Spaces:
Sleeping
Sleeping
upload other files
Browse files- .gitattributes +1 -0
- Best_model.joblib +3 -0
- R2data.csv +3 -0
- explore_page.py +8 -0
- predict_page.py +113 -0
- reg_notebook.ipynb +643 -0
- requirements .txt +12 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
R2data.csv filter=lfs diff=lfs merge=lfs -text
|
Best_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bb07da03faa9a032414ed0f3fbc7a9842e6267d1e7e32b5ea6564478d12c68d
|
3 |
+
size 466109
|
R2data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28cb9d18ea37db2a26cc7689b1c46d40d959555c35c55924b08317fdb0b37591
|
3 |
+
size 30441540
|
explore_page.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
def show_explore_page():
|
6 |
+
st.title("Favorita Stores Sales Explore Predict Page")
|
7 |
+
|
8 |
+
|
predict_page.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.impute import SimpleImputer
|
6 |
+
from xgboost import XGBRegressor
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Load the numerical imputer
|
14 |
+
#num_imputer = joblib.load("numerical_imputer.joblib")
|
15 |
+
|
16 |
+
# Load the categorical imputer
|
17 |
+
#cat_imputer = joblib.load("categorical_imputer.joblib")
|
18 |
+
|
19 |
+
# Load the scaler
|
20 |
+
#scaler = joblib.load("scaler.joblib")
|
21 |
+
|
22 |
+
# Load the label encoder for 'family' feature
|
23 |
+
#le_family = joblib.load("le_family.joblib")
|
24 |
+
|
25 |
+
# Load the label encoder for 'holiday_type' feature
|
26 |
+
#le_holiday_type = joblib.load("le_holiday_type.joblib")
|
27 |
+
|
28 |
+
# Load the label encoder for 'city' feature
|
29 |
+
#le_city = joblib.load("le_city.joblib")
|
30 |
+
|
31 |
+
# Load the final model
|
32 |
+
regressor = joblib.load("Best_model.joblib")
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
#@st.cache_resource()
|
37 |
+
def show_predict_page():
|
38 |
+
# Add a title and subtitle
|
39 |
+
st.write("<center><h1>Predicting Sales App</h1></center>", unsafe_allow_html=True)
|
40 |
+
|
41 |
+
|
42 |
+
# Add a subtitle or description
|
43 |
+
st.write("This app predict sales by the using machine learning, based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
44 |
+
|
45 |
+
st.subheader("Enter the following details to predict sales")
|
46 |
+
|
47 |
+
input_data = {
|
48 |
+
'store_nbr': st.slider("store_nbr", step=1, min_value=0, max_value=54),
|
49 |
+
'onpromotion': st.number_input("onpromotion, 0 - 800", min_value=0, max_value=800),
|
50 |
+
'transactions': st.number_input("Number of Transactions, 0 - 10000", min_value=0, max_value=10000),
|
51 |
+
'oil_price': st.number_input("oil_price, 1 - 200", step=1, min_value=0, max_value=200),
|
52 |
+
'cluster': st.slider("cluster", step=1, min_value=0, max_value=17),
|
53 |
+
'day': st.slider("day", 1, 31, 1),
|
54 |
+
'year': st.selectbox("year", [1970]),
|
55 |
+
'month': st.slider("month", 1, 12, 1),
|
56 |
+
#'dayofmonth': st.slider("dayofmonth", 1, 31, 1),
|
57 |
+
#'dayofweek': st.slider("dayofweek, 0=Sun and 6=Sat", step=1, min_value=1, max_value=6),
|
58 |
+
'family': st.selectbox("products", ['AUTOMOTIVE', 'Personal Care', 'Beverages', 'STATIONERY', 'Food', 'CLEANING', 'HARDWARE', 'Home and Kitchen', 'Clothing', 'PET SUPPLIES', 'ELECTRONICS']),
|
59 |
+
'holiday_type': st.selectbox("holiday_type", ['Workday', 'holiday']),
|
60 |
+
