N2jQQKGhoZo1a5aCg4NVokQJLV682HZ5+dWrV2U2/9/nAvny5dOSJUs0ceJENWnSRHny5FHHjh31/vvv22sTAAAAAAB4KrsPpObr6ytfX98EX/P39483rXz58lq/fr3RZQEAAAAA8J/Z9fJyAAAAAABeZoRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAzyXKF7y5Ytatu2rapXr67Lly9LkpYvX669e/cma3EAAAAAAKRmSQ7dq1ev1qRJk1SzZk2Fh4crJiZGkpQ1a1b5+fkle4EAAAAAAKRWSQ7dK1eu1Lhx49SzZ0+Zzf+3eKlSpXT69OlkLQ4AAAAAgNQsyaH70qVLKlGiRLzpTk5OioqKSpaiAAAAAAB4GSQ5dBcoUEAnTpyIN/3gwYMqVqxYshQFAAAAAMDLwDGpC3Tu3Fljx45VdHS0JOnYsWPavn27Fi5cqHHjxiV7gQAAAAAApFZJDt2tWrWSs7OzZsyYoaioKA0cOFC5c+fWiBEj1LBhw+cqYtWqVVqyZImCg4NVvHhxjRo1SmXKlElw3s2bN2v48OFxpjk5Oel///vfc60bAAAAAACjJCl0P3z4UNu3b1f16tXVpEkTRUVF6e7du3J1dX3uAnbs2KGJEydqzJgxKlu2rPz8/NS1a1ft2rXrqe+bOXNm7dq1y/a1yWR67vUDAAAAAGCUJN3T7ejoqE8//VT379+XJGXIkOE/BW5JWrZsmVq3bq0WLVrIzc1NY8aMUfr06bVp06anLmMymZQrVy7bv5w5c/6nGgAAAAAAMEKSB1IrU6ZMggOpPY/o6GgdP35c1apV+7+CzGZVq1ZNR48efepyd+/e1VtvvaWaNWuqZ8+e+vvvv5OlHgAAAAAAklOS7+lu166dJk2apGvXrsnT01MZMmSI83rx4sUT/V5hYWGyWCzxzpa7urrqzJkzCS7z6quvasKECfLw8FB4eLiWLl2qtm3b6uuvv1bevHkTvW6uSEdi0SswGj0Go9FjMBo9hpRAn8FoSe2xxM6f5NA9YMAASYozUrnJZJLVapXJZEq2s+BPU758eZUvXz7O1w0aNNDatWvVr1+/RL+Pq2sWA6rDy8bFJZO9S8BLjh6D0egxGI0eQ0qgz2A0I3ssyaF73759ybZyFxcXOTg4KCQkJM70kJCQRN+nnS5dOpUoUUIXLlxI0rpDQsJltSZpEUmSg4OZX/o0JCwsUhZLTIqukx5LW+gxGI0eg9HoMaSElO4zeizteZ4eM5kSdzI3yaE7f/78SV3kqZycnOTp6anAwEB5e3tLkmJiYhQYGChfX99EvYfFYtHp06dVs2bNJK3batVzhW6kPfQJjEaPwWj0GIxGjyEl0GcwmlE9luTQLUkXLlyQn5+fgoKCJElubm7q2LGjChUqlOT36ty5s4YOHapSpUqpTJky8vPzU1RUlHx8fCRJQ4YMUZ48eTRw4EBJ0pw5c1SuXDkVLlxYd+7c0ZIlS3TlyhW1atXqeTYFAAAAAADDJDl0Hzx4UD179lSJEiVUoUIFSdJvv/2mhg0bav78+fLy8krS+zVo0EChoaGaNWuWgoODVaJECS1evNh2efnVq1dlNv/fIOt37tzRqFGjFBwcrGzZssnT01Nr166Vm5tbUjcFAAAAAABDJTl0T506VZ06ddKgQYPiTJ8yZYqmTJmS5NAtSb6+vk+9nNzf3z/O1yNGjNCIESOSvA4AAAAAAFJakp/THRQUpJYtW8ab3qJFC/3zzz/JUhQAAAAAAC+DJIfuHDlyJPhYsBMnTsR73jYAAAAAAGlZki8vb9WqlT755BNdvHgxzj3dixYtUqdOnZK7PgAAAAAAUq0kh+7evXsrc+bMWrp0qaZNmyZJyp07t/r06aOOHTsme4EAAAAAAKRWSQ7dJpNJnTp1UqdOnRQRESFJypw5c7IXBgAAAABAapfk0H3x4kVZLBYVKVIkTtg+d+6cHB0dVaBAgWQtEAAAAACA1CrJA6kNHz5cR48ejTf9jz/+0PDhw5OlKAAAAAAAXgZJDt1//fWXbQC1x5UrVy7BUc0BAAAAAEirkhy6TSaTIiMj400PDw+XxWJJlqIAAAAAAHgZJDl0V65cWQsWLIgTsC0WixYuXKiKFSsma3EAAAAAAKRmSR5IbdCgQerQoYPq1aunSpUqSZJ+/fVXRUREyM/PL9kLBAAAAAAgtUrymW43Nzdt3bpV9evXV0hIiCIjI9W0aVPt3LlT7u7uRtQIAAAAAECqlOQz3ZKUJ08eDRgwILlrAQAAAADgpZLo0B0aGqqoqCjlz5/fNu3vv//W0qVLdffuXXl7e6tx48aGFAkAAAAAQGqU6MvLx40bJ39/f9vXISEh6tChg/73v/8pOjpaw4cP15YtW4yoEQAAAACAVCnRofv3339X7dq1bV9v2bJF2bJl05YtWzRv3jz1799fq1evNqRIAAAAAABSo0SH7ps3b8a5tPzw4cN6++235ej46Ar12rVr6/z588lfIQAAAAAAqVSiQ3fmzJkVHh5u+/rYsWMqW7as7WuTyaTo6OjkrQ4AAAAAgFQs0aG7bNmyWrFihWJiYrRr1y5FRkaqSpUqttfPnTunvHnzGlIkAAAAAACpUaJHL//oo4/UqVMnlSlTRhaLRT169FC2bNlsr3/99deqXLmyIUUCAAAAAJAaJTp0Fy9eXDt27NBvv/2mXLlyxbm0XJIaNmyoYsWKJXuBAAAAAACkVokO3ZKUI0cOeXt7J/harVq1kqMeAAAAAABeGom+pxsAAAAAACQNoRsAAAAAAIMQugEAAAAAMAihGwAAAAAAgyQ6dF+/fl2ff/65IiIi4r0WHh6uzz//XDdv3kzW4gAAAAAASM0SHbqXL1+uiIgIZc6cOd5rWbJkUWRkpJYtW5asxQEAAAAAkJolOnQfPHhQTZs2ferrzZo10/79+5OjJgAAAAAAXgqJDt2XLl3SK6+88tTX8+bNq8uXLydLUQAAAAAAvAwSHbqdnZ2fGaovX74sZ2fnZCkKAAAAAICXQaJDd9myZfXVV1899fUtW7aoTJkyyVIUAAAAAAAvA8fEztilSxd16dJFWbJkUdeuXZUzZ05J0s2bN7V48WIFBARoyZIlhhUKAAAAAEBqk+jQXaVKFX3yyScaP368li9frsyZM8tkMik8PFyOjo76+OOPVbVqVSNrBQAAAAAgVUl06Jaktm3b6q233tLOnTt1/vx5Wa1WFSlSRPXq1VPevHmNqhEAAAAAgFQpSaFbkvLkyaNOnTolaxGrVq3SkiVLFBwcrOLFi2vUqFGJuj/866+/1oABA1SnTh19+eWXyVoTAAAAAAD/VaJD94oVKxKcniVLFhUpUkTly5d/rgJ27NihiRMnasyYMSpbtqz8/PzUtWtX7dq1S66urk9d7tKlS/r8889VqVKl51ovAAAAAABGS3ToXr58eYLTw8PDFR4ervLly2vevHnKnj17kgpYtmyZWrdurRYtWkiSxowZo/3792vTpk3q3r17gstYLBYNGjRIffv21ZEjR3Tnzp0krRMAAAAAgJSQ6ND97bffPvW1ixcvavDgwZoxY4ZGjx6d6JVHR0fr+PHj6tGjh22a2WxWtWrVdPTo0acuN3fuXLm6uqpVq1Y6cuRIotf3OJPpuRZDGkSvwGj0GIxGj8Fo9BhSAn0GoyW1xxI7f5Lv6U5IwYIFNXDgQI0YMSJJy4WFhcliscS7jNzV1VVnzpxJcJlff/1VGzdu1JYtW5633P+/jiz/aXmkDS4umexdAl5y9BiMRo/BaPQYUgJ9BqMZ2WPJErolKV++fLp582ZyvV2CIiIiNGTIEH322WfKkSPHf3qvkJBwWa1JX87BwcwvfRoSFhYpiyUmRddJj6Ut9BiMRo/BaPQYUkJK9xk9lvY8T4+ZTIk7mZtsofv06dN65ZVXkrSMi4uLHBwcFBISEmd6SEiIcubMGW/+ixcv6vLly+rZs6dtWkzMo29MyZIltWvXLhUqVChR67Za9VyhG2kPfQKj0WMwGj0Go9FjSAn0GYxmVI8lOnRHREQkOD08PFzHjx/XpEmT1KxZsySt3MnJSZ6engoMDJS3t7ekRyE6MDBQvr6+8eYvWrSotm3bFmfajBkzFBkZqZEjR/KscAAAAADACyXRobtSpUoyPeVOcZPJpJYtWz51tPFn6dy5s4YOHapSpUqpTJky8vPzU1RUlHx8fCRJQ4YMUZ48eTRw4EA5OzvL3d09zvJZs2aVpHjTAQAAAACwt//8nO7MmTOrcOHCypTp+e55aNCggUJDQzVr1iwFBwerRIkSWrx4se3y8qtXr8psNj/XewMAAAAAYE+JDt2vv/76v85z+vTp5zrj7Ovrm+Dl5JLk7+//zGUnTZqU5PUBAAAAAJAS/vNAahEREfr666+1YcMGHT9+XCdOnEiOugAAAAAASPWeO3T/8ssv2rhxo/bs2aPcuXPr7bff1ieffJKctQEAAAAAkKolKXQHBwcrICBAGzduVEREhOrXr6/o6GjNnTtXbm5uRtUIAAAAAECqlOjQ/cEHH+iXX35RrVq1NGLECL355ptycHDQ2rVrjawPAAAAAIBUK9Gh+/vvv9e7776rdu3aqUiRIgaWBAAAAADAyyHRz+JavXq1IiMj5ePjo1atWmnlypUKDQ01sjYAAAAAAFK1RIfucuXKady4cTp06JDatGmjr7/+WjVq1FBMTIx++OEHRUREGFknAAAAAACpTqJDd6yMGTOqZcuWWrNmjbZu3arOnTtr0aJFqlatmj744AMjagQAAAAAIFVKcuh+XNGiRTVkyBAdOHBA06ZNS66aAAAAAAB4KTz3c7of5+DgIG9vb3l7eyfH2wEAAAAA8FL4T2e6AQAAAADA0xG6AQAAAAAwCKEbAAAAAACDELoBAAAAADAIoRsAAAAAAIMQugEAAAAAMAihGwAAAAAAgxC6AQAAAAAwCKEbAAAAAACDELoBAAAAADAIoRsAAAAAAIMQugEAAAAAMAihGwAAAAAAgxC6AQAAAAAwCKEbAAAAAACDELoBAAAAADAIoRsAAAAAAIMQugEAAAAAMAihGwAAAAAAgxC6AQAAAAAwCKEbAAAAAACDELoBAAAAADAIoRsAAAAAAIMQugEAAAAAMMgLEbpXrVql2rVrq3Tp0mrVqpWOHTv21Hn37NkjHx8fVapUSeXKlVPTpk21ZcuWlCsWAAAAAIBEcrR3ATt27NDEiRM1ZswYlS1bVn5+furatat27dolV1fXePNny5ZNPXv2VNGiRZUuXTp99913GjFihFxdXfXmm2/aYQsAAAAAAEiY3c90L1u2TK1bt1aLFi3k5uamMWPGKH369Nq0aVOC87/xxht6++23VaxYMRUqVEjvvfeePDw8dOTIkRSuHAAAAACAZ7Nr6I6Ojtbx48dVrVo12zSz2axq1arp6NGj/7q81WpVYGCgzp49q8qVKydp3SbT8/1D2vO8vUKPIbHoMRiNHoPR6DGkBHoMRjOqV+x6eXlYWJgsFku8y8hdXV115syZpy4XHh6uGjVqKDo6WmazWZ9++qm8vLyStG5X1yzPVTPSFheXTPYuAS85egxGo8dgNHoMKYE+g9GM7DG739P9PDJlyqQtW7bo7t27CgwM1KRJk1SwYEG98cYbiX6PkJBwWa1JX7eDg5lf+jQkLCxSFktMiq6THktb6DEYjR6D0egxpISU7jN6LO15nh4zmRJ3MteuodvFxUUODg4KCQmJMz0kJEQ5c+Z86nJms1mFCxeWJJUoUUJBQUFauHBhkkK31arnCt1Ie+gTGI0eg9HoMRiNHkNKoM9gNKN6zK73dDs5OcnT01OBgYG2aTExMQoMDFT58uUT/T4xMTGKjo42okQAAAAAAJ6b3S8v79y5s4YOHapSpUqpTJky8vPzU1RUlHx8fCRJQ4YMUZ48eTRw4EBJ0oIFC1SqVCkVKlRI0dHROnDggLZu3arRo0fbcSsAAAAAAIjP7qG7QYMGCg0N1axZsxQcHKwSJUpo8eLFtsvLr169KrP5/07I3717V2PGjNG1a9eUPn16FS1aVJMnT1aDBg3stQkAAAAAACTI7qFbknx9feXr65vga/7+/nG+7t+/v/r3758SZQEAAAAA8J/Y9Z5uAAAAAABeZoRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAzyQoTuVatWqXbt2ipdurRatWqlY8eOPXXe9evXq3379qpcubIqV66sTp06PXN+AAAAAADsxe6he8eOHZo4caJ69+6tgIAAFS9eXF27dlVISEiC8//0009q2LChVqxYobVr1ypfvnzq0qWLrl+/nsKVAwAAAADwbHYP3cuWLVPr1q3VokULubm5acyYMUqfPr02bdqU4PxTp05Vhw4dVKJECRUrVkzjxo1TTEyMAgMDU7hyAAAAAACeza6hOzo6WsePH1e1atVs08xms6pVq6ajR48m6j2ioqL08OFDZcuWzagyAQAAAAB4Lo72XHlYWJgsFotcXV3jTHd1ddWZM2cS9R5TpkxR7ty54wT3xDCZkjQ70jB6BUajx2A0egxGo8eQEugzGC2pPZbY+e0auv+rhQsXaseOHVqxYoWcnZ2TtKyraxaDqsLLxMUlk71LwEuOHoPR6DEYjR5DSqDPYDQje8yuodvFxUUODg7xBk0LCQlRzpw5n7nskiVLtHDhQi1btkzFixdP8rpDQsJltSZ5MTk4mPmlT0PCwiJlscSk6DrpsbSFHoPR6DEYjR5DSkjpPqPH0p7n6TGTKXEnc+16T7eTk5M8PT3jDIIWOyha+fLln7rcokWL9OWXX2rx4sUqXbr0c63ban2+f0h7nrdX6DEkFj0Go9FjMBo9hpRAj8FoRvWK3S8v79y5s4YOHapSpUqpTJky8vPzU1RUlHx8fCRJQ4YMUZ48eTRw4EBJjy4pnzVrlqZOnar8+fMrODhYkpQxY0ZlysSnUQAAAACAF4fdQ3eDBg0UGhqqWbNmKTg4WCVKlNDixYttl5dfvXpVZvP/nZBfu3atHjx4oA8//DDO+/Tp00d9+/ZN0doBAAAAAHgWu4duSfL19ZWvr2+Cr/n7+8f5+ttvv02JkgAAAAAA+M/sek83AAAAAAAvM0I3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAAAAGIXQDAAAAAGAQQjcAAAAAAAaxe+hetWqVateurdKlS6tVq1Y6duzYU+f9+++/1bdvX9WuXVseHh5avnx5yhUKAAAAAEAS2TV079ixQxMnTlTv3r0VEBCg4sWLq2vXrgoJCUlw/qioKBUoUEADBw5Urly5UrhaAAAAAACSxq6he9myZWrdurVatGghNzc3jRkzRunTp9emTZsSnL9MmTIaOnSoGjZsKCcnpxSuFgAAAACApLFb6I6Ojtbx48dVrVq1/yvGbFa1atV09OhRe5UFAAAAAECycbTXisPCwmSxWOTq6hpnuqurq86cOWP4+k0mw1eBlwS9AqPRYzAaPQaj0WNICfQZjJbUHkvs/HYL3fbm6prF3iUgFXBxyWTvEvCSo8dgNHoMRqPHkBLoMxjNyB6zW+h2cXGRg4NDvEHTQkJClDNnTsPXHxISLqs16cs5OJj5pU9DwsIiZbHEpOg66bG0hR6D0egxGI0eQ0pI6T6jx9Ke5+kxkylxJ3Ptdk+3k5OTPD09FRgYaJsWExOjwMBAlS9f3vD1W63P9w9pz/P2Cj2GxKLHYDR6DEajx5AS6DEYzahesevl5Z07d9bQoUNVqlQplSlTRn5+foqKipKPj48kaciQIcqTJ48GDhwo6dHga0FBQbb/v379uk6cOKGMGTOqcOHCdtsOAAAAAAASYtfQ3aBBA4WGhmrWrFkKDg5WiRIltHjxYtvl5VevXpXZ/H8n42/cuKFmzZrZvl66dKmWLl2q119/Xf7+/ildPgAAAAAAz2T3gdR8fX3l6+ub4GtPBukCBQro1KlTKVEWAAAAAAD/md3u6QYAAAAA4GVH6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIIRuAAAAAAAMQugGAAAAAMAghG4AAAAAAAxC6AYAAAAAwCCEbgAAAAAADELoBgAAAADAIC9E6F61apVq166t0qVLq1WrVjp27Ngz59+5c6fq1aun0qVLq3Hjxjpw4EAKVQoAAAAAQOLZPXTv2LFDEydOVO/evRUQEKDixYura9euCgkJSXD+3377TQMHDlTLli21ZcsW1alTR71799bp06dTuHIAAAAAAJ7N7qF72bJlat26tVq0aCE3NzeNGTNG6dOn16ZNmxKcf8WKFXrzzTfVrVs3FStWTP369VPJkiW1cuXKFK4cAAAAAIBns2vojo6O1vHjx1WtWjXbNLPZrGrVquno0aMJLvP777+ratWqcaZVr15dv//+u5GlAgAAAACQZI72XHlYWJgsFotcXV3jTHd1ddWZM2cSXObmzZvKmTNnvPlv3ryZpHWbzZLVmrR6H1fstVfknN7p+d8AL7QCBf+vx8x2+mjKrXBepXdOZ5+Vw3AF8v7ffs9ePVb8lbzK4ESPvawK57R/j5XIlVcZHOmxl1URF/v3WJGsr8jZgeOxl1m+TPY9JnPNVEyOZueUXzFSTLYMBWz/n9QeM5kSN59dQ7c95ciR5T8t/+HwVslUCV5kLi6Z7Lbuwd0a223dSDn27LGPWzWx27qRcuzZY596N7PbupFy7Nlj3cu1sdu6kbLs1Wc1i/W1y3qR8ozsMbteXu7i4iIHB4d4g6aFhITEO5sdK2fOnPHOaj9rfgAAAAAA7MWuodvJyUmenp4KDAy0TYuJiVFgYKDKly+f4DLlypXT4cOH40z78ccfVa5cOSNLBQAAAAAgyew+ennnzp21fv16BQQEKCgoSKNHj1ZUVJR8fHwkSUOGDNHUqVNt83fs2FEHDx7U0qVLFRQUpNmzZ+vPP/+Ur6+vvTYBAAAAAIAE2f2e7gYNGig0NFSzZs1ScHCwSpQoocWLF9suF7969arMj93RXqFCBU2ZMkUzZszQtGnTVKRIEc2dO1fu7u722gQAAAAAABJkslr/yxjeAAAAAADgaex+eTkAAAAAAC8rQjcAAAAAAAYhdAMAAAAAYBBCNwAAAAAABiF0AwAAAABgEEI3AAAAgHhiYmLiTYuIiLBDJUDqRujGS4en4KUtjx8QWCwWSVJYWJi9ygGSHfs0PK8nAxO9hKQym826fPmyli9fLknauXOnhg4dqvDwcPsWBqQyhG6kek8eVJhMJjtVAnswm806e/as9u3bJwcHB9sBQUhIiL1LA5LFk/s0ghMSw2q1ymx+dJi3bt06hYeHy2Qy0T9IkocPH2rNmjXavHmzhg4dqv79+6tOnTrKkiWLvUtDKhe7L7JYLLp//76dqzGeycreF6mY1Wq1HZCuX79ef//9t/LmzatatWqpWLFidq4OKSEmJkazZs3S/Pnz1aVLFy1dulSTJk1Ss2bN7F0a8J/ExMTYQtOqVat06tQpjR07VlLcfR/wpMd759q1a2rSpImKFSumRYsWKXPmzPQPkuTevXvq16+f9u/fr/r162v69OmSHoUlBwcHO1eH1Ch2H3TgwAFt27ZNJ0+eVJ06dVS2bFnVrl3b3uUZgjPdSLViYmJsBw1Tp07VtGnTdPr0aW3dulUDBw7U77//bt8CkSLMZrP69esnLy8vLVu2TL6+vmrWrFmC96EBqcXjoenXX3/VP//8o/Xr12vOnDmSxBlLPFNs78yaNUsTJkxQ3rx5dfToUXXs2FERERH0DxIltkfSpUunrFmzysvLS9euXdOCBQskSQ4ODrbbuoCkMJlM2rdvnz766CPlz59fnTp10q+//qrJkyfrxIkT9i7PEIRupFqxBxXnzp1TRESElixZIj8/P33yyScqUqSIBg8eTPB+ycUeEDx48EBZsmRRxYoVtXr1au3atUtms1lWq5UDS6RKsfu3L774QhMmTNC9e/f02muvacGCBZo0aZIkgjeebfny5Vq+fLk6duyoadOmadasWYqKilKHDh0I3vhXsWci//zzT12/fl2ff/65pk+frpIlS2rfvn1xgrckhYaG2rNcpDKhoaFaunSp+vfvr/79+6tx48YKCgpSzZo1VaJECXuXZwhCN1K1nTt3qkuXLvrf//6nvHnzSpIqVqyorl27qmTJkhoyZAjB+yUVe0Bw8uRJBQUFadKkSfL391fHjh01YMAA7dq1K87lk1evXrVjtUDS7d+/X+vXr9fIkSM1ceJELV26VB999JE2b96szz//XBLBGwmLiYnRqVOn1Lx5c1WqVElubm7y9vbW5MmTFRERoa5du9qCN1cF4Umxf1+/+eYbde/eXf7+/goLC1PWrFn1wQcfqHTp0vr22281f/58SdLMmTM1evRoRUdH27lypBbOzs6KiopSrVq1dPHiRb399tt6++23NWzYMEnSjz/+qIsXL9q5yuRF6EaqZjab9eqrr+rMmTO6c+eObXrp0qXVrVs3lSpVSp07d9bff/9txyqR3B4/IOjWrZsOHz6s27dvy2QyqXfv3nrvvfc0cOBA7dixQyaTSQsWLNDYsWN19+5de5cOJNqVK1eUK1culStXTpKUK1cu+fj4qF27dlq2bBmXmuOpzGaz7ty5E+cyTbPZrFKlSql58+b6448/1KVLF1ksFttVQUCs2HttBw0apAEDBuj9999Xjhw5JD3aD/Xq1UsVKlTQpk2b1KBBA61evVpdu3aVk5OTnSvHiyx2P2O1WhUREaH79+/rt99+U9euXVWjRg2NHj1aknTx4kVt2rRJ58+ft2O1yY/QjVQjoU/j69atq86dO8vd3V2DBw9WUFCQ7bXSpUvL19dXnTp1UtGiRVOyVBjMZDLp+++/15AhQ9SzZ0+1aNFCefLkkSRlyZJFgwYN0nvvvacBAwaoffv2+vLLL9WnTx9lzJjRzpUDiffqq68qMjJSR48etU3LkSOH6tSpo4wZM2rx4sWaNm2aJJ7akJY97Ux1kyZNFB4erg0bNsSZXqRIEfn4+Cg6OloffvihJPoHcUVHR2vnzp3q0KGDWrZsqfTp0ysoKEjTp0/Xhg0bZLFY1KdPH40ePVrt27fX+vXrVbZsWXuXjRdUbNiOvRIiJiZGefLkkbe3t4YPH65ixYpp3LhxtlsVNm7cqNOnT790AyI72rsAIDEeH1To559/VnR0tCwWi2rWrKnq1avLbDZryZIlGjlypCZMmGAL2RUqVFCFChUkMcrmyyQ6OlobNmxQixYt1KFDB929e1dnz57V7t27lSlTJjVv3lxDhgxR5cqVdf78eU2aNEmFChWyd9lAgh7fvz0uX758euWVVxQQEKDMmTOrePHikh59sPTWW2/J09NTmzdvVq1atWz7OaQtj/fOgQMHFBYWJnd3d5UsWVKVK1eWh4eHtm/frqioKPn6+iosLEzbt2+Xp6enKlSooPnz5+vMmTN8MI04TCaTLl++rKioKN28eVMzZ87UuXPndOPGDUVEROj06dMaOXKkvLy85OXlZe9y8QKLvTLx0KFD2rhxoyIjI5U+fXp98skneu+993Tjxg1t27ZN/v7+evjwoS5cuKCvvvpKq1evVr58+exdfrLikWFIVT7//HNt375dzs7OCg4OVqVKlTRw4ECVLFlShw4d0rJlyxQVFaUxY8botddes3e5MIjFYtGAAQOUPXt2tWjRQgEBATp//rzOnDmjHDlyqFChQvriiy+41A0vvMcf3eTn56egoCDdv39f/fv3V968ebVv3z5NmTJFHh4e8vLykoeHh2bOnCkXFxf17NlTbdq00ccff8wj8tK4KVOmaNWqVcqdO7fOnz+vPn36qHv37goLC9Ps2bP1008/6fbt23JxcZGjo6O+/vpr/fzzzxo2bJj8/PxUsGBBe28C7CihR8jt379fgwcP1sOHD1W9enXVrVtXjRo10sKFC7V37175+/vL2dnZThUjNdm7d6/tCsTChQtr5cqVunnzpjZs2CCr1aoNGzZo586dypQpk/Lnz69evXrJ3d3d3mUnO850I9VYv369tmzZokWLFsnV1VV3795Vnz59NH78eE2cOFHVq1fXw4cPNXv2bPn7+9ueZ4uXj4ODgzw9PbVlyxYFBASodu3aatmypby9vfXll1/q1KlTBG688B4/Sxm736pRo4aOHz+uFi1aaMqUKapTp47SpUungIAATZo0STlz5lTWrFk1b948pUuXToUKFeK2iTTo8d45fvy4fv31Vy1btkwlSpTQli1bNGnSJN27d099+vTRxx9/rODgYH3//ffKkyePatWqJUn65ptvlC9fPmXNmtWOWwJ7iw3cR44c0ZEjRxQaGqqqVauqVq1a2r59uy5evKhKlSrZLhG+cePGS3cGEsa5c+eOli1bpj59+qhbt266fv265syZoxo1athuC+zbt6/at28vV1dX3b9//6X9MIfQjRfSvn37VLVq1TgHk6dPn1aVKlVUqlQp26XiK1euVIsWLTR37lx9/vnnqlWrlrJnz64yZcrYsXokp9gDghMnTujq1asKDQ1VgwYN1L17d3l7eys0NFSVKlWyHYTeuXNHjo6OL/WOGy+H2NAUEhKia9euafHixbZ914cffqh+/fpp+vTpqlGjhqpUqaLQ0FBFR0erYMGCMplM+uKLL3Tr1i2VLl3anpuBFHTy5EkVL17c1juLFi3S5cuX5eHhYRtwr02bNjKZTJo4caJMJpPeffddFSxYUB06dJAk/fnnn9q6das2b96sVatWKVu2bPbaHLwATCaT9uzZo1GjRql8+fLKkSOHevTooffff199+/a1BaNTp05px44d2rJli1auXMnfVyQo9sMZk8kki8UiR0dHXb16VY0bN1ZISIhatWqlWrVq2U6Mbdu2TXXr1pWrq6skvdQnTBhIDS+cBQsWaMOGDcqQIYNtWkxMjO1eIunRmc779+/L1dVVgwcPVmBgoO2RUOXKlZPZbOYxKC8Jk8mkXbt2qVOnTpoxY4YmTJig5s2ba8OGDcqTJ48qVaokSbp8+bKmTJmir776Sn379uWAAC+kDRs22PZjkhQQEKBatWrpzz//VPr06W3TZ82apTfeeEP9+/dXYGCgHBwclDdvXhUqVEhHjhxRv3799NVXX2nOnDmcdUojBg4cGG9QtFu3bmnt2rX6888/4zwnuXXr1hoxYoTWrl2r+fPnx3ntn3/+0ZUrV7R69WrbOAFIu86cOaNJkyZpwIABmj9/vj7++GM5Oj46JxcbgE6ePKlly5bpu+++08qVK+kbxPHk8bbJZNK+ffs0d+5cOTo66tVXX9XWrVvVsmVLvfXWWxo1apQkKTg4WDt37tT3338fZ9mXlhV4AT148MBqtVqtx48ft96+fdtqtVqte/futZYpU8YaEBAQZ95t27ZZmzZtar1z505Kl4kUcOLECWuVKlWsmzdvtoaGhlofPHhgHTJkiLVFixbW9evXWx8+fGj95ZdfrF27drU2adLEeuLECXuXDCTo22+/tTZu3NhqsVhs027fvm3t3r271cPDw/rjjz9arVarNSYmxvZ6v379rB4eHtZjx47Zpt29e9c6e/Zsa1BQUMoVD7u7cOGC9f79+1ar1Wq9dOmSbfqSJUusHh4e1qVLl1ojIiLiLLN8+XJrp06d4vSU1Wq1hoeHG18wUoU//vjD2qFDB6vVarWeP3/e+uabb1pHjRple/3KlStWq9VqPXbsmPXatWt2qREvrti/ZydPnrTu37/farVarX/99ZfVy8vLumnTJmtUVJR19OjR1vLly1vff//9OMtOmTLF2qhRI+vVq1dTvG57YCA1vFAeH2H822+/1fDhw9WvXz81btxYDg4Omj59uvbt26cePXqocePGCg8P16hRo2QymTRv3ryX+xOyNGrv3r2aMmWKVq5cqRw5ctieKTt48GCdOnVKmzdvVrp06RQYGKhXX31VefPmtXfJwFPF3gbx008/6bXXXlOOHDkUHh6uXr166erVq5o/f77c3NziDGw0Y8YM9e3bVw4ODk8d6RwvtwcPHihdunSSpLVr12rLli3q16+fqlSpIkmaM2eO5s6dq+HDh6tFixbKlCmTbdnYXrI+dtkn0i7rY6NJZ82aVRaLRYMGDdK0adM0YMAAeXl56dNPP5WDg4N+/vlnLVmyRGPHjrVdZg7Eiv17dPLkSbVo0UKjR49WpUqV9O233+rGjRsaPny4JOnmzZvq16+foqOjVaVKFRUuXFhHjx7Vrl270tSVE/zlxgsjJiYmziO9ateurZo1a2rFihXasWOHHB0d1aVLFzVs2FCfffaZ6tWrp3fffVfBwcGaPXu2TCYTl5S/RGIPECMjIxUVFaX06dPLbDbr3r17MplMGj16tC5cuKBvv/1WklS1alUCN15IVqtVDx48kPToPu7Tp0/rvffek5+fn27duqUsWbJo3rx5yp07t3r27Kl//vknTkjq16+fHBwc9PDhQwJ3GhUbuO/cuaOqVasqLCxMfn5++umnnyRJffr0Ua9evTRp0iQFBATEuYUhtpdMJhOBGzKZTPr111/Vt29fnTlzRoULF9Zrr72m9957T+XKldPYsWNt+5mDBw8qKirK1n9ArNjAferUKbVp00bdunVTy5Yt9cEHH2jy5Mm6fPmybd6cOXNq6tSpKl26tH744QetWrVKd+7cSXO3uHCmGy+Ex8/e7Ny5U5kzZ9abb74pSRo5cqR+/vlnde/eXU2bNpWTk5OCgoJ08uRJZc6cWdWrV7cdkMbeh4SXR2hoqOrXr6+3335b48aNs02/cuWKunXrprFjx9ru6wZeRJGRkbYzj7/99psqVKigDRs2aPTo0erevbvee+89Zc+eXREREerRo4dCQkI0Y8aMNHUwgoR98803MplM8vb21qRJkxQREaFx48YpKChIH374oQoUKKAuXbrojTfekPTojPecOXM0Y8YM1atXz87V40V0+fJlrVu3ThkzZtQHH3wgSVq3bp1WrFih0qVLq2vXrrp375527typDRs2aOXKlfLw8LBz1XiRxB6zBwUFqX379qpWrZqmT58u6dGgx8OGDVNERIQ++eQTVa9e3bacxWKR1Wq1fYD8Mg+alhASCuzOarXaAvfkyZO1Z88etW3bViVKlFDOnDk1fvx4DR8+XAsXLpTValXdunVVrFgxFStWzPYesSMkIvWKPRNz6tQpBQUFKXPmzMqdO7eKFy+uMWPGaMSIEbJYLOrXr58ePnyozZs3KzIyUgUKFLB36cBTHT58WDNmzNCKFSs0ZcoUHTx4UKtXr1arVq0kyTagTGzwXrBggVq2bKn58+drxowZdqwc9hYZGamDBw9q8+bNqlWrlg4dOqQ1a9ZIkooVK6ZZs2bpww8/1NKlSyVJb7zxhvr06aO8efPK29vbnqXjBRUUFKSRI0fqxo0b6tatm216mzZtFBkZqe+++05NmjSRu7u7HBwctGLFCgI34ogN3CdOnFDbtm1lNpv1119/6eeff1bZsmXl7u6uyZMn68MPP5S/v78yZMigihUrSnp0lYWDg0OaPV7nTDdeGAsXLtTSpUu1YMEClS1bNt7rH3/8sX799Ve1bdtWbdq0iTO6OV4Ou3fv1qeffqpcuXIpPDxcMTExGjhwoJo2baq9e/dq9OjRkqSMGTPqwYMHmjNnjjw9Pe1bNPAMe/bskb+/v65evao7d+5o8+bNKlCggO1Dpg0bNmjUqFHq1auXOnbsqOzZsysqKkpOTk5xbrdB2hQWFqZ27drp3LlzGj58uN577z09fPhQkuTo6KigoCD169dP+fPnV4cOHWxXiEni6i8kaPz48frqq69UqVIlff7558qSJYvttYiICAUFBSlXrlzKkCGDXFxc7FgpXlQnT56Uj4+P+vbtq549e6pdu3a6fv26Jk2apHLlysnJyUmnT59Wv379VKhQIXXv3l0VKlSwd9l2R+iG3VmtVt2+fVsDBgxQo0aN5OPjo0uXLikoKEibN29Wvnz5NGjQIDk6Oqp3795ycnLStGnTuDftJXPy5El17NhR/fv3V5MmTXTp0iXt2LFDCxcu1Oeff64mTZooPDxcR44cUYYMGVSkSBEGdsEL6/GB0IYPH66AgACVLl1aS5YsUdasWeMMjLVx40Z98skn6tChgz766CNlzpxZUtyBJZF2PH67VWhoqCZMmKDo6Gj9+OOPmjBhgt555x3FxMTo4cOHcnJy0pkzZ+Tr66smTZpo2LBhdq4eL5LH90OPmzx5svbv36/69eurY8eOypo1qx2qQ2oUFRWlQYMGyd3dXR999JFt+tOC96BBg5QlSxYNGTIkwRNqaQmhG3aR0Ai8HTt2VKZMmdS2bVutWbNGt2/fVu7cuXXw4EE1aNDAdj9v7LJP+2OCF9/jP7vY/9+zZ4/mz5+vVatW2a5iCA8P18KFC7V7927Nnz9fRYsWtWfZQKI8vn+Ljo7W7t27defOHe3bt08PHjzQ5MmTlTdvXt2/f9/2PPk1a9boq6++0po1a9ivpWGP987BgweVL18+FSpUSOHh4ZozZ462bt2qiRMn6p133rEtc+/ePUVERMjFxYUPaWAT+7f1jz/+0G+//aZ06dKpQIECqlWrliRp0qRJ+vnnn1WnTh29++67ypo1K8dVSJQrV67olVdekRT3yQoJBe8TJ07o008/1cyZM5UvXz57lm13DIOKFPf4QcW3336rn3/+WZLk4+Oj27dv66OPPpKHh4cGDhyomTNnqkuXLoqIiFB0dLSkR6P/xsTE8IchFYodXf7xn13s/5vNZp05c0ZXr16V9OiAIUuWLPL29lZkZKTCwsJSvmAgiR7fv8U+ecHb21sdOnRQmzZtZDKZNHjwYF2/ft0WuA8cOKB27dpp7dq1cUYtR9ry+Pgm06ZN06hRo3TixAk9ePBArq6u6tKli5o0aaKRI0dq586dkqRevXppxowZypkzpxwcHGSxWOy5CXhBxIbn3bt3q3Pnztq7d6/WrVun3r17a+LEiZKkYcOGqVKlSjpw4IAWLlyo8PBwjqvwTLF/m2IDt/ToyQqxt7ysWbNGefLk0bBhw3Ts2DFFR0erRIkSWrlyZZoP3BIDqSGFPTlo2t69e9WxY0eVLl1aDRo00DvvvKOQkBAVLFjQtsxPP/0kDw+POKMc8tic1Cc2jFy4cEEbNmxQdHS0ChcurPbt20