Spaces:
Sleeping
Sleeping
update predict_page.py
Browse files- predict_page.py +0 -52
predict_page.py
CHANGED
@@ -10,23 +10,6 @@ import joblib
|
|
10 |
|
11 |
|
12 |
|
13 |
-
# Load the numerical imputer
|
14 |
-
#num_imputer = joblib.load("numerical_imputer.joblib")
|
15 |
-
|
16 |
-
# Load the categorical imputer
|
17 |
-
#cat_imputer = joblib.load("categorical_imputer.joblib")
|
18 |
-
|
19 |
-
# Load the scaler
|
20 |
-
#scaler = joblib.load("scaler.joblib")
|
21 |
-
|
22 |
-
# Load the label encoder for 'family' feature
|
23 |
-
#le_family = joblib.load("le_family.joblib")
|
24 |
-
|
25 |
-
# Load the label encoder for 'holiday_type' feature
|
26 |
-
#le_holiday_type = joblib.load("le_holiday_type.joblib")
|
27 |
-
|
28 |
-
# Load the label encoder for 'city' feature
|
29 |
-
#le_city = joblib.load("le_city.joblib")
|
30 |
|
31 |
# Load the final model
|
32 |
regressor = joblib.load("Best_model.joblib")
|
@@ -66,41 +49,6 @@ def show_predict_page():
|
|
66 |
# Convert the input data to a pandas DataFrame
|
67 |
input_df = pd.DataFrame([input_data])
|
68 |
|
69 |
-
|
70 |
-
# Selecting categorical and numerical columns separately
|
71 |
-
# cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
72 |
-
# num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
73 |
-
|
74 |
-
|
75 |
-
# Apply the imputers
|
76 |
-
# input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
77 |
-
# input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
78 |
-
|
79 |
-
# Convert the NumPy arrays to DataFrames
|
80 |
-
# input_df_imputed_cat = pd.DataFrame(input_df_imputed_cat, columns=cat_columns)
|
81 |
-
# input_df_imputed_num = pd.DataFrame(input_df_imputed_num, columns=num_columns)
|
82 |
-
|
83 |
-
|
84 |
-
# Scale the numerical columns
|
85 |
-
# input_df_scaled = scaler.transform(input_df_imputed_num)
|
86 |
-
# input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
87 |
-
|
88 |
-
# input_df_imputed = pd.concat([input_df_imputed_cat, input_scaled_df], axis=1)
|
89 |
-
|
90 |
-
# Encode the categorical columns
|
91 |
-
# Encode the categorical columns
|
92 |
-
# input_df_imputed['family'] = le_family.transform(input_df_imputed['family'])
|
93 |
-
# input_df_imputed['holiday_type'] = le_holiday_type.transform(input_df_imputed['holiday_type'])
|
94 |
-
# input_df_imputed['city'] = le_city.transform(input_df_imputed['city'])
|
95 |
-
|
96 |
-
|
97 |
-
#input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat))
|
98 |
-
#input_encoded_df.columns = input_encoded_df.columns.astype(str)
|
99 |
-
|
100 |
-
|
101 |
-
#joining the cat encoded and num scaled
|
102 |
-
# final_df = input_df_imputed
|
103 |
-
|
104 |
# Make a prediction
|
105 |
prediction = round(regressor.predict(input_df)[0], 2)
|
106 |
|
|
|
10 |
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Load the final model
|
15 |
regressor = joblib.load("Best_model.joblib")
|
|
|
49 |
# Convert the input data to a pandas DataFrame
|
50 |
input_df = pd.DataFrame([input_data])
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Make a prediction
|
53 |
prediction = round(regressor.predict(input_df)[0], 2)
|
54 |
|