'city': st.selectbox("City", ['Salinas', 'Quito', 'Cayambe', 'Latacunga', 'Riobamba', 'Ibarra', 'Santo Domingo', 'Guaranda', 'Ambato', 'Guayaquil', 'Daule', 'Babahoyo', 'Quevedo', 'Playas', 'Cuenca', 'Loja', 'Machala', 'Esmeraldas', 'El Carmen', 'Libertad', 'Manta', 'Puyo'])
|
61 |
+
}
|
62 |
+
|
63 |
+
# Create a button to make a prediction
|
64 |
+
|
65 |
+
if st.button("Predict", key="predict_button", help="Click to make a prediction."):
|
66 |
+
# Convert the input data to a pandas DataFrame
|
67 |
+
input_df = pd.DataFrame([input_data])
|
68 |
+
|
69 |
+
|
70 |
+
# Selecting categorical and numerical columns separately
|
71 |
+
# cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
72 |
+
# num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
73 |
+
|
74 |
+
|
75 |
+
# Apply the imputers
|
76 |
+
# input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
77 |
+
# input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
78 |
+
|
79 |
+
# Convert the NumPy arrays to DataFrames
|
80 |
+
# input_df_imputed_cat = pd.DataFrame(input_df_imputed_cat, columns=cat_columns)
|
81 |
+
# input_df_imputed_num = pd.DataFrame(input_df_imputed_num, columns=num_columns)
|
82 |
+
|
83 |
+
|
84 |
+
# Scale the numerical columns
|
85 |
+
# input_df_scaled = scaler.transform(input_df_imputed_num)
|
86 |
+
# input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
87 |
+
|
88 |
+
# input_df_imputed = pd.concat([input_df_imputed_cat, input_scaled_df], axis=1)
|
89 |
+
|
90 |
+
# Encode the categorical columns
|
91 |
+
# Encode the categorical columns
|
92 |
+
# input_df_imputed['family'] = le_family.transform(input_df_imputed['family'])
|
93 |
+
# input_df_imputed['holiday_type'] = le_holiday_type.transform(input_df_imputed['holiday_type'])
|
94 |
+
# input_df_imputed['city'] = le_city.transform(input_df_imputed['city'])
|
95 |
+
|
96 |
+
|
97 |
+
#input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat))
|
98 |
+
#input_encoded_df.columns = input_encoded_df.columns.astype(str)
|
99 |
+
|
100 |
+
|
101 |
+
#joining the cat encoded and num scaled
|
102 |
+
# final_df = input_df_imputed
|
103 |
+
|
104 |
+
# Make a prediction
|
105 |
+
prediction = round(regressor.predict(input_df)[0], 2)
|
106 |
+
|
107 |
+
|
108 |
+
# Display the prediction
|
109 |
+
#st.write(f"The predicted sales are: {prediction}.")
|
110 |
+
|
111 |
+
# Display the prediction
|
112 |
+
st.subheader("Sales Prediction")
|
113 |
+
st.write("The predicted sales for the company is:", prediction)
|
reg_notebook.ipynb
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Data handling\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"\n",
|
13 |
+
"# Vizualisation (Matplotlib, Plotly, Seaborn, etc. )\n",
|
14 |
+
"import matplotlib.pyplot as plt\n",
|
15 |
+
"# EDA (pandas-profiling, etc. )\n",
|
16 |
+
"...\n",
|
17 |
+
"\n",
|
18 |
+
"# Feature Processing (Scikit-learn processing, etc. )\n",
|
19 |
+
"from sklearn.metrics import mean_squared_error, mean_squared_log_error\n",
|
20 |
+
"\n",
|
21 |
+
"# Machine Learning (Scikit-learn Estimators, Catboost, LightGBM, etc. )\n",
|
22 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
23 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
24 |
+
"from sklearn.model_selection import train_test_split\n",
|
25 |
+
"from sklearn.impute import SimpleImputer\n",
|
26 |
+
"from sklearn.ensemble import ExtraTreesRegressor\n",
|
27 |
+
"from xgboost import XGBRegressor\n",
|
28 |
+
"from sklearn.ensemble import GradientBoostingRegressor\n",
|
29 |
+
