Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ from transformers import pipeline
|
|
21 |
from transformers import TrainingArguments
|
22 |
from transformers import Trainer
|
23 |
from torch import nn
|
24 |
-
|
25 |
|
26 |
|
27 |
|
@@ -29,7 +29,7 @@ from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
|
29 |
model_path = "slickdata/finetuned-Sentiment-classfication-ROBERTA-model"
|
30 |
|
31 |
# Initialize the tokenizer for the pre-trained model
|
32 |
-
tokenizer =
|
33 |
|
34 |
# Load the configuration for the pre-trained model
|
35 |
config = AutoConfig.from_pretrained(model_path)
|
@@ -60,18 +60,17 @@ def sentiment_analysis(text):
|
|
60 |
# Feed the tokenized input to the pre-trained model and obtain output
|
61 |
output = model(**encoded_input)
|
62 |
|
63 |
-
|
64 |
-
scores_ = output[0][0].detach().numpy()
|
65 |
-
|
66 |
-
# Apply softmax activation function to obtain probability distribution over the labels
|
67 |
-
scores_ = softmax(scores_)
|
68 |
|
69 |
# Format the output dictionary with the predicted scores
|
70 |
labels = ['Negative', 'Neutral', 'Positive']
|
71 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
72 |
|
73 |
-
#
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
# Define a Gradio interface to interact with the model
|
77 |
demo = gr.Interface(
|
|
|
21 |
from transformers import TrainingArguments
|
22 |
from transformers import Trainer
|
23 |
from torch import nn
|
24 |
+
|
25 |
|
26 |
|
27 |
|
|
|
29 |
model_path = "slickdata/finetuned-Sentiment-classfication-ROBERTA-model"
|
30 |
|
31 |
# Initialize the tokenizer for the pre-trained model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
33 |
|
34 |
# Load the configuration for the pre-trained model
|
35 |
config = AutoConfig.from_pretrained(model_path)
|
|
|
60 |
# Feed the tokenized input to the pre-trained model and obtain output
|
61 |
output = model(**encoded_input)
|
62 |
|
63 |
+
scores_ = softmax(output.logits[0].detach().numpy())
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Format the output dictionary with the predicted scores
|
66 |
labels = ['Negative', 'Neutral', 'Positive']
|
67 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
68 |
|
69 |
+
# Get the label with the highest score
|
70 |
+
max_score_label = max(scores, key=scores.get)
|
71 |
+
|
72 |
+
# Return the label with the highest score
|
73 |
+
return max_score_label
|
74 |
|
75 |
# Define a Gradio interface to interact with the model
|
76 |
demo = gr.Interface(
|