Spaces:
Sleeping
Sleeping
Gordon Li
commited on
Commit
·
6873239
1
Parent(s):
0f8b245
Add Relevancce Comparision SentenseTransformer
Browse files- AirbnbMapVisualiser.py +164 -122
- TrafficSpot.py +1 -1
- requirements.txt +1 -2
AirbnbMapVisualiser.py
CHANGED
@@ -2,7 +2,9 @@ import oracledb
|
|
2 |
import pandas as pd
|
3 |
import folium
|
4 |
from html import escape
|
5 |
-
import
|
|
|
|
|
6 |
from TrafficSpot import TrafficSpotManager
|
7 |
|
8 |
|
@@ -24,14 +26,26 @@ class AirbnbMapVisualiser:
|
|
24 |
)
|
25 |
self.traffic_manager = TrafficSpotManager(self.connection_params)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
self.neighborhoods = self.get_all_neighborhoods()
|
29 |
self.cached_listings = {}
|
30 |
self.cached_listings["Southern"] = self.get_neighborhood_listings("Southern")
|
|
|
31 |
except Exception as e:
|
32 |
print(f"Initialization error: {str(e)}")
|
33 |
self.neighborhoods = []
|
34 |
self.cached_listings = {}
|
|
|
35 |
|
36 |
def get_all_neighborhoods(self):
|
37 |
connection = self.pool.acquire()
|
@@ -62,6 +76,7 @@ class AirbnbMapVisualiser:
|
|
62 |
cursor = connection.cursor()
|
63 |
cursor.prefetchrows = 50
|
64 |
cursor.arraysize = 50
|
|
|
65 |
cursor.execute("""
|
66 |
SELECT m.ID, m.NAME, m.HOST_NAME, m.NEIGHBOURHOOD,
|
67 |
m.LATITUDE, m.LONGITUDE, m.ROOM_TYPE, m.PRICE,
|
@@ -72,10 +87,11 @@ class AirbnbMapVisualiser:
|
|
72 |
WHERE m.LATITUDE IS NOT NULL
|
73 |
AND m.LONGITUDE IS NOT NULL
|
74 |
AND m.NEIGHBOURHOOD = :neighborhood
|
75 |
-
AND ROWNUM <= 150
|
76 |
GROUP BY m.ID, m.NAME, m.HOST_NAME, m.NEIGHBOURHOOD,
|
77 |
m.LATITUDE, m.LONGITUDE, m.ROOM_TYPE, m.PRICE,
|
78 |
m.REVIEWS_PER_MONTH, m.MINIMUM_NIGHTS, m.AVAILABILITY_365
|
|
|
|
|
79 |
""", neighborhood=neighborhood)
|
80 |
|
81 |
listings = cursor.fetchall()
|
@@ -123,7 +139,7 @@ class AirbnbMapVisualiser:
|
|
123 |
self.pool.release(connection)
|
124 |
|
125 |
def get_listing_reviews_for_search(self, listing_id):
|
126 |
-
"""Get reviews for search analysis"""
|
127 |
connection = self.pool.acquire()
|
128 |
try:
|
129 |
cursor = connection.cursor()
|
@@ -137,7 +153,18 @@ class AirbnbMapVisualiser:
|
|
137 |
""", listing_id=int(listing_id))
|
138 |
|
139 |
reviews = cursor.fetchall()
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
except Exception as e:
|
143 |
print(f"Error fetching reviews for search: {str(e)}")
|
@@ -145,100 +172,114 @@ class AirbnbMapVisualiser:
|
|
145 |
finally:
|
146 |
self.pool.release(connection)
|
147 |
|
148 |
-
def
|
149 |
-
"""
|
150 |
-
if
|
151 |
-
return
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
name = str(row['name']).lower()
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
reviews = self.get_listing_reviews_for_search(row['id'])
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
# Reviews quantity relevance
|
219 |
-
if any(term in search_query for term in ['popular', 'reviewed', 'recommended']):
|
220 |
-
if row['number_of_reviews'] > df['number_of_reviews'].mean():
|
221 |
-
boost += 0.2
|
222 |
-
|
223 |
-
# Combine scores with weights
|
224 |
-
final_score = ((name_score * 0.6) + (review_score * 0.4)) * boost
|
225 |
-
scores.append(min(1.0, final_score))
|
226 |
-
|
227 |
-
except Exception as e:
|
228 |
-
print(f"Error computing score for listing {row['id']}: {str(e)}")
|
229 |
-
scores.append(0.0)
|
230 |
-
|
231 |
-
return np.array(scores)
|
232 |
|
233 |
def sort_by_relevance(self, df, search_query):
|
234 |
-
"""Sort listings by relevance using
|
235 |
if not search_query:
|
236 |
return df
|
237 |
|
|
|
238 |
scores = self.compute_search_scores(df, search_query)
|
239 |
df['relevance_score'] = scores
|
240 |
df['relevance_percentage'] = df['relevance_score'] * 100
|
241 |
|
|
|
242 |
def get_relevance_description(score):
|
243 |
if score >= 80:
|
244 |
return "Perfect match"
|
@@ -253,47 +294,47 @@ class AirbnbMapVisualiser:
|
|
253 |
|
254 |
df['relevance_features'] = df['relevance_percentage'].apply(get_relevance_description)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