"from sklearn.preprocessing import OneHotEncoder\n",
|
30 |
+
"from sklearn.pipeline import Pipeline\n",
|
31 |
+
"from sklearn.compose import ColumnTransformer\n",
|
32 |
+
"\n",
|
33 |
+
"\n",
|
34 |
+
"\n",
|
35 |
+
"# Other packages\n",
|
36 |
+
"from joblib import dump\n",
|
37 |
+
"import os\n",
|
38 |
+
"import pickle\n"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"data": {
|
48 |
+
"text/html": [
|
49 |
+
"<div>\n",
|
50 |
+
"<style scoped>\n",
|
51 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
52 |
+
" vertical-align: middle;\n",
|
53 |
+
" }\n",
|
54 |
+
"\n",
|
55 |
+
" .dataframe tbody tr th {\n",
|
56 |
+
" vertical-align: top;\n",
|
57 |
+
" }\n",
|
58 |
+
"\n",
|
59 |
+
" .dataframe thead th {\n",
|
60 |
+
" text-align: right;\n",
|
61 |
+
" }\n",
|
62 |
+
"</style>\n",
|
63 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
64 |
+
" <thead>\n",
|
65 |
+
" <tr style=\"text-align: right;\">\n",
|
66 |
+
" <th></th>\n",
|
67 |
+
" <th>store_nbr</th>\n",
|
68 |
+
" <th>family</th>\n",
|
69 |
+
" <th>sales</th>\n",
|
70 |
+
" <th>onpromotion</th>\n",
|
71 |
+
" <th>transactions</th>\n",
|
72 |
+
" <th>holiday_type</th>\n",
|
73 |
+
" <th>oil_price</th>\n",
|
74 |
+
" <th>city</th>\n",
|
75 |
+
" <th>cluster</th>\n",
|
76 |
+
" <th>day</th>\n",
|
77 |
+
" <th>year</th>\n",
|
78 |
+
" <th>month</th>\n",
|
79 |
+
" </tr>\n",
|
80 |
+
" <tr>\n",
|
81 |
+
" <th>date</th>\n",
|
82 |
+
" <th></th>\n",
|
83 |
+
" <th></th>\n",
|
84 |
+
" <th></th>\n",
|
85 |
+
" <th></th>\n",
|
86 |
+
" <th></th>\n",
|
87 |
+
" <th></th>\n",
|
88 |
+
" <th></th>\n",
|
89 |
+
" <th></th>\n",
|
90 |
+
" <th></th>\n",
|
91 |
+
" <th></th>\n",
|
92 |
+
" <th></th>\n",
|
93 |
+
" <th></th>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" </thead>\n",
|
96 |
+
" <tbody>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>1970-01-01 00:00:00.000002013</th>\n",
|
99 |
+
" <td>25</td>\n",
|
100 |
+
" <td>AUTOMOTIVE</td>\n",
|
101 |
+
" <td>0.0</td>\n",
|
102 |
+
" <td>0</td>\n",
|
103 |
+
" <td>770</td>\n",
|
104 |
+
" <td>Workday</td>\n",
|
105 |
+
" <td>93.14</td>\n",
|
106 |
+
" <td>Salinas</td>\n",
|
107 |
+
" <td>1</td>\n",
|
108 |
+
" <td>1</td>\n",
|
109 |
+
" <td>1970</td>\n",
|
110 |
+
" <td>1</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>1970-01-01 00:00:00.000002013</th>\n",
|
114 |
+
" <td>25</td>\n",
|
115 |
+
" <td>Personal Care</td>\n",
|
116 |
+
" <td>0.0</td>\n",
|
117 |
+
" <td>0</td>\n",
|
118 |
+
" <td>770</td>\n",
|
119 |
+
" <td>Workday</td>\n",
|
120 |
+
" <td>93.14</td>\n",
|
121 |
+
" <td>Salinas</td>\n",
|
122 |
+
" <td>1</td>\n",
|
123 |
+
" <td>1</td>\n",
|
124 |
+
" <td>1970</td>\n",
|
125 |
+
" <td>1</td>\n",
|
126 |
+
" </tr>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>1970-01-01 00:00:00.000002013</th>\n",
|
129 |
+
" <td>25</td>\n",
|
130 |
+
" <td>Personal Care</td>\n",
|
131 |
+
" <td>2.0</td>\n",
|
132 |
+
" <td>0</td>\n",
|
133 |
+
" <td>770</td>\n",
|
134 |
+
" <td>Workday</td>\n",
|
135 |
+
" <td>93.14</td>\n",
|
136 |
+
" <td>Salinas</td>\n",
|
137 |
+
" <td>1</td>\n",
|
138 |
+
" <td>1</td>\n",
|
139 |
+
" <td>1970</td>\n",
|
140 |
+
" <td>1</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>1970-01-01 00:00:00.000002013</th>\n",
|
144 |
+
" <td>25</td>\n",
|
145 |
+
" <td>Beverages</td>\n",
|
146 |
+
" <td>810.0</td>\n",
|
147 |
+
" <td>0</td>\n",
|
148 |
+
" <td>770</td>\n",
|
149 |
+
" <td>Workday</td>\n",
|
150 |
+
" <td>93.14</td>\n",
|
151 |
+
" <td>Salinas</td>\n",
|
152 |
+
" <td>1</td>\n",
|
153 |
+
" <td>1</td>\n",
|
154 |
+
" <td>1970</td>\n",
|
155 |
+
" <td>1</td>\n",
|
156 |
+
" </tr>\n",
|
157 |
+
" <tr>\n",
|
158 |
+
" <th>1970-01-01 00:00:00.000002013</th>\n",
|
159 |
+
" <td>25</td>\n",
|
160 |
+
" <td>STATIONERY</td>\n",
|
161 |
+
" <td>0.0</td>\n",
|
162 |
+
" <td>0</td>\n",
|
163 |
+
" <td>770</td>\n",
|
164 |
+
" <td>Workday</td>\n",
|
165 |
+
" <td>93.14</td>\n",
|
166 |
+
" <td>Salinas</td>\n",
|
167 |
+
" <td>1</td>\n",
|
168 |
+
" <td>1</td>\n",
|
169 |
+
" <td>1970</td>\n",
|
170 |
+
" <td>1</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" </tbody>\n",
|
173 |
+
"</table>\n",
|
174 |
+
"</div>"
|
175 |
+
],
|
176 |
+
"text/plain": [
|
177 |
+
" store_nbr family sales onpromotion \\\n",
|
178 |
+
"date \n",
|
179 |
+
"1970-01-01 00:00:00.000002013 25 AUTOMOTIVE 0.0 0 \n",
|
180 |
+
"1970-01-01 00:00:00.000002013 25 Personal Care 0.0 0 \n",
|
181 |
+
"1970-01-01 00:00:00.000002013 25 Personal Care 2.0 0 \n",
|
182 |
+
"1970-01-01 00:00:00.000002013 25 Beverages 810.0 0 \n",
|
183 |
+
"1970-01-01 00:00:00.000002013 25 STATIONERY 0.0 0 \n",
|
184 |
+
"\n",
|
185 |
+
" transactions holiday_type oil_price city \\\n",
|
186 |
+
"date \n",
|
187 |
+
"1970-01-01 00:00:00.000002013 770 Workday 93.14 Salinas \n",
|
188 |
+
"1970-01-01 00:00:00.000002013 770 Workday 93.14 Salinas \n",
|
189 |
+
"1970-01-01 00:00:00.000002013 770 Workday 93.14 Salinas \n",
|
190 |
+
"1970-01-01 00:00:00.000002013 770 Workday 93.14 Salinas \n",
|
191 |
+
"1970-01-01 00:00:00.000002013 770 Workday 93.14 Salinas \n",
|
192 |
+
"\n",
|
193 |
+
" cluster day year month \n",
|
194 |
+
"date \n",
|
195 |
+
"1970-01-01 00:00:00.000002013 1 1 1970 1 \n",
|
196 |
+
"1970-01-01 00:00:00.000002013 1 1 1970 1 \n",
|
197 |
+
"1970-01-01 00:00:00.000002013 1 1 1970 1 \n",
|
198 |
+
"1970-01-01 00:00:00.000002013 1 1 1970 1 \n",
|
199 |
+
"1970-01-01 00:00:00.000002013 1 1 1970 1 "
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"execution_count": 2,
|
203 |
+
"metadata": {},
|
204 |
+
"output_type": "execute_result"
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"source": [
|
208 |
+
"data = pd.read_csv('R2data.csv')\n",
|
209 |
+
"data.drop(columns=['Unnamed: 0'], inplace=True)\n",
|
210 |
+
"\n",
|
211 |
+
"# Convert the date column to a datetime object\n",
|
212 |
+
"data['date'] = pd.to_datetime(data['date'])\n",
|
213 |
+
"\n",
|
214 |
+
"# Set the date column as the index\n",
|
215 |
+
"data = data.set_index('date')\n",
|
216 |
+
"data.head()"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": 3,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"y = data['sales'] # Target Variable\n",
|
226 |
+
"X = data.drop('sales', axis = 1) # Independent Variable"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 4,
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [],
|
234 |
+
"source": [
|
235 |
+
"numeric_transformer = Pipeline(steps = [('num_imputer',SimpleImputer(strategy = 'mean')),('scaler',StandardScaler())])\n",
|
236 |
+
"categorical_transformer = Pipeline(steps = [('cat_imputer',SimpleImputer(strategy ='most_frequent')),('one-hot',OneHotEncoder(handle_unknown='ignore', sparse=False))])"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 5,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": [
|
245 |
+
"categorical_feature =[\"family\", \"city\", \"holiday_type\"]\n",
|
246 |
+
"numeric_feature = ['store_nbr', 'onpromotion', 'transactions', 'oil_price', 'cluster','year', 'month']\n",
|
247 |
+
"preprocessor = ColumnTransformer(transformers=[('numeric_transformer',numeric_transformer,numeric_feature),('categorical_transformer',categorical_transformer,categorical_feature)],remainder='drop')"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 6,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"# Split the data into training and test sets\n",
|
257 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": 7,
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [
|
265 |
+
{
|
266 |
+
"name": "stderr",
|
267 |
+
"output_type": "stream",
|
268 |
+
"text": [
|
269 |
+
"c:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:972: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n",
|
270 |
+
" warnings.warn(\n"
|
271 |
+
]
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"rf = GradientBoostingRegressor(n_estimators=100, random_state=42)\n",
|
276 |
+
"\n",
|
277 |
+
"rf = Pipeline(steps=[('preprocessor',preprocessor),('estimator',rf)])\n",
|
278 |
+
"rf.fit(X_train, y_train)\n",
|
279 |
+
"\n",
|
280 |
+
"# Make prediction on X_test\n",
|
281 |
+
"rf_predictions = rf.predict(X_test)\n",
|
282 |
+
"\n",
|
283 |
+
"\n",
|
284 |
+
"# Evaluate our models\n",
|
285 |
+
"rmsle = np.sqrt(mean_squared_log_error(abs(y_test), abs(rf_predictions))).round(2)\n",
|
286 |
+
"\n",
|
287 |
+
"\n",
|
288 |
+
"results = pd.DataFrame([['Gradient Boosting', rmsle]], columns = ['Model', 'RMSLE'])"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 8,
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"# Gradient Boosting Regression Model\n",
|
298 |
+
"#rf = GradientBoostingRegressor(n_estimators=100, random_state=42)\n",
|
299 |
+
"#rf.fit(X_train, y_train)\n",
|
300 |
+
"\n",
|
301 |
+
"# Make prediction on X_test\n",
|
302 |
+
"#rf_predictions = rf.predict(X_test)\n",
|
303 |
+
"\n",
|
304 |
+
"\n",
|
305 |
+
"# Evaluate our models\n",
|
306 |
+
"#rmsle = np.sqrt(mean_squared_log_error(abs(y_test), abs(rf_predictions))).round(2)\n",
|
307 |
+
"\n",
|
308 |
+
"\n",
|
309 |
+
"#results = pd.DataFrame([['Gradient Boosting', rmsle]], columns = ['Model', 'RMSLE'])"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"execution_count": 9,
|
315 |
+
"metadata": {},
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"name": "stderr",
|
319 |
+
"output_type": "stream",
|
320 |
+
"text": [
|
321 |
+
"c:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:972: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n",
|
322 |
+
" warnings.warn(\n"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"data": {
|
327 |
+
"text/html": [
|
328 |
+
"<div>\n",
|
329 |
+
"<style scoped>\n",
|
330 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
331 |
+
" vertical-align: middle;\n",
|
332 |
+
" }\n",
|
333 |
+
"\n",
|
334 |
+
" .dataframe tbody tr th {\n",
|
335 |
+
" vertical-align: top;\n",
|
336 |
+
" }\n",
|
337 |
+
"\n",
|
338 |
+
" .dataframe thead th {\n",
|
339 |
+
" text-align: right;\n",
|
340 |
+
" }\n",
|
341 |
+
"</style>\n",
|
342 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
343 |
+
" <thead>\n",
|
344 |
+
" <tr style=\"text-align: right;\">\n",
|
345 |
+
" <th></th>\n",
|
346 |
+
" <th>Model</th>\n",
|
347 |
+
" <th>RMSLE</th>\n",
|
348 |
+
" <th>Model</th>\n",
|
349 |
+
" <th>RMSLE</th>\n",
|
350 |
+
" </tr>\n",
|
351 |
+
" </thead>\n",
|
352 |
+
" <tbody>\n",
|
353 |
+
" <tr>\n",
|
354 |
+
" <th>0</th>\n",
|
355 |
+
" <td>Gradient Boosting</td>\n",
|
356 |
+
" <td>2.48</td>\n",
|
357 |
+
" <td>Extra Tree</td>\n",
|
358 |
+
" <td>1.93</td>\n",
|
359 |
+
" </tr>\n",
|
360 |
+
" </tbody>\n",
|
361 |
+
"</table>\n",
|
362 |
+
"</div>"
|
363 |
+
],
|
364 |
+
"text/plain": [
|
365 |
+
" Model RMSLE Model RMSLE\n",
|
366 |
+
"0 Gradient Boosting 2.48 Extra Tree 1.93"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
"execution_count": 9,
|
370 |
+
"metadata": {},
|
371 |
+
"output_type": "execute_result"
|
372 |
+
}
|
373 |
+
],
|
374 |
+
"source": [
|
375 |
+
"# Extra Trees Regression Model\n",
|
376 |
+
"sg = ExtraTreesRegressor(n_estimators=100, random_state=42)\n",
|
377 |
+
"sg = Pipeline(steps=[('preprocessor',preprocessor),('estimator',sg)])\n",
|
378 |
+
"sg.fit(X_train, y_train)\n",
|
379 |
+
"\n",
|
380 |
+
"# Make prediction on X_test\n",
|
381 |
+
"sg_predictions = sg.predict(X_test)\n",
|
382 |
+
"\n",
|
383 |
+
"\n",
|
384 |
+
"# Evaluate our models\n",
|
385 |
+
"rmsle = np.sqrt(mean_squared_log_error(abs(y_test), abs(sg_predictions))).round(2)\n",
|
386 |
+
"\n",
|
387 |
+
"\n",
|
388 |
+
"model_results = pd.DataFrame([['Extra Tree', rmsle]], columns = ['Model', 'RMSLE'])\n",
|
389 |
+
"results = pd.concat([results, model_results], axis=1)\n",
|
390 |
+
"results"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": 12,
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [
|
398 |
+
{
|
399 |
+
"name": "stderr",
|
400 |
+
"output_type": "stream",
|
401 |
+
"text": [
|
402 |
+
"c:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:972: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n",
|
403 |
+
" warnings.warn(\n"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"data": {
|
408 |
+
"text/html": [
|
409 |
+
"<div>\n",
|
410 |
+
"<style scoped>\n",
|
411 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
412 |
+
" vertical-align: middle;\n",
|
413 |
+
" }\n",
|
414 |
+
"\n",
|
415 |
+
" .dataframe tbody tr th {\n",
|
416 |
+
" vertical-align: top;\n",
|
417 |
+
" }\n",
|
418 |
+
"\n",
|
419 |
+
" .dataframe thead th {\n",
|
420 |
+
" text-align: right;\n",
|
421 |
+
" }\n",
|
422 |
+
"</style>\n",
|
423 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
424 |
+
" <thead>\n",
|
425 |
+
" <tr style=\"text-align: right;\">\n",
|
426 |
+
" <th></th>\n",
|
427 |
+
" <th>Model</th>\n",
|
428 |
+
" <th>RMSLE</th>\n",
|
429 |
+
" <th>Model</th>\n",
|
430 |
+
" <th>RMSLE</th>\n",
|
431 |
+
" <th>Model</th>\n",
|
432 |
+
" <th>RMSLE</th>\n",
|
433 |
+
" <th>Model</th>\n",
|
434 |
+
" <th>RMSLE</th>\n",
|
435 |
+
" </tr>\n",
|
436 |
+
" </thead>\n",
|
437 |
+
" <tbody>\n",
|
438 |
+
" <tr>\n",
|
439 |
+
" <th>0</th>\n",
|
440 |
+
" <td>Gradient Boosting</td>\n",
|
441 |
+
" <td>2.48</td>\n",
|
442 |
+
" <td>Extra Tree</td>\n",
|
443 |
+
" <td>1.93</td>\n",
|
444 |
+
" <td>Extra Tree</td>\n",
|
445 |
+
" <td>1.93</td>\n",
|
446 |
+
" <td>XGBoost</td>\n",
|
447 |
+
" <td>2.15</td>\n",
|
448 |
+
" </tr>\n",
|
449 |
+
" </tbody>\n",
|
450 |
+
"</table>\n",
|
451 |
+
"</div>"
|
452 |
+
],
|
453 |
+
"text/plain": [
|
454 |
+
" Model RMSLE Model RMSLE Model RMSLE Model \\\n",
|
455 |
+
"0 Gradient Boosting 2.48 Extra Tree 1.93 Extra Tree 1.93 XGBoost \n",
|
456 |
+
"\n",
|
457 |
+
" RMSLE \n",
|
458 |
+
"0 2.15 "
|
459 |
+
]
|
460 |
+
},
|
461 |
+
"execution_count": 12,
|
462 |
+
"metadata": {},
|
463 |
+
"output_type": "execute_result"
|
464 |
+
}
|
465 |
+
],
|
466 |
+
"source": [
|
467 |
+
"# Extra Trees Regression Model\n",
|
468 |
+
"xg = XGBRegressor(n_estimators=100, random_state=42)\n",
|
469 |
+
"xg = Pipeline(steps=[('preprocessor',preprocessor),('estimator',xg)])\n",
|
470 |
+
"xg.fit(X_train, y_train)\n",
|
471 |
+
"\n",
|
472 |
+
"# Make prediction on X_test\n",
|
473 |
+
"xg_predictions = xg.predict(X_test)\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"# Evaluate our models\n",
|
477 |
+
"rmsle = np.sqrt(mean_squared_log_error(abs(y_test), abs(xg_predictions))).round(2)\n",
|
478 |
+
"\n",
|
479 |
+
"\n",
|
480 |
+
"model_result = pd.DataFrame([['XGBoost', rmsle]], columns = ['Model', 'RMSLE'])\n",
|
481 |
+
"results = pd.concat([results, model_result], axis=1)\n",
|
482 |
+
"results"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"cell_type": "code",
|
487 |
+
"execution_count": null,
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [],
|
490 |
+
"source": []
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": 11,
|
495 |
+
"metadata": {},
|
496 |
+
"outputs": [],
|
497 |
+
"source": [
|
498 |
+
"# Extra Trees Regression Model\n",
|
499 |
+
"#sg = ExtraTreesRegressor(n_estimators=100, random_state=42)\n",
|
500 |
+
"#sg.fit(X_train, y_train)\n",
|
501 |
+
"\n",
|
502 |
+
"# Make prediction on X_test\n",
|
503 |
+
"#sg_predictions = sg.predict(X_test)\n",
|
504 |
+
"\n",
|
505 |
+
"\n",
|
506 |
+
"# Evaluate our models\n",
|
507 |
+
"#rmsle = np.sqrt(mean_squared_log_error(abs(y_test), abs(sg_predictions))).round(2)\n",
|
508 |
+
"\n",
|
509 |
+
"\n",
|
510 |
+
"#model_results = pd.DataFrame([['Extra Tree', rmsle]], columns = ['Model', 'RMSLE'])\n",
|
511 |
+
"#results = pd.concat([results, model_results], axis=1)\n",
|
512 |
+
"#results"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": 13,
|
518 |
+
"metadata": {},
|
519 |
+
"outputs": [],
|
520 |
+
"source": [
|
521 |
+
"best_model = xg\n"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"execution_count": 13,
|
527 |
+
"metadata": {},
|
528 |
+
"outputs": [],
|
529 |
+
"source": [
|
530 |
+
"# set the destination path to the \"export\" directory\n",
|
531 |
+
"#destination = \".\"\n",
|
532 |
+
"\n",
|
533 |
+
"# create a dictionary to store the objects and their filenames\n",
|
534 |
+
"#models = {\"numerical_imputer\": numerical_imputer,\n",
|
535 |
+
"# \"categorical_imputer\": categorical_imputer,\n",
|
536 |
+
"# \"scaler\": scaler,\n",
|
537 |
+
"# \"le_family\": le_family,\n",
|
538 |
+
"# \"le_holiday_type\": le_holiday_type,\n",
|
539 |
+
"# \"le_city\": le_city,\n",
|
540 |
+
"# \"Final_model\": best_model}\n",
|
541 |
+
"\n",
|
542 |
+
"# loop through the models and save them using joblib.dump()\n",
|
543 |
+
"#for name, model in models.items():\n",
|
544 |
+
"# dump(model, os.path.join(destination, f\"{name}.joblib\"), compress=(\"lzma\", 5))"
|
545 |
+
]
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"cell_type": "code",
|
549 |
+
"execution_count": 14,
|
550 |
+
"metadata": {},
|
551 |
+
"outputs": [],
|
552 |
+
"source": [
|
553 |
+
"# set the destination path to the \"export\" directory\n",
|
554 |
+
"destination = \".\"\n",
|
555 |
+
"\n",
|
556 |
+
"# create a dictionary to store the objects and their filenames\n",
|
557 |
+
"models = {\"Best_model\": best_model}\n",
|
558 |
+
"\n",
|
559 |
+
"# loop through the models and save them using joblib.dump()\n",
|
560 |
+
"for name, model in models.items():\n",
|
561 |
+
" dump(model, os.path.join(destination, f\"{name}.joblib\"))"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"cell_type": "code",
|
566 |
+
"execution_count": null,
|
567 |
+
"metadata": {},
|
568 |
+
"outputs": [],
|
569 |
+
"source": []
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "code",
|
573 |
+
"execution_count": 15,
|
574 |
+
"metadata": {},
|
575 |
+
"outputs": [],
|
576 |
+
"source": [
|
577 |
+
"# Identify numeric and non-numeric columns\n",
|
578 |
+
"#num_cols = X.select_dtypes(include=[np.number]).columns.tolist()\n",
|
579 |
+
"#cat_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()\n",
|
580 |
+
"\n",
|
581 |
+
"# Creating imputer variables\n",
|
582 |
+
"#numerical_imputer = SimpleImputer(strategy = \"mean\")\n",
|
583 |
+
"#categorical_imputer = SimpleImputer(strategy = \"most_frequent\")\n",
|
584 |
+
"\n",
|
585 |
+
"#X_cat = X[cat_cols].copy()\n",
|
586 |
+
"#X_num = X[num_cols].copy()\n",
|
587 |
+
"\n",
|
588 |
+
"\n",
|
589 |
+
"# Fitting the Imputer\n",
|
590 |
+
"#X_cat_imputed = categorical_imputer.fit_transform(X_cat)\n",
|
591 |
+
"#X_num_imputed = numerical_imputer.fit_transform(X_num)\n",
|
592 |
+
"\n",
|
593 |
+
"# Convert NumPy arrays to DataFrames\n",
|
594 |
+
"#X_cat_imputed = pd.DataFrame(X_cat_imputed, columns=cat_cols)\n",
|
595 |
+
"#X_num_imputed = pd.DataFrame(X_num_imputed, columns=num_cols)\n",
|
596 |
+
"\n",
|
597 |
+
"\n",
|
598 |
+
"#scaler = StandardScaler()\n",
|
599 |
+
"\n",
|
600 |
+
"#X_num_scaled = scaler.fit_transform(X_num_imputed)\n",
|
601 |
+
"#X_num_sc = pd.DataFrame(X_num_scaled, columns = num_cols)\n",
|
602 |
+
"\n",
|
603 |
+
"\n",
|
604 |
+
"\n",
|
605 |
+
"# Concatenate the imputed dataframes\n",
|
606 |
+
"#X = pd.concat([X_num_sc, X_cat_imputed], axis=1)\n",
|
607 |
+
"\n",
|
608 |
+
"#le_family = LabelEncoder()\n",
|
609 |
+
"#X['family'] = le_family.fit_transform(X['family'])\n",
|
610 |
+
"\n",
|
611 |
+
"#le_holiday_type = LabelEncoder()\n",
|
612 |
+
"#X['holiday_type'] = le_holiday_type.fit_transform(X['holiday_type'])\n",
|
613 |
+
"\n",
|
614 |
+
"#le_city = LabelEncoder()\n",
|
615 |
+
"#X['city'] = le_city.fit_transform(X['city'])\n",
|
616 |
+
"\n",
|
617 |
+
"#X.info()"
|
618 |
+
]
|
619 |
+
}
|
620 |
+
],
|
621 |
+
"metadata": {
|
622 |
+
"kernelspec": {
|
623 |
+
"display_name": "Python 3",
|
624 |
+
"language": "python",
|
625 |
+
"name": "python3"
|
626 |
+
},
|
627 |
+
"language_info": {
|
628 |
+
"codemirror_mode": {
|
629 |
+
"name": "ipython",
|
630 |
+
"version": 3
|
631 |
+
},
|
632 |
+
"file_extension": ".py",
|
633 |
+
"mimetype": "text/x-python",
|
634 |
+
"name": "python",
|
635 |
+
"nbconvert_exporter": "python",
|
636 |
+
"pygments_lexer": "ipython3",
|
637 |
+
"version": "3.11.4"
|
638 |
+
},
|
639 |
+
"orig_nbformat": 4
|
640 |
+
},
|
641 |
+
"nbformat": 4,
|
642 |
+
"nbformat_minor": 2
|
643 |
+
}
|
requirements .txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
google_api_python_client==2.84.0
|
2 |
+
google_auth_oauthlib==1.0.0
|
3 |
+
gradio==3.35.2
|
4 |
+
joblib==1.2.0
|
5 |
+
matplotlib==3.7.1
|
6 |
+
numpy==1.22.4
|
7 |
+
pandas==1.5.3
|
8 |
+
Pillow==8.4.0
|
9 |
+
Pillow==9.5.0
|
10 |
+
protobuf==3.20.3
|
11 |
+
scikit_learn==1.2.2
|
12 |
+
streamlit==1.24.0
|