|
import gradio as gr
|
|
import pandas as pd
|
|
import joblib
|
|
import os
|
|
|
|
|
|
preprocessor_path = os.path.join('.', 'preprocessor.joblib')
|
|
model_path = os.path.join('.', 'Best_model.joblib')
|
|
|
|
preprocessor = joblib.load('C:\Users\USER\Documents\DS\TMP\preprocessor.joblib')
|
|
best_model = joblib.load('C:\Users\USER\Documents\DS\TMP\Best_model.joblib')
|
|
|
|
|
|
def predict(age, job, marital, education, default, housing, loan, contact, month, day_of_week, duration, campaign, pdays, previous, poutcome, emp_var_rate, cons_price_idx, cons_conf_idx, euribor3m, nr_employed):
|
|
|
|
data = pd.DataFrame({
|
|
'age': [age],
|
|
'job': [job],
|
|
'marital': [marital],
|
|
'education': [education],
|
|
'default': [default],
|
|
'housing': [housing],
|
|
'loan': [loan],
|
|
'contact': [contact],
|
|
'month': [month],
|
|
'day_of_week': [day_of_week],
|
|
'duration': [duration],
|
|
'campaign': [campaign],
|
|
'pdays': [pdays],
|
|
'previous': [previous],
|
|
'poutcome': [poutcome],
|
|
'emp.var.rate': [emp_var_rate],
|
|
'cons.price.idx': [cons_price_idx],
|
|
'cons.conf.idx': [cons_conf_idx],
|
|
'euribor3m': [euribor3m],
|
|
'nr.employed': [nr_employed]
|
|
})
|
|
|
|
|
|
preprocessed_data = preprocessor.transform(data)
|
|
|
|
|
|
prediction = best_model.predict(preprocessed_data)
|
|
probability = best_model.predict_proba(preprocessed_data)
|
|
|
|
return {
|
|
"Prediction": prediction[0],
|
|
"Probability (Yes)": probability[0][1],
|
|
"Probability (No)": probability[0][0]
|
|
}
|
|
|
|
|
|
def gradio_interface():
|
|
with gr.Blocks() as app:
|
|
gr.Markdown("# Bank Marketing Campaign Prediction")
|
|
|
|
with gr.Row():
|
|
age = gr.Number(label="Age", value=30)
|
|
job = gr.Dropdown(["housemaid", "services", "admin.", "blue-collar", "technician", "retired", "management", "unemployed", "self-employed", "unknown", "entrepreneur", "student"], label="Job")
|
|
marital = gr.Dropdown(["married", "single", "divorced", "unknown"], label="Marital Status")
|
|
education = gr.Dropdown(["basic.4y", "high.school", "basic.6y", "basic.9y", "professional.course", "unknown", "university.degree", "illiterate", "tertiary", "secondary", "primary"], label="Education")
|
|
|
|
with gr.Row():
|
|
default = gr.Dropdown(["no", "unknown", "yes"], label="Default")
|
|
housing = gr.Dropdown(["no", "yes", "unknown"], label="Housing Loan")
|
|
loan = gr.Dropdown(["no", "yes", "unknown"], label="Personal Loan")
|
|
contact = gr.Dropdown(["telephone", "cellular", "unknown"], label="Contact Type")
|
|
|
|
with gr.Row():
|
|
month = gr.Dropdown(["may", "jun", "jul", "aug", "oct", "nov", "dec", "mar", "apr", "sep", "jan", "feb"], label="Month")
|
|
day_of_week = gr.Dropdown(["mon", "tue", "wed", "thu", "fri"], label="Day of Week")
|
|
|
|
with gr.Row():
|
|
duration = gr.Number(label="Call Duration (seconds)", value=100)
|
|
campaign = gr.Number(label="Number of Contacts during Campaign", value=1)
|
|
pdays = gr.Number(label="Days since Last Contact", value=999)
|
|
previous = gr.Number(label="Number of Contacts before Campaign", value=0)
|
|
poutcome = gr.Dropdown(["nonexistent", "failure", "success", "unknown", "other"], label="Previous Outcome")
|
|
|
|
with gr.Row():
|
|
emp_var_rate = gr.Number(label="Employment Variation Rate", value=1.1)
|
|
cons_price_idx = gr.Number(label="Consumer Price Index", value=93.994)
|
|
cons_conf_idx = gr.Number(label="Consumer Confidence Index", value=-36.4)
|
|
euribor3m = gr.Number(label="Euribor 3-Month Rate", value=4.857)
|
|
nr_employed = gr.Number(label="Number of Employees", value=5191.0)
|
|
|
|
predict_btn = gr.Button("Predict")
|
|
output = gr.JSON()
|
|
|
|
predict_btn.click(
|
|
predict,
|
|
inputs=[age, job, marital, education, default, housing, loan, contact, month, day_of_week, duration, campaign, pdays, previous, poutcome, emp_var_rate, cons_price_idx, cons_conf_idx, euribor3m, nr_employed],
|
|
outputs=output
|
|
)
|
|
|
|
return app
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app = gradio_interface()
|
|
app.launch()
|
|
|