uSihYtKjc3N23ZskUdOnSwXTpesGBBZcuWTVFRUfYsH0iU2H3TF198oa1bt+r9999XRESEMmTIoLp168psNsvf318fffSRBg8erC+//FJRUVGqUaOG7YCXA9+0KfbnPnfuXG3atEmzZs1SyZIlbVf+FCxY0Pa89v79++vLL79UdHS0Zs6caXsPznSnTU9ePWgymXT+/Hl99tlnGjRokNq3b6/bt2/rhx9+0IgRI2Q2mzV06FCNGDFCn3zyif744w/bYw2Bp3na3yZHR0fbGBJr1qzRu+++qx49emjRokWqUKECj5z7/wjdSFGxv7ALFizQ5s2bNWfOHJUvX972x8LJyUkZM2ZURESETpw4ofnz5+v27dvcp5bKxR4QnDx5Up07d1aZMmVsI6WaTCa1a9dORYsWVe3atbV9+3Y9fPhQTZo0Ue7cubV06VJFRkbqtddes/dmAImyZs0aBQQEaNmyZbbHfkVHR8vJyUlvv/22smTJogULFqhfv34qUqSI/Pz84jxLGWnXrVu39OOPP+qjjz5SxYoVdf36df3111/atm2bXnvtNTVq1Egff/yx6tSpo0uXLsnHx4dHZqZxjz8v+caNG7bB9G7duqVMmTKpdu3akqRs2bKpQYMGslgs+vjjj1WjRg1VrVpVY8eOVUhIiHLkyGHPzUAq93jw9vf3V7du3eTq6iqJD5JjsYdGigsNDdX333+voUOHqmLFirpy5YrOnj2r7du3K3fu3Orfv7/+97//KSAgQOnSpdOmTZvi/DIjdXk8cLdp00adOnVS//79dePGDY0aNSrOGexevXopffr02r17t5YvX67XXntNoaGhWrBgAYOmIdW4cOGCGjZsqOLFi+vcuXM6cuSI/P39lTdvXtWrV0/NmjVTuXLldPnyZb366qsym83s32B7fu2tW7d0+/Zt7dmzR7t379aVK1d09+5d/f777woJCVHv3r1VtWpV23I8MjPtevzva7NmzdS3b19b6E6fPr0uXryos2fPKm/evLYP9V5//XXlypVLwcHBtveJDUdAYjztA+LHj9UXL15sh8pebOylkeKyZMkiR0dHHT58WFmzZtWmTZsUEhKibNmyadeuXbp//76GDRumHDly6LXXXuOANJUzm806f/682rVrp8aNG6t///6SpNy5c8vZ2Vl79uzRnj17lCtXLvXu3VtdunRRgwYNdPbsWZlMJr366qsEbrywEhoU8NatW9q/f78KFCigr7/+Wq6urnrjjTd07tw5bdiwQd7e3sqcObOKFSsm6dGBM/u3tCehS4Jz5swpb29v+fv7Kzw8XL6+vmrVqpWqVKmiDz/8ULdu3Yp3CTmXlKdNTz4vuUePHurdu7ft9aJFi6pGjRpavXq1smbNanu8pouLi7Jly2a7Dxd4mti/aefOnZPFYpGTk5MKFiwok8mU4IDIkvhb9gx8Z2CohH4p06VLp9q1a2vXrl366KOP1KlTJ3Xq1EmVK1fW559/rtDQUEmSh4eH7T34JU7dLl26pAcPHihjxow6c+aMihYtqoULF+q7775Tp06d5OzsrICAAA0bNkwrV65U3rx5lTdvXnuXDTzTk/u32AOUiRMnqm/fvvrqq6/UqFEjeXl5qXjx4jpw4IDmzp1rGxQyFmNUpD2P987evXt169YtRUREqGXLlurfv7+aNWsmq9Ua54kNERERKly4sL1KxgsmdvDR1q1bq3fv3vrggw9sr3333Xd6/fXX1bJlSy1fvlyzZ89WmzZtVKBAAW3ZskVXrlzR66+/bsfqkRqYTCbt2rVLEydOlMViUf78+dWwYUN17NjRNqgxf78SjyQDwzz+y7h582adOHFCMTExqlixot577z21bNlSN2/ejHMQ8eeff9o+jY3FL3Tq5+XlpalTp2rChAlydHRUTEyMAgICNH/+fHl5eUmSatSoodatW+u7775T48aN7Vwx8GyP799WrVqlX3/9VQ8fPlSJEiXUq1cvzZ49W5GRkcqUKZOkR49Vib3E3MXFxZ6l4wUQ2zuTJk3S9u3bbZf7+vn5acSIEapRo4acnZ0VHh6uc+fOac6cOQoODo7zXFykbffv39ecOXOUMWNGlStXzjZ93rx5Wrt2rZYuXSpvb29ZrVZt375dvXv3VpEiRWSxWLRkyRIVKFDAfsXjhRb7AXJwcLBmzJihvn37ytXVVb/88ouWL1+uiIgI9erVi+CdRIRuGObJUXwbNGighw8f6tNPP9Vvv/2mjz/+WJkyZdLdu3f1zz//aObMmbp9+7YGDRpk58qRnGJ33nXr1pXFYtGECRMUFham0aNH2wK39GgQvcKFCytXrlx2rBZInNj925QpU7Rp0ybVr19f9+/f18KFC3XkyBGNHTtW+fPnV0REhHbt2qXdu3fr+vXr2rx58zMvzUPa8fXXX+urr77SsmXLVKBAAWXMmFH9+vXT559/rkyZMqlatWo6cuSI5syZo+zZs2vz5s1ydHSUxWLhknLI2dlZrVu31oMHD/Tll18qY8aM+uOPP7R8+XJNnjzZdvvK22+/rVq1auny5cuyWCxycXFh0DQ8k8lk0tGjR7Vnzx5VqVJFzZo1k6Ojozw9PZUlSxatXbtWkgjeSUTohqF+/PFH7d69W3PmzFG5cuW0Y8cOffXVV7ZLxyUpMDBQW7dulYODg23QNA4qXh6PD7bRoEEDOTs7a/To0Tp58qSCgoJsBwa7d++Wg4ODXn31VXuVCiTJiRMntH37dk2bNs02sFX37t317rvvatKkSZo9e7aio6N15swZZcuWTfPmzWNQSNhcu3ZNbm5uKlasmEwmk8xms2bNmqWuXbtqypQp2rx5s2rVqqXs2bOrTJkyjG+CeKpUqSIHBwctW7ZMgwcP1pUrV+Tv769y5crZnqlsMpnk6OioIkWK2LdYpBpRUVHavn27tm3bJnd3d9s+J3fu3GrRooUkaePGjbp3754GDBhA4E4k9txIVk9+2hUcHKxcuXKpXLly2rNnjz7++GMNGzZMrVq1UmRkpE6fPq3atWsrT548KlmyJAcVL4nYs9snT57UjRs3dPfuXdWuXVtOTk6qU6eO7t+/r0mTJslisahHjx7avHmzFi9erPXr1zNoGlKNu3fvymKx2D4oevDggQoXLqz58+erQ4cO2rt3r7y9vdW3b1+lT59eJpOJkaZh2z/evn1bN27csD3D9t69e0qfPr369++vbt266eTJkypevLjt0mHGN8HjYvuocuXKMplMWrRokTJmzGh7IkjsYwhj/x/4N7E9lSFDBrVu3Vomk0nr1q3TunXr1KZNG0mPgnfLli1179497du3T506dZKLiws9lgjsvZGsHr+Hu2TJksqcObPy58+vHTt2aOTIkRo6dKjatm0rSTpy5Ij279+vwoULq1SpUpI4qHgZxO60v/nmG40ePVp58uTRmTNn9Prrr6tz586qUqWKGjRoIEmaOnWqAgMDdePGDa1Zs0YlSpSwc/VA4uXNm1e3b9/WTz/9pKZNmypdunSKiYlR3rx5lTt3bt2+fVuSlCFDBkmPfje4giftSWiUckny8fHRhg0bNH78eI0cOVLp06eX9Ch8Z8uWTRkzZozzPpxNwuNiQ7XJZFKlSpUkSUuXLtW8efMUHR2tmjVrxpkHeJrYHrl3754cHR2VLl06eXh46L333pPFYtGyZctkNpvVqlUrSVKuXLn07rvv2gI3Eod0g2Tx+EHF4sWLNW/ePG3cuFF58+bVgQMH9PXXX2vUqFG2wH3v3j2tWLFCuXLlivMLy0FF6hXbAyaTSYGBgRo1apQGDhyoVq1a2Z4hGh0drQcPHujNN99UgwYNZLVaNXPmTK1Zs0bFixe39yYACXp8//b4AWz+/PnVvHlzrVy5UpkzZ1adOnVkNpuVMWNGOTk5xQvYHPimPY/3zvfff6/Lly8rd+7cKlCggDw8PNSnTx8tX75c9+7dU69evXTnzh0tXrzYNg/wLE8Gb6vVqmXLlsnPz08PHjyQt7c3+x08U2z/7N+/XytWrFBkZKQyZMigvn37qmLFiurWrZtMJpOWLFkis9lsu7w8Z86cdq489TFZY689AZLB33//rd27d+u1115T3bp1JT16HEqfPn3UuXNnVa5cWRkyZNDChQsVEhJiGxiGT2JTr4CAAJUoUULFixdXTEyMoqOj9eWXX8pqtWrgwIG6cOGCunbtqjJlyujkyZNKly6dBgwYoOrVq8tsNuvu3bvxzugAL4rHQ5O/v79OnTqlq1evqn79+qpRo4bu37+vadOm6fjx46pfv77y5cun3bt3KyQkRAEBAZzZhiTp888/19atW5UrVy7dvn1bGTNmVK9evdSwYUMFBARo1qxZioiIsA1y5e/vb7tygg+j8aQnj5ke//rXX3/VrFmzlClTJk2dOpW/r/hX+/fvtx2nZ82aVYcPH9bJkyfVr18/tWrVSmfPntXq1au1fft2DRs2TE2bNrV3yakSoRvJ5tdff5Wvr6+cnJw0adIk2yXEkrRt2zbNnTtXd+7cUYECBeTq6qpZs2YpXbp0DJqWil28eFGDBw9WdHS0vvjiC7m5uenBgwf6/fff5erqqly5cqlLly5yd3fX+PHjdfz4cbVt21aenp7q06ePqlevzgcuSBUmT56sjRs3ysfHR6dPn9bNmzeVM2dOffbZZ3JwcNCWLVu0du1a5c+fXzly5NDUqVPZv0GStGPHDn322WeaM2eOypcvr9OnT+urr77Stm3bNGrUKNWtW9e238ycObM8PDwY3wQ2sX8jL168qNu3b8vDw8M2DkBC80nS0aNHlS9fPuXNmzely8ULLjQ0NM7o9ffu3VPv3r3l7u6uoUOH2qaPHj1ae/bs0YIFC1S6dGmdPHlS27ZtU5s2bVSoUCF7lJ7qEbrx3BL6BH758uWaNGmSunfvrr59+8b5wxAaGqq7d+/KyclJuXLlkslk4qDiJXDgwAGtWrVKt27d0meffSYPDw/dv39fzs7OOnDggGbMmKHp06erSJEiCgwM1Lx582S1WjVp0iTlz5/f3uUD/+rYsWMaOHCgJk6caLt38ptvvtHGjRuVLl06TZgwQVmzZtX9+/dlMpnk5OQkSezf0qDHg0/s38g5c+bot99+09KlS23zXbp0SfPnz9e1a9c0depUZcuWLc778GENHrdnzx6NGTNGJpNJWbJk0cCBA1WtWrV4Z7H5EBvPMmvWLEVFRal///62v1PR0dFq3769GjRooC5duig6Otr2WseOHZUpUybNmzdP0qPBQhP6wAeJwzVLeC5Wq9UWuLds2aITJ05Ikjp16qT+/ftr0aJF2rRpU5xlcuTIoQIFCih37ty259RyQJp6WSwWSVLNmjXVunVr5c6dW59++qnOnj0rZ2dnSVJYWJgiIiJ07949SdLPP/+ssmXLavHixQRupBrR0dG6c+eOsmTJYpv29ttvq0GDBjp58qSuXbsm6dGz5mMPVqxWK/u3NOjx8xixfyOzZs2qGzdu6MaNG7bXChQoYHsO9507d+K9D4Eb0qN+un79uubPn6+ePXtq8eLFcnNz0+TJk/X1118rMjIyzvwEbjyLm5ubmjdvLicnJ9so905OTsqWLZu+++4729fR0dGSpFKlSunBgwe25Qnc/w2hG0kWExNj27GHhoZq2LBhmj17tk6fPi1J6tGjh/r27auxY8dq/fr1T30f7lNL3WJ/focOHdKePXt048YN/f777xo+fLj++ecfSVLFihV17949DRw4UC1atNDKlSttz+oGXkQ3b97UrVu3FB4ebpvm7OysbNmy2cJ1bLBq2rSp7t69q19++UVS3ANeDn7Tnu+++06ffPKJRowYoQ0bNtimFy1aVJGRkdqzZ0+cgF2oUCEVKlTI9gEmECt2H2O1WpUtWzZVrFhRPj4+Kl68uGbPnq3y5ctr8eLF2rFjR7zgDTxNgwYN5O7ursDAQE2ePFl///23pEfH7devX9eoUaMkyfbhcWhoqDJnzqwHDx6IC6P/Oz6GR5LFhq2pU6fq3r17KlasmL7//ntFRkZq1KhRcnNzU69evSRJY8eO1d27d9WpUyc7VgwjmEwmHT58WN26ddPIkSPVpk0b/f777/rmm280YsQI26XmK1as0NatW+Xg4KD69eurWLFi9i4dSNDWrVu1du1aXblyRa+//rratWun8uXLq3Tp0ipYsKAmTpyo/Pnzy83NTdKjA5JcuXIpV65cdq4c9rZu3Tp98cUXqlevni5evKhTp04pV65cqlWrlqpXr66GDRtq9uzZunPnjl5//XXlzp1b06dPV5YsWbg/EvHEjia9efNmXb16Vc7OznE+nJk0aZKGDh0qPz8/RUdHq3nz5gyYhkS7fv26tmzZIgcHB3Xs2NE2SvmiRYvUtm1bVa5cWdeuXdPevXu1bt06znAnE+7pxnPx8/PTl19+qQULFihjxoy6c+eOPvroIxUtWlSffPKJXnvtNUmPBh86evSoVq1axZmfl0jsbmPKlCk6e/asvvzyS9tr+/bt07x58+To6Kjx48erWLFijMCLF966des0btw4DRkyRNHR0fr666/l5eWlgQMHSnp0L1ubNm10584dNWvWTLlz59bu3bsVHBzMKOVp3IYNG/Tpp59q5syZevvtt3X9+nV17txZAwYMUI0aNWxnjb788kvt3btX//zzjwoXLqwMGTJo1apVjFKOeH7//Xe1b99eLVq00N9//62goCC1b99eXbp0iXP/f58+fXTt2jUtW7Yszu0vwONi7/W/evWq8ubNK5PJpO3bt+uLL76Qt7e3unfvrty5c+vYsWNasmSJ7t69q6xZs6pnz55yd3e3d/kvDUI3nsvw4cMVExOjzz//3Dbt4sWLat26tTw9PTV48GB5eHhI+r/BZBjgI3V68mDw8a+nTZum7777TuvXr1eGDBls88ybN08zZ85U0aJFNWvWLNuZQeBFtGHDBo0dO1bTp0+Xt7e3JGn69Om6du2aunfvrsjISJUpU0aSNGLECJ07d0737t1ToUKFNPn/tXfncTXn/f/HH6dOxRSyJoko2Spm7GNM9rEvY9/GWuFHlpA9FZNsWbJLJEa2GNRYZzJmrDHkkhmVSAhJJaXlnN8ffftcNbiuua7v11R63f/rczrH+9w6Puf9fC+v9/LlUqW8BAsJCWH69OksXbqUPn36KNe//vprSpcuTUpKCmZmZnh4eFClShXi4uJISkpCq9Via2srVcrFW2JiYjh16hT6+vqMHj0aAC8vL8LDw2nfvj0jRowoELATEhIwMTEprOaKIi6v73327Fn8/Pzo3bs3AwcOBHJPFlq+fDkdO3Zk9OjRmJubK8+T+9L/PRlWFf8RjUaDVqslKSmJ5ORk5XpmZibm5uZMnDiR8+fP4+Pjw+PHj5XHJXAXXzo6OkRHR+Pj40N8fHyBv2PdunXJycnhwoULSuENgAYNGtC4cWMaNWok+7dFkfb777+zYMECxowZowRugPDwcK5du8bw4cMZPXo03377LQDffvst27ZtY8eOHfj4+KCnp0d2drYE7hIqb0lvTEwMr169AmDy5MkkJSXRtWtXevXqRWRkJFOnTgXA3NwcOzs7GjVqhI6OjhQUFQXExcXh5ubGrl27lBUSkDvR0aRJE06fPs3u3bsL9L8kcIt3yZtTValUnDp1iqlTp9K5c2eaNGmi/E7Pnj2ZPn06p06dIiAgQKnNBMh96QOQ0C3+JY1GU+BnHR0dVCoV/fv35+LFi0qF8rwvhzJlytC/f39u3LjB2rVrCzxHFE9ZWVm4urqyefNmxowZw7JlywgJCQGge/fuWFpa4u3tTVhYmFIk6OrVq1hbWzN37twCI6dCFDWWlpb07duXvXv3cunSJQCcnZ159uwZK1euxNfXl3Hjxim1CSA3aJUtWxaVSiVVykuo7OxstFotbdu2xdfXly1btrB582YmTpxIbGwsu3btYvjw4Tg4ODBt2jSuXbtGeHj4W68jS8pFfqamprRo0QJ9fX3OnDnD69evlcfmzJlDixYtOHDgAAcOHJDCVuKd/vjjD3JycpR+95MnT/D19WX27NmMHDmSmjVrkpGRwU8//URSUhJ9+vRh1qxZBAUF8f333xeoVi7+b0lPQbxX/mXEZ8+e5eHDh6jValq0aEHHjh0ZOHAgGzZsIDs7m379+pGcnExoaCgdO3akbdu2zJw5k5EjR1KvXr1Cfifif0NPT48uXbrQo0cP6tSpw7Vr11i0aBGnT5+mXbt2rFu3jkmTJrFx40al0NRvv/3GwYMHZY+ZKPLUajVeXl7Mnj2b//f//h9WVlZkZGSwfft25Vg7Y2NjAgMDefHixVvPlwHFkufVq1cYGRkBcOfOHTp27MiaNWuYMmUK+vr6fPfdd1SvXl1Z4WVsbEytWrWoWLFiIbdcFDV/XgWoVqsZP348pUqV4vjx46xYsYLp06crnzdXV1f09fXp3Lmz3HvEWwIDAzlx4gQbN25UPjOZmZmkpqZSp04dNBoN27Zt46effuLu3bt88sknBAYG0rNnT9RqNfXr15eiaR+Q7OkW/9ayZcs4ceIE1apVo2zZspw9e5agoCAqVarEvn378PPzo3Llymi1WoyMjDh8+DCXL19m4cKFBAYGytKnj8ClS5eYOHEiO3bswNbWlqdPn7Jv3z42bdpEixYt6NKlC6mpqcoexs6dO1OrVq3CbrYQ7xQbG4uFhQUAe/bsoVu3bhgbG7N48WICAwOV/bl5A4+JiYmMGTOGMWPG0Lt378JtvChUFy5cYO/evSxbtozly5fzyy+/sHfvXsqVK0dYWBhOTk6MHj2asWPHUqlSJQDGjx8P5BZSk5ltkScvcF+7do3Lly+TnZ1N3bp16dSpEzk5Ofj5+XH69GkaNmyIi4uLEqKEeJ+0tDSeP39OzZo1SUxMpFy5cmRnZzNt2jRiYmKU+iSNGzdmwIABDB48GHt7e+bOnVvYTS8RZKZb/EtHjx7l+++/Z8OGDdjZ2XH48GHOnDnD/fv3sbOzY/LkyfTo0YPffvuNMmXK0KFDB3R1dTl37hwVK1aU/bwfiRYtWjBw4EB27tzJkiVLqFKlCtHR0Zibm1O+fHlCQ0O5fPky8+fPx9HRUUbgRZH122+/4eHhwYgRI7h9+za7du2idevWGBsbM2fOHNLT0/H09KR8+fLY29sDMHv2bEqVKkWPHj0KufWisMXGxvL06VP69+/P06dP2b9/P+XKlSMnJwd7e3vWrl2Ls7MzAOPGjVMK7x07dkzZwy3BW0DuKpkTJ04we/ZsbG1tefPmDb6+vgwaNIjZs2czduxYNBoN586dw9PTkwULFkjwFu+Vk5ODoaEhhoaG3LhxAw8PD5ycnOjcuTPTp0/n8uXLaDQaunfvTvny5VGpVFhaWiorusSHJ6FbvFNex+D+/ft06dIFOzs7Tp48ibu7Ox4eHvTs2ZNXr16RmpqKlZWVUp06JiaGgIAAjh07RmBgIMbGxoX7RsT/mUaNGrFjxw709PSYN28ely9fZseOHdSpU4fo6GjOnz9PkyZNJHCLIs3KygpLS0tWrVpFWloaBw8epGbNmkql1iVLlqDRaHBxcWH16tUEBgby4MEDjh07hq6urlQpL+GGDBnC5cuXCQ0N5csvv6Rs2bLKYxqNhs6dO7Nu3TqmTp1KYGAgFhYWHDt2TCm4J/v/RZ64uDiWLl3KrFmzGDJkCBqNhvPnz+Ps7IyOjg5ubm6MHTuWjIwMbt68SXp6uoRu8V75v5dq166NVqtl+/bt6Ovr06ZNG+UoX4DU1FS2b9/O9evXmTlzZmE0t0SS4Vah0Gg05OTkAP8s7pKVlUVOTg6nTp3C1dWVWbNmKUcNnD59mqCgINLT04HcfSORkZGkpaWxe/du2cv9kenSpQtqtZqGDRty7tw5/Pz8lJu4paUlI0eOLHBTF6KoycnJwcjIiMaNG/P69WuqV6/OnTt3yMzMRK1WK/c/Ly8vvvrqK8aNG8f9+/cLhCYJ3CVP3i68rKws3rx5Q+PGjZk0aRIZGRl4enoSHx+Prq4u2dnZAHTq1Ik1a9bQsGFDDh06JIFbsG/fPq5fv16g+Fl6ejpqtZrmzZsr17788ktWr17N3r17CQsLQ09Pj8mTJ7Ny5UoqV65cGE0XxUDe5yoiIoKbN29SpkwZAgIC0NPTY/369fz444/K99uPP/7I4sWLOXToEH5+frIV8G8koVsAuYXS5s2bh6OjIzt27FCuW1hYcOHCBWbNmoWLiwtDhgwBckfJjh8/Tk5OjnI+s76+Pp06dcLd3V05o1t8HPJu6A4ODtSoUQM3Nzfq1asn1VNFsZB3CkNeYP7000/ZvXs39evXZ//+/ezfv/+tQL1kyRIWLFjA0aNHJTSVYBqNRlm9k5OTg4GBASNHjmTSpEl89dVXPHnyhFWrVvHo0SPlFI+rV6/SsWNH9u7dK58dgVarxdfXl7lz53Lr1q0CRznFxcUpx6tqtVq0Wi3NmzfHysqKhw8fArn3rfLlyxda+0XRllcb4OTJk0ycOJG9e/eSkJCAkZERGzdupFSpUmzZsoWffvoJgEqVKlG/fn0CAgJo0KBB4Ta+hJHQLQgKCmL27NlAbqXqpUuXsmnTJgD69u2LjY0NAOXLl+f+/fvcvXuXadOmkZiYyJQpU4B/hjJ9fX3l3FLx8cjrdDZs2BCtVsutW7cKXBeiqMq/h/bOnTs8evSIKlWqUK9ePWbPno2ZmRlHjx7lwIEDynNWr15NcnIyw4YNQ61WS2gqwfI+O1u2bMHBwYEJEyawZ88eAIYNG0a3bt14+vQp3377LdeuXWPs2LGsXLmywICkfHZKrrxAdPr0aQwMDJg7dy4RERFkZ2dTp04dunfvjq+vLzdv3kRXVxeVSkWpUqUoVaqUfL+Kv0SlUnHx4kVmzZrFtGnTmDlzJiYmJmg0GiV4GxgYsHXrVk6dOoWNjQ0jRoygZs2ahd30Ekeql5dw+/fvx8PDg1WrVtGpUyeeP3+Oo6MjqampBSqPjx8/nocPHxIbG0vDhg3R19dn+/bt6OnpyR7HEubIkSMsWrSInTt3YmdnV9jNEeIvWblypXLOtrW1NQ4ODjRv3pyXL1/i6elJXFwc1tbWJCQkcPPmTX799Ve5r5Vg+Qdrtm3bxtatWxkwYADx8fGcO3eO4cOHM23aNCD3e/To0aPExsZibm6Ov7+/MustRGZmJvr6+qSlpdGnTx9MTU1xcXGhUaNGXLx4EX9/fxITExk/fjwVK1bkzJkz7N+/nwMHDmBubl7YzRfFwMqVK3n+/DleXl5KnzwnJwcdHR1UKhWvXr1i2LBhlC9fnvXr12NoaFjYTS6RZPi1BIuKimLhwoV8/fXXdOrUCchddpKTk0N6ejoZGRlER0djaWnJpk2bePToEVFRUVStWhUrKyt0dHRkBqgEatmyJTY2NlSpUqWwmyLEe+U///bSpUscPXqUpUuXcv/+fS5fvszcuXNxd3endevWLFy4kK1btxIbG0vp0qU5f/48urq6Umm6BMv7u9+6dYvSpUuzcuVKvvjiC1JTU/n+++9ZsmQJANOmTWPAgAF88cUXJCcnY21tLd+NQqHVatHX1yckJIRLly5RtWpVLl++zKJFi1iyZAktW7ZER0eH4OBgpkyZQo0aNdDR0cHf318Ct/jL7ty5owwS6+rqotVqlZ/j4+MxMzNj9+7dJCcnS+AuRDLTXYLFx8cTGBjIoUOHmDt3Lr1792by5MlcuXKFZs2aodFouH37NjY2NrRo0YJWrVphaWmpPF86pCXXmzdv5Dg4USwcPnyYqKgojI2NGTduHAC3b99m+/btXLt2jcWLF/P555+TmZkJ5G6xUalUEpoEV65cYcSIEZQrV47169fTtGlTAF6/fk1wcDBeXl6MGzeOqVOnFnierP4S+V29epWxY8cyf/58rK2tycrKYv78+ejq6rJ8+XJlX21cXBy6urqULl1a9nCLv0yj0bBu3TquXLnC4sWLsbCwUK4/e/YMb29vxo0bJ/u3iwBJTCWYmZkZo0aNYsCAAbi7u9OjRw8eP37M3r17WbduHUuWLGH9+vUYGBiwfft2vLy8CjxfAnfJJYFbFAdxcXEEBweze/duMjIylOsNGjRgzJgxNGnSBDc3N8LCwtDX10dfXx+VSoVWq5XALTAzM2PSpEm8efOGGzduKNc/+eQT+vbty7x589i0aRP79+8v8DwJ3CK/iIgI6tWrR58+fWjUqBFNmzblwIEDZGdnM3/+fG7cuEF2djbm5uZUq1ZNArd4r7x50qdPnxIfH09iYiI6Ojp07tyZf/zjH+zYsYPo6Gggd/Bv//793Lp1S47vLSJkpluQkJDA3r172bFjB+PHj8fJyQnIPR4lr/JqRkYGn3zyiQRtIUSRlX9JeZ5z587h7+9PVFQUW7ZsoX79+spjkZGR+Pj4UKpUKdauXft3N1cUIe9buZWcnMy2bdvYsWMHc+bMYejQocpjaWlp/Prrr7Rr104GacRb8u5Ha9euJTQ0lNDQUAAyMjIoVaoUP//8Mw4ODlhbW+Pl5UXDhg0LucWiKMtflM/HxweVSkVycjK9e/fGycmJW7duMXPmTGrUqIFWq6VcuXKEh4ezc+dOmeUuIiR0CwAeP37Md999R2BgIHPmzGHAgAEAby2xlGVzQoiiKH9oSklJ4dWrV1SrVg2A69ev4+vrS0pKCp6entSrV095XmxsrLKPUpRM+T87u3fv5t69e9y7d48BAwbQrFkzpQJwQEAAM2fOVI7OzE+2I4j3uXv3LoMGDcLJyUmZ1AC4ePEiO3fu5NmzZ/j4+MgebvFvXbhwgYkTJzJt2jQGDRqEn58fa9euZdWqVXTr1o1bt25x8+ZNfvvtN2rXrk3nzp2pXbt2YTdb/A8J3SXEu2aA/iwhIYHdu3eze/du5syZQ//+/f+m1gkhxH8v//1t/fr1/PLLL8TGxtK4cWN69OhBt27duHDhAjt37iQxMfGt4A1So0LA8uXLOXToECNGjODRo0dcvHiR5s2b4+HhwYsXL5SB6fHjxzN27NjCbq4oYvLuQ5GRkdy9e5fatWtjZmZG+fLl2bhxIwcPHqRfv35MmDCBtLQ0tmzZwuvXr3F1dZUBG/Ev5X223N3d0Wg0uLu78+TJE7755htatmyJh4dHYTdR/AXyv7wEyN+ZzFvW9K4QbmJiwrBhw1CpVMyfP5+KFSvSrl27wmiyEEL8ZXn3Ml9fX/bs2cP8+fOxtbXF0dGRLVu2YGtrS6tWrdBqtQQEBDBx4kR27NhBjRo1lNeQwF2yXbx4kZMnT7J161ZsbGy4cOECwcHBtGzZErVaTZUqVRg5ciSpqamcP3+eMWPGyDnKogCVSsXJkyeZM2cOFSpUICUlhR49ejBq1Ci++eYbdHV1lRoAhoaGPHnyhJ07d0rgFm/J67f/eTD4xYsXdOjQgYyMDAYMGEC7du1wd3cHICQkhAoVKtCyZcvCarb4N+R/+kcu/3/YrVu3cufOHebPn//eQh0mJiYMHjwYU1NT2rRp83c2VQgh/rK0tDTl6BOtVktCQgI//vgjixcvpn379ly9epXHjx8zb948ZdlmXpXyS5cuYWZmVpjNF4XI19eXLl26YGVlpVx7/fo1FSpUwMbGhpCQEObPn8+8efPo1asXaWlp3L59m2bNmjFp0iTKlSunFNyT4C3yPgePHz/m0KFDuLq60rNnTw4dOsTRo0dZs2YNzs7OODo60qVLF86ePYuRkRHNmjWjZs2ahd18UYTk9dnz7itpaWmUKVNG+bly5cps3LiRVatW8dVXX+Hq6opKpSIrK4vTp09jYWFB06ZNZSCniJKh/Y9cXuBevnw5O3fu5LPPPiMlJeVfPsfU1JTBgwejVqvJzs7+O5ophBB/mbOzM2FhYcrPKpVK6Xi0bduWM2fO4ODggKurKwMGDCA9PZ0jR47w4sUL2rZti6urK7q6uuTk5BTiuxCF4cKFC9y7d085VidPWloaarWaX375hQULFuDi4qIUTbtw4QLHjx/n6dOnGBsbS+AWBahUKm7evMm2bdtQq9V07NiR0qVLM2zYMAYPHszDhw9Zs2YNd+7coUaNGowaNYr+/ftL4BYF5AXuhw8fsnHjRoYOHUrv3r1xcXHh+++/B2D06NGUK1cOrVaLi4sLenp65OTk4Ovry7Vr1+jVq5cE7iJM/jIfqfwz3HkdBh8fH5o1a/YfvY785xVCFDX16tWjY8eOAGRmZqKvr0/p0qVJS0tj3rx5nDp1ilmzZikFr+Lj4zl48CCVKlWidevWyutIUciSp1WrVspM0OnTp6lYsSKffvopnTp1Ys2aNYwdO5alS5fSp08fAN68ecO+ffsoV64clStXVl5HArfI79dffyUkJARdXV1SU1OpUKECgPI5OnjwIKtXr2bGjBkFVlgIAf/ss//+++84OztjY2ODlZUVbdq04cCBA1y+fJl79+4xZcoURo8eja+vL927d8fW1paMjAxu3ryJn5/fW4OJomiRRPWRWbFiBTNmzCiwB+TRo0eUL1+eRo0aKdf+PEovRYSEEEXdnTt3qFevHhMnTgQgMDCQN2/e0LdvXypUqMDo0aNZs2YN9vb2DBkyBK1WS2ZmJsuXL0dPT0/2upVgK1asAGDGjBno6enxxx9/4O3tjZ2dHbq6utjZ2eHm5saCBQs4fvw4JiYmvHz5kgMHDvD06VM2bNggM9zivcaPH0+ZMmXw9/fH398fBwcHZQtLnz59yMzM5OTJk5QpU6aQWyqKmrz+9507dxgyZAhDhw7FycmJsmXLAtClSxc2btzI3r17MTY2ZuTIkVhbW3Pw4EFevnxJ/fr1mTt3rqycKAakevlH5PLly2zdupWNGzcWmKEODg5m3bp1BAQEUL16dSA3dGs0Go4dO0br1q2pVKlSYTVbCCH+rVWrVnH9+nUmT55M8+bNgdwAFR4ejoODA7179yYjI4ONGzcSHBxMp06d0NfXJzY2lqSkJA4dOoSenp4MMJZAqampLF68mNjYWDp06ICjoyMAx44dIyAggJo1azJ27Fjq1avHpUuX8Pb2JikpiYoVK1K9enVl0EaOzBTwz0mL9PR0NBqNUlsCYMuWLYSGhtK8eXNGjhypHFsIuZ9DCd3iXe7fv0/Pnj0ZM2YMU6dOVe41eUcRPnjwAA8PD548eYKvr6/MaBdT0vP4iDRu3JgtW7agVqsJDQ1VrlerVo3MzExCQkJISkoCcpfG5eTksH//fg4dOlRYTRZCiL+kSZMmZGdnExgYyIULF4Dc2cu2bdvi5+fH4cOHKVOmDJMnT8bd3Z34+HgyMjL47LPPCA4ORk9Pj+zsbAncJVCZMmWYNWsWtra2nDt3jvXr1wPQo0cPRo4cSUxMDNu2bSMyMpIWLVpw6NAhAgIC8PPzw8fHR/nsSOAWeYH7p59+YsaMGfTt25fly5crNSbyiqVdvnyZwMBAHj58qDxXArd4F41Gw8GDBzE0NFS2JeTVHFGr1Wi1WmrUqMH48eOJjo7m7t27BZ4vc6fFhywv/0jk5OSgr68PwL1795gzZw6HDx9m8+bNtGjRgoEDB7Jp0yaSk5Np0qQJRkZGbNq0ibS0NMaMGVPIrRdCiPfLycnB3t4eQ0ND1qxZQ1BQEJC7P9fNzY1Fixbh5+cHQO/evZWzufMH7LwOjChZ8maMKlasSIcOHXj+/DlHjhzhk08+YfTo0XTv3h2A7du34+/vz/Dhw7Gzs1Mq3kNup1g+OwJyJyzOnDmDi4sLo0aNok2bNpw4cYKrV6+SkpJCz549cXJyQkdHh++++w49PT0mT54snx/xXjo6OgwbNoz09HSOHTtGRkYGjo6O6OrqotFolO0sDRs2xNjYmKdPnxZ4vmx3KT5kyP8j8OLFC2UE/sKFC9SqVQtvb29iY2MZP348kFvtd9KkSVy/fp0pU6bg5eWFVqtl3759qNVqqeIrhCiSNBqNcn/T19enVq1aXLp0CT8/Py5dugTAokWL+PLLL/H391eqlOcF7rxZAJmlLJny/u5Lly5l8+bNpKSkkJqayq5du9i0aRMA3bt3Z+zYscTGxrJ+/XpiYmIKvIasjhB5YmJiWL16NbNnz2bq1Kn06dOHO3fukJyczK5duwgJCQHAwcGBb775hv79+0vgFv+WiYkJjo6O2Nracvr0abZs2QKgnNUNcPv2bapUqULjxo0LsaXif0P2dBdzP/30EwcOHMDV1ZWAgAB27drF5cuX0dfX59y5c3h7e1OnTh2lc5GYmEhqaipqtRozMzNUKpWyZ0QIIYqqpUuXcuLECbp27UpKSgo//PADzZo1Y8SIEXz++ecAeHh4EBwcjLe3N507dy7kFouiIiQkBDc3N/z8/Khbty6vXr1i+fLl3L17l6+++krZ433w4EGuXbuGp6enBO0S7n0F8x49esSePXsYN24cGRkZDB8+nDZt2tC/f3+cnZ0pW7YsQ4cOZcCAAYXQalHcPXv2jE2bNhEREUHHjh2VexOAl5cXUVFRrFy5EmNj48JrpPivSegu5vJmro2MjEhMTGTXrl1YW1sDuUedhIWF4e3tjbW1NRs3bnzr+VJUSAhR1EVERDBhwoQCxx7+/PPPrFq1isqVK+Pg4KBc3759OyNHjpSZbaHYunUrx48f58CBA8oA85MnT1i0aBG3bt1i3LhxjBo1qsBz5Lux5Mr72yclJZGYmEhOTg5169YFcrcrJCcnU6FCBRYuXEhaWhru7u4YGRnh4uLC1atXadCgAcuWLcPIyEiW/or/2LuC94YNG9ixYweBgYFKH18UPzK9WUxptVq0Wi2ffvopbdu25cCBA7Rq1apAR9PAwIC2bdsCuQWHhg0bxu7duwu8jnQqhBBFnYGBAVBw71qbNm3QarVMmDABPT09UlNTad++vVKjQipNi7zwVLFiRTQaDQkJCZiZmaHRaKhatSpOTk44ODgQEBCAkZER/fv3V2Y45buxZMr7zPzxxx/MnTuXFy9eANC6dWs8PT3R1dVVil3du3cPGxsbjIyMADA0NGT06NH06NFDiqaJ/1rlypUZP348mzZtIiwsjFOnTvH777/z3XffSeAu5uRbpRjKK6yQ1ylo3bo1S5cuJS4ujnXr1hEREaH8rr6+Pvb29jg7O2NsbKzsDRFCiOIi716XVwk4OzsbgC+//BJLS0uuX79e4L4Hsoe7JPrz91ve58bOzo74+HgCAgJIT09XrmdnZ9O0aVNGjRrF119/DUhRopIs/3nJgwYNolmzZnh5edG2bVuCg4PZs2cPkDugl56ejqmpKffu3SMoKIjly5dz9uxZunbtKkewiv+1vOBdo0YNkpOTCQoKomHDhoXdLPG/JDPdxUz+JW+7du0iJSWFUaNGYWhoiJmZGa6urvj5+eHg4KD8B/3555/p0aMHPXr0eOs1hBCiqHjfvcnKyorevXuzaNEiTE1NadGiBQApKSnUr1+fL774QqlCLUqm/J+d8PBwEhMTqVq1KjVr1sTKygovLy+mTp1Keno6HTp0wMzMjM2bN1O9enVGjBihHKMpgzUll46ODvfv32fgwIHKecmQe+zqvn37iIuLA3IH9EqXLk2vXr3YsWMH27Ztw8DAgC1btmBiYlKI70B8TCpXrszMmTPRaDQykPORkD3dxUj+wh7e3t4cO3aMiRMn8sUXXyjHm1y9epW5c+dibW1N+/btOXnyJNevX+fChQsStIUQRVb+0BQcHMwff/yBSqWiTZs2tGrVCoA5c+Zw5MgRRo0aRZkyZbh48SLp6ekEBQVJaCrB8n83rlixgpMnT/LmzRuqVatG1apVmT17NiYmJoSFhbFs2TJevXqFrq4uxsbGBAUFoaen997CWaLk0Gg0rF69mv379+Pk5KTs89+8eTM+Pj60a9eOFi1aYGxsTNeuXTEwMCArK4vk5GR0dHSUZedCCPEuErqLgTdv3ih7GiG3wqqPjw8bNmzAzs4OyO10pKWlYWRkxM2bN/H29iYjIwMjIyO2bdsmnQohRLGwfPlyDh06RPv27bl37x4ajYbOnTsre7W3b99OWFgYGRkZVKlShVWrVqGnpycreARbt25l586drF69mqZNm+Lt7c3u3btp0qQJS5YsoVq1aiQkJPD69WtSUlKwtbVFR0dHTvAQioSEBLZt28aNGzfo06cPaWlpbN26laFDh1K/fn2OHj3K48ePefbsGbVq1WLkyJG0b9++sJsthCgGJHQXcdOnT6dbt2507NhRCc1LliwhJSUFb29voqKiuHr1Kvv27SM1NRUXFxe6dOlCYmIiWVlZVKlSRToVQohiYe/evWzZsoW1a9diY2PD8ePHmTlzJpaWlnTt2pWJEycCkJqaSqlSpVCr1XLsYQmWf6Dl2bNnTJ8+neHDh/PVV19x7tw5pkyZQo8ePbh58yaVKlXCy8uLKlWqFHgNWR0h/iyvevQvv/xCXFwc27ZtU1bb5N1rAgMD+cc//sHYsWOxsrIq5BYLIYoD6aUUcdWrV+fLL78EICsrC319fUxNTTl+/Dje3t5cvHiR6tWr07ZtW54/f868efNo0aIFFStWVF5Do9FIh1QIUeTkD01ZWVmkpaUxYMAAbGxsOHXqFIsWLWLq1KlERUWxZ88e1Go1jo6OBSoDa7Vaub+VQFqtVvnsXLhwgSZNmuDo6IiVlRU3btxg/vz5uLq6MnjwYDw9Pdm9ezeOjo74+fkV+H6UwC3+rHLlykyYMAGVSsXly5eJjIxUQndesb7hw4fLYJ8Q4j8id4siKq8zOn36dAD27NmDVqulf//+dOrUiZSUFM6ePUv//v1p3bo1lpaWXLlyhZiYGP68eEGWXAohiqK8e9PevXuxtramT58+ZGdn8/DhQ3x8fJg4cSKjR48mMjKSsLAwvvvuO8qXL8+AAQOU15AtMyVP/q1SPj4+nDlzBl9fX9q0aQNAUFAQzZo1UyqSm5ub06ZNGxo0aICxsXFhNVsUI5UqVcLJyQmtVssPP/xAdnY2jo6O6OvrK2FbArcQ4j8hd4wiKq9Dkde5CAsLIzo6GkNDQ7p168bUqVNxcHDA0NAQyF3ytHnzZoyMjChfvnxhNl0IIf6l/DPcAQEB+Pj4sG/fPoyNjdHV1eXs2bMAdOvWDYBXr17RvHlzWrZsSb9+/Qqt3aJoyPt+jIuL4+7du8ybNw8LCwvl8eTkZKKiosjOzkZfX5/w8HBat26tFMaSJeXir8h/XvKPP/5IRkYGzs7OEraFEP8VmQItgvKP4j958gTIrZ756aefsnHjRo4ePUpaWhqGhoakpaVx8uRJxowZw7Nnz1i3bh0qlUrO4xZCFFl5gTsiIoKMjAwWL15MnTp1lPuerq4uOTk5nDt3jmfPnuHn54eJiQlDhw5FR0eHnJycwmy+KCT5V3Ht2rWLkSNH8vz5c6pXrw78c+lvixYtMDAwoF+/fnz99ddERUUxfPhw5TUkcIu/Ki94W1hYcP36dZKSkgq7SUKIYkoKqRUx+WeAjh49SkhICOPGjaNJkyYAuLi48I9//AMHBwe6devGixcvCA4O5unTpyxcuBC1Wi37jIQQRV5kZCR9+/YFwNPTs8CS8WfPnrF48WJu3rxJdnY2lStXlqOdSrgrV64QERGBSqVi8ODBpKamMmzYMOLi4ti8eTP29vbK72ZnZ3PmzBlu374NwOTJk1Gr1TLDLf5rz58/B5DzkoUQ/zUJ3UVI/sAdHh5OUFAQYWFhtGrVijFjxijHg7m4uBAZGYmjoyPdu3cnKyuL0qVLyzm1QogiKz4+nqSkJExMTKhcuTKQO7A4b948evfuzdy5cyldurQSqp8/f86DBw94+fIl9vb26OrqyoBiCXX48GE2btyIvb09lpaWDBo0CICUlBT69etH2bJlWbp0KXXq1Hnva8h3oxBCiMIkobsI8vLy4uzZs3To0IHExETOnDmDvb09w4cPV2a8Z82axdmzZ1m5cqUywi8zQEKIoigkJISgoCAyMzMZPnw43bt3Vx7bv38/CxcuZNKkSUyYMAEdHZ133sskNJVMhw8fxs3NjWXLltGuXTv09fWB3DO5mzZtipWVFb1798bExARPT0/l+CY5t10IIURRIqG7iAkPD2fy5Mn4+vry2WefARAaGsrGjRuxsLBg3Lhxyoy3r68vEyZMkI6oEKLI2r9/PytWrGD+/PnY2NhQq1YtAG7dukWdOnUwMDBg3759uLm5MXnyZMaPHy9hSQAQHR3N1KlTGTZsGIMHD1auT5kyhRMnTtCyZUumT59OrVq16NOnD1WrVmXBggXUq1evEFsthBBCvE16NkWMWq1GR0dHGc0H6Nq1K05OTpw6dQp/f3/Cw8MBmDRpklJwSAghippffvmFVatWMW/ePHr27KkEbhcXF1xcXDhz5gyZmZkMHDgQDw8PNmzYwIoVK9469lCUTI8fPyYtLY1mzZopRdLc3d2JjIxk8+bNqFQq1qxZQ0xMDIcPH+bGjRsEBQUVcquFEEKIt8nmuEKUt4Tyz0sps7OzSUhIwMbGhqysLPT09OjWrRsbNmzg7t27HDlyhOrVq2NiYgIgM91CiCIl/1GHLVq0oFOnTspjI0eOJDExERMTE7Zu3YpKpaJDhw4MGDCA9PR0fvjhh0JsuShKIiIiSEtLw9LSUrk2YcIEnJycqFq1KtWrV2f+/Pl4enqyf/9+zp8/T5kyZQqxxUIIIcS7yUx3IdFoNErQzs7OVq43atSI9u3bM2fOHG7fvo2enh4ASUlJ2NjY0LdvX0JCQrh161ahtFsIIf4dlUpFZmYm58+fp2rVqpQuXRqAzMxMrK2t2bVrFwEBAZiZmbF+/XpOnDiBVqvlm2++Yffu3cpgpCjZatasyZs3b/jll1+Ua1WqVKFq1apoNBosLS1p3749FSpU4NWrV8o577L6SwghRFEjM92FIH+Bl4CAAK5cuYJWq8XMzIw5c+awaNEiXr16xdChQ3F0dMTIyIizZ8+SnZ2Nt7c3x48f59y5c3To0KGQ34kQQrybWq3GyMiIxMREcnJylG0z8+bNU37H29ubHj16EBcXpwxCvmv1jyiZbG1t0dXVJSgoCAsLC8zMzJTHdHR0ePXqFeHh4dSqVavADLes/hJCCFHUyEx3IcgL3CtXrmTDhg1YWFhQrlw5Tpw4Qb9+/UhNTWXt2rV88803hIWFceDAAUqVKoWfnx8A+vr6yt5IIYQoinR0dLCysuLSpUvExsYqITr/DHbe0uGaNWsWeK4EbgFgbm6Ou7s7P/74I6tWrSIyMlJ5LD4+HmdnZx4/fszMmTMBZHWEEEKIIkuqlxeSqKgonJycWLRoEW3atAEgLi6OSZMmUapUKaUYTEpKCgYGBhgYGACwevVqDh48SGBg4FsdVSGEKCwRERHY2toC4OfnR926dTE3N2fUqFGYmJiwfPlyTE1NUavVaDQaXr9+zbRp08jIyGDHjh0yOyneKScnh0OHDuHu7k7FihWpU6cOOTk5pKWlAbB792709PTkSDkhhBBFmoTuQnLt2jUmTJhAcHAw1apVU5ZT3rlzBwcHB2bNmkXPnj2VjsS9e/fw9/fnzJkzbN26lQYNGhT2WxBCCCB3wLBPnz707NkTQ0NDAgMDCQ4Opnbt2pw4cYLFixdTrlw5+vbty6effkpkZCSnTp3i+fPnBAcHS2gS/1ZkZCT79+8nNjYWU1NTGjRowODBg9HV1SU7Oxu1WnbLCSGEKLokdBeS5ORkevbsyZgxYxg1apRyPSkpiYEDBzJmzBiGDBmiXE9JSeHWrVuYm5tjbm5eCC0WQoh3e/36NefOncPV1RVdXV2OHDmi3KcyMzOJjIxkxYoVREZG8urVKxo2bIi1tTWenp6o1WoJTeK/JoM1QgghigPp5fxN8hdP02q16Ovr065dO3788UeqVKlCt27dAChdujRlypRROqB5M+Bly5bl888/L7T2CyHEn+Xd1z755BOlQrlarcbf35+FCxcCoKenR6NGjdi1axcPHz4kNTUVc3NzDA0NUalU5OTkSOAWf8m7CuxJ4BZCCFEcyEz3B3ThwgWuX7/OxIkTgYLBGyA6OhofHx8ePXpEgwYNaNiwIaGhoSQlJXH48GHpTAghiqz897P4+HjUajVarZZr166xZMkS2rdvj6enZ4Hf/fM9UKqUCyGEEKIkkOrlH0hmZiahoaGEhoaybds2AKXTCbmdTUtLS2bOnEn37t2JiIjg+PHjVKxYkUOHDslZo0KIIit/eF67di1ubm7Ex8dTtWpVvvzyS1xcXDh79ixubm5A7r3P29ubn3/+ucDrSOAWQgghREkgM90fUEJCAtu2bePGjRt07NgRR0dHILfDqlKplA5ndna2Mqud/5osuRRCFCV/nqleuXIlwcHBzJs3j+bNm1OxYkUA0tPT+eGHH1i6dCl16tRBrVbz4MEDTp48Kfc1IYQQQpQ4MtP9AZmYmODo6IitrS2nT59my5YtQO6sT95Yx/Pnz3F1deX48eMFzrGVjqkQoih59OhRgcAdHh7O0aNHWbt2LV27dqVMmTIkJCTw66+/kpiYSN++fVm9ejVVqlTBwsKCEydOoFarZQWPEEIIIUocSXYfWOXKlRk/fjybNm3i9OnTADg6OqKjo8PTp0+ZMmUKL168wNvbW3mOLLkUQhQl3t7e/PHHH/j5+Sn7sDMzMzE2NsbExISIiAhCQ0M5ffo0GRkZVK9enYULF9KqVStatWqlvI6s4BFCCCFESSTLy/8mz549Y9OmTURERNC5c2f69evHlClTSExM5PDhw3JOrRCiyHrw4AEmJiYYGBiQlJRE+fLliYqKol+/ftjY2HD79m26d+/O559/TsWKFZkzZw5ubm7Y29srryFF04QQQghRUkno/hs9e/aMzZs3c/PmTWJiYqhSpQpHjhxBT09PZoCEEEXSr7/+SsOGDSlXrhzff/89CxYs4MCBA9SpU4fIyEguXrxIrVq1aNasGYaGhmRlZTFo0CAmTJhAp06dCrv5QgghhBCFTkL33+zZs2esWLGCFy9esGHDBgncQogi69WrVwwaNIj09HQOHz7M8+fP8fT05P79+2zevJk6deqQlZWFnp4emZmZvH79mhkzZpCcnMzevXtl5Y4QQgghBBK6C0VycjJlypRBR0dHArcQokiLiorC1dWVrKwsAgMDSUpKwsPDg6ioKPz9/alduzZv3rzBz8+PsLAwAAIDA2XLjBBCCCHE/5DQXYj+fPyOEEIUFXn3p+zsbBISEnB2dkZPT48tW7bw8uVL3N3diY6OZvv27dSuXZvbt29z/vx5xo4di66urgwoCiGEEEL8DwndQgghFHmF0gAyMzPR19cHYNy4cZw/f5769euzc+dOXr58iYeHBzExMWzYsIF69eopryEz3EIIIYQQ/yTTrEIIIQC4evUqzs7OXLlyBUAJ3M7OziQkJODv749KpWL48OEYGxvj5uZG+fLlWbduHZBboRyQwC2EEEIIkY/MdAshhAAgJiYGNzc3SpcujbOzMzY2Njg7OxMTE8PWrVsxNTUlOjqaGTNmAODv78+bN2+oXLmybJURQgghhHgPCd1CCCEUsbGxLF68GF1dXVJTU0lPT2fdunVUr15d+Z3o6GhGjRrF559/jre3NyA1KoQQQggh3kdCtxBCiAJiY2Nxd3cnIiICT09PunbtChQM1vHx8VStWlWWkgshhBBC/BsSuoUQQrzlwYMHuLu7o6Ojg5OTE02bNgXentGWomlCCCGEEP+ahG4hhBDvlLfUHGDChAk0adKkkFskhBBCCFH8yAY8IYQQ72RhYcH8+fPR1dXl22+/5c6dO4XdJCGEEEKIYkdCtxBCiPeysLBg1qxZNGvWDGtr68JujhBCCCFEsSPLy4UQQvxlUqVcCCGEEOI/I6FbCCGEEEIIIYT4QGS6QgghhBBCCCGE+EAkdAshhBBCCCGEEB+IhG4hhBBCCCGEEOIDkdAthBBCCCGEEEJ8IBK6hRBCCCGEEEKID0RCtxBCCCGEEEII8YFI6BZCCCHEX3Lp0iXq1q1LSkrKX35O+/bt2bFjx4drlBBCCFHESegWQgghPhKzZ8+mbt26LFy48K3H3N3dqVu3LrNnzy6ElgkhhBAll4RuIYQQ4iNiampKSEgIGRkZyrU3b95w7NgxqlWrVogtE0IIIUomCd1CCCHER6RBgwaYmppy8uRJ5drJkycxNTWlfv36yrXMzEwWL15Mq1atsLW1ZciQIdy8ebPAa4WFhfHVV19hZ2fHiBEjiI+Pf+vfu3r1KkOHDsXOzg57e3sWL17M69evP9wbFEIIIYoZCd1CCCHER6Zfv34cOnRI+fngwYN8/fXXBX5n2bJlnDhxgqVLlxIcHEzNmjUZN24cL1++BODx48dMmjSJdu3acfjwYQYMGMDKlSsLvMaDBw9wcHCgc+fOfP/99/j4+BAeHo6np+cHf49CCCFEcSGhWwghhPjI9OrVi/DwcOLj44mPj+fatWv06tVLefz169fs3buXWbNmYW9vj5WVFZ6enhgYGHDgwAEAvvvuO2rUqMHs2bOpXbs2vXr1om/fvgX+nc2bN9OzZ09GjRqFhYUFn332GfPmzePw4cO8efPmb33PQgghRFGlLuwGCCGEEOL/VoUKFWjbti3BwcFotVratm1LhQoVlMcfPHhAVlYWn332mXJNT08POzs7oqOjAYiOjsbOzq7A6zZu3LjAz3fu3OH333/n6NGjyjWtVotGo+Hhw4dYWlp+gHcnhBBCFC8SuoUQQoiPUL9+/fDw8ADAzc3tg/wbr1+/ZvDgwYwYMeKtx0xNTT/IvymEEEIUNxK6hRBCiI9QmzZtyMrKQqVS8cUXXxR4rEaNGujp6XHt2jXMzMwAyMrKIiIigpEjRwJgaWnJ2bNnCzzvxo0bBX5u0KABUVFR1KxZ8wO+EyGEEKJ4kz3dQgghxEdIV1eX0NBQQkJC0NXVLfDYJ598wpAhQ1i2bBnnzp0jKiqKBQsWkJGRQf/+/QEYPHgwsbGxeHt7ExMTw9GjRwkODi7wOg4ODly/fh0PDw8iIyOJjY3l9OnTygy7EEIIIWSmWwghhPhoGRkZvfexGTNmoNVqmTVrFmlpadjY2LBt2zbKlSsHQLVq1Vi3bh1eXl4EBgZiZ2fHtGnTmDt3rvIa9erVY9euXaxevZqhQ4cCYG5uTrdu3T7sGxNCCCGKEZVWq9UWdiOEEEIIIYQQQoiPkSwvF0IIIYQQQgghPhAJ3UIIIYQQQgghxAcioVsIIYQQQgghhPhAJHQLIYQQQgghhBAfiIRuIYQQQgghhBDiA5HQLYQQQgghhBBCfCASuoUQQgghhBBCiA9EQrcQQgghhBBCCPGBSOgWQgghhBBCCCE+EAndQgghhBBCCCHEByKhWwghhBBCCCGE+EAkdAshhBBCCCGEEB/I/wdvbNdH3Cy36QAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"# Create the bar plot using Seaborn\n",
"plt.figure(figsize=(10, 6))\n",
"sns.barplot(data=results_df, x='model', y='AUC_score', palette='viridis')\n",
"\n",
"# Add data labels\n",
"for i, value in enumerate(results_df['AUC_score']):\n",
" plt.text(i, value, round(value, 2), ha='center', va='bottom')\n",
"\n",
"# Set other plot properties\n",
"plt.xticks(rotation=45)\n",
"plt.xlabel('Model')\n",
"plt.ylabel('AUC Score')\n",
"plt.title('Comparison of AUC Scores for Different Models')\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fOwa_u5Wx-Cu"
},
"source": [
"### Hyperparameter Tuning and Feature Importances"
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "94nnjY-h8z7k"
},
"execution_count": 36,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"id": "lXqO_ZsshXlp",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e53c4fe1-0881-4490-f065-e9a8df98caec"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Best Score: 0.845030 using {'solver': 'lbfgs', 'penalty': 'none', 'C': 1.0}\n"
]
}
],
"source": [
"# Create Histogram Gradient Boosting model\n",
"model = LogisticRegression(random_state=42)\n",
"model.fit(X_sub_train_preprocessed, y_sub_train)\n",
"\n",
"\n",
"# Define the parameter grid for GridSearchCV\n",
"param_distribution = {\n",
" 'solver': ['newton-cg', 'lbfgs', 'liblinear'],\n",
" 'penalty': ['none', 11, 12],\n",
" 'C' : [100, 1.0, 0.01]\n",
"}\n",
"\n",
"# Create a repeated stratified K-fold cross-validator\n",
"cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)\n",
"\n",
"# Create GridSearchCV object\n",
"random_search = RandomizedSearchCV(estimator=model, param_distributions = param_distribution, n_jobs=-1, cv=cv, scoring='f1', error_score=0)\n",
"random_result = random_search.fit(X_sub_train_preprocessed, y_sub_train)\n",
"\n",
"# Summarize results\n",
"print(\"Best Score: %f using %s\" % (random_result.best_score_, random_result.best_params_))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "L0KqP5OmhXlp"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"id": "RpznJcJThXlp"
},
"outputs": [],
"source": [
"best_model = LogisticRegression(solver='nlbfgs', penalty='none', C= 1.0, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"id": "7tldFcodhXlq"
},
"outputs": [],
"source": [
"# set the destination path to the \"export\" directory\n",
"destination = \".\"\n",
"\n",
"# create a dictionary to store the objects and their filenames\n",
"models = {\"preprocessor\": preprocessor,\n",
" \"Final_model\": best_model}\n",
"\n",
"# loop through the models and save them using joblib.dump()\n",
"for name, model in models.items():\n",
" dump(model, os.path.join(destination, f\"{name}.joblib\"))"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"id": "ndJHxQkBhXlq"
},
"outputs": [],
"source": [
"!pip freeze > requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "VVKa8WjuhXlq"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BYyFbuvPhXlq"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WSDgnKpYhXlr"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9omGqAxhhXlr"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vmwFfPVshXlr"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4JWKgZfAhXlr"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4,
"accelerator": "GPU"
},
"nbformat": 4,
"nbformat_minor": 0
}