266 |
|
267 |
-
|
268 |
-
reviews = self.get_listing_reviews_for_search(row['id'])
|
269 |
-
if reviews:
|
270 |
-
review_matches = {}
|
271 |
-
# Initialize count for each search term
|
272 |
-
for term in search_terms:
|
273 |
-
review_matches[term] = set() # Use set to store unique review indices
|
274 |
-
|
275 |
-
# Count matches in each review
|
276 |
-
for i, review in enumerate(reviews):
|
277 |
-
review_text = str(review).lower()
|
278 |
-
for term in search_terms:
|
279 |
-
if term in review_text:
|
280 |
-
review_matches[term].add(i) # Add review index to set
|
281 |
-
|
282 |
-
# Format matches for display
|
283 |
-
formatted_matches = []
|
284 |
-
for term, matching_indices in review_matches.items():
|
285 |
-
if matching_indices: # If there are matches for this term
|
286 |
-
formatted_matches.append(f"{term} ({len(matching_indices)} reviews)")
|
287 |
-
|
288 |
-
if formatted_matches:
|
289 |
-
features.append(f"Matched based on High relevance , Keyword found in Review")
|
290 |
-
return " | ".join(features) if features else "Matched based on Low relevance"
|
291 |
-
|
292 |
-
except Exception as e:
|
293 |
-
print(f"Error in get_matching_features: {str(e)}")
|
294 |
-
return "Unable to determine matches"
|
295 |
-
|
296 |
-
df['matching_features'] = df.apply(get_matching_features, axis=1)
|
297 |
return df.sort_values('relevance_score', ascending=False)
|
298 |
|
299 |
def create_map_and_data(self, neighborhood="Sha Tin", show_traffic=True, center_lat=None, center_lng=None,
|
@@ -316,6 +357,7 @@ class AirbnbMapVisualiser:
|
|
316 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
317 |
|
318 |
if search_query:
|
|
|
319 |
df = self.sort_by_relevance(df, search_query)
|
320 |
|
321 |
if df.empty:
|
@@ -345,7 +387,7 @@ class AirbnbMapVisualiser:
|
|
345 |
<br/>
|
346 |
<strong>Relevance:</strong> {row['relevance_features']}
|
347 |
<br/>
|
348 |
-
<strong>
|
349 |
</p>
|
350 |
</div>
|
351 |
"""
|
|
|
2 |
import pandas as pd
|
3 |
import folium
|
4 |
from html import escape
|
5 |
+
import torch
|
6 |
+
import re
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
from TrafficSpot import TrafficSpotManager
|
9 |
|
10 |
|
|
|
26 |
)
|
27 |
self.traffic_manager = TrafficSpotManager(self.connection_params)
|
28 |
|
29 |
+
# Initialize sentence transformer model
|
30 |
+
try:
|
31 |
+
# Using a sentence transformer model specifically optimized for semantic search
|
32 |
+
model_name = "all-MiniLM-L6-v2" # Lightweight and effective model
|
33 |
+
self.model = SentenceTransformer(model_name)
|
34 |
+
print(f"Loaded Sentence Transformer model: {model_name}")
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error loading model: {str(e)}")
|
37 |
+
self.model = None
|
38 |
+
|
39 |
try:
|
40 |
self.neighborhoods = self.get_all_neighborhoods()
|
41 |
self.cached_listings = {}
|
42 |
self.cached_listings["Southern"] = self.get_neighborhood_listings("Southern")
|
43 |
+
self.cached_embeddings = {} # Cache for listing embeddings
|
44 |
except Exception as e:
|
45 |
print(f"Initialization error: {str(e)}")
|
46 |
self.neighborhoods = []
|
47 |
self.cached_listings = {}
|
48 |
+
self.cached_embeddings = {}
|
49 |
|
50 |
def get_all_neighborhoods(self):
|
51 |
connection = self.pool.acquire()
|
|
|
76 |
cursor = connection.cursor()
|
77 |
cursor.prefetchrows = 50
|
78 |
cursor.arraysize = 50
|
79 |
+
# Modified query to prioritize listings with more reviews
|
80 |
cursor.execute("""
|
81 |
SELECT m.ID, m.NAME, m.HOST_NAME, m.NEIGHBOURHOOD,
|
82 |
m.LATITUDE, m.LONGITUDE, m.ROOM_TYPE, m.PRICE,
|
|
|
87 |
WHERE m.LATITUDE IS NOT NULL
|
88 |
AND m.LONGITUDE IS NOT NULL
|
89 |
AND m.NEIGHBOURHOOD = :neighborhood
|
|
|
90 |
GROUP BY m.ID, m.NAME, m.HOST_NAME, m.NEIGHBOURHOOD,
|
91 |
m.LATITUDE, m.LONGITUDE, m.ROOM_TYPE, m.PRICE,
|
92 |
m.REVIEWS_PER_MONTH, m.MINIMUM_NIGHTS, m.AVAILABILITY_365
|
93 |
+
ORDER BY COUNT(r.LISTING_ID) DESC, m.PRICE ASC
|
94 |
+
FETCH FIRST 150 ROWS ONLY
|
95 |
""", neighborhood=neighborhood)
|
96 |
|
97 |
listings = cursor.fetchall()
|
|
|
139 |
self.pool.release(connection)
|
140 |
|
141 |
def get_listing_reviews_for_search(self, listing_id):
|
142 |
+
"""Get reviews for search analysis and handle LOB objects correctly"""
|
143 |
connection = self.pool.acquire()
|
144 |
try:
|
145 |
cursor = connection.cursor()
|
|
|
153 |
""", listing_id=int(listing_id))
|
154 |
|
155 |
reviews = cursor.fetchall()
|
156 |
+
|
157 |
+
# Properly convert LOB objects to strings
|
158 |
+
formatted_reviews = []
|
159 |
+
for review in reviews:
|
160 |
+
if review[0] is not None:
|
161 |
+
# Check if it's a LOB object and read it
|
162 |
+
if hasattr(review[0], 'read'):
|
163 |
+
formatted_reviews.append(review[0].read())
|
164 |
+
else:
|
165 |
+
formatted_reviews.append(str(review[0]))
|
166 |
+
|
167 |
+
return formatted_reviews
|
168 |
|
169 |
except Exception as e:
|
170 |
print(f"Error fetching reviews for search: {str(e)}")
|
|
|
172 |
finally:
|
173 |
self.pool.release(connection)
|
174 |
|
175 |
+
def get_title_review_embeddings(self, title, reviews):
|
176 |
+
"""Get separate embeddings for title and reviews using Sentence Transformer"""
|
177 |
+
if self.model is None:
|
178 |
+
return None, None
|
179 |
|
180 |
+
try:
|
181 |
+
# Encode the title
|
182 |
+
title_embedding = self.model.encode(title, convert_to_tensor=True)
|
183 |
|
184 |
+
# Encode reviews if available, otherwise return None
|
185 |
+
review_embedding = None
|
186 |
+
if reviews and len(reviews) > 0:
|
187 |
+
# Concatenate reviews into a single text to get embedding
|
188 |
+
review_text = " ".join(reviews[:5]) # Limit to first 5 reviews
|
189 |
+
review_embedding = self.model.encode(review_text, convert_to_tensor=True)
|
190 |
|
191 |
+
return title_embedding, review_embedding
|
|
|
192 |
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error getting embeddings: {str(e)}")
|
195 |
+
return None, None
|
196 |
+
|
197 |
+
def compute_similarity(self, query_embedding, target_embedding):
|
198 |
+
"""Compute cosine similarity between two embeddings"""
|
199 |
+
if query_embedding is None or target_embedding is None:
|
200 |
+
return 0.0
|
201 |
|
202 |
+
try:
|
203 |
+
# Use the util function from sentence_transformers for cosine similarity
|
204 |
+
similarity = util.pytorch_cos_sim(query_embedding, target_embedding).item()
|
205 |
+
return similarity
|
206 |
+
except Exception as e:
|
207 |
+
print(f"Error computing similarity: {str(e)}")
|
208 |
+
return 0.0
|
209 |
|
210 |
+
def compute_search_scores(self, df, search_query):
|
211 |
+
"""Compute search scores comparing query with title and reviews separately"""
|
212 |
+
if not search_query or self.model is None:
|
213 |
+
return [0.0] * len(df)
|
214 |
+
|
215 |
+
try:
|
216 |
+
# Encode the search query
|
217 |
+
query_key = f"query_{search_query}"
|
218 |
+
if query_key not in self.cached_embeddings:
|
219 |
+
self.cached_embeddings[query_key] = self.model.encode(search_query, convert_to_tensor=True)
|
220 |
+
query_embedding = self.cached_embeddings[query_key]
|
221 |
+
|
222 |
+
# Calculate similarity for each listing
|
223 |
+
scores = []
|
224 |
+
|
225 |
+
for idx, row in df.iterrows():
|
226 |
+
# Get title and reviews
|
227 |
+
title = str(row['name'])
|
228 |
reviews = self.get_listing_reviews_for_search(row['id'])
|
229 |
+
|
230 |
+
# Get or compute embeddings
|
231 |
+
title_key = f"title_{row['id']}"
|
232 |
+
review_key = f"review_{row['id']}"
|
233 |
+
|
234 |
+
if title_key not in self.cached_embeddings:
|
235 |
+
title_embedding = self.model.encode(title, convert_to_tensor=True)
|
236 |
+
self.cached_embeddings[title_key] = title_embedding
|
237 |
+
else:
|
238 |
+
title_embedding = self.cached_embeddings[title_key]
|
239 |
+
|
240 |
+
# Only compute review embedding if we have reviews
|
241 |
+
review_embedding = None
|
242 |
+
if reviews and len(reviews) > 0:
|
243 |
+
if review_key not in self.cached_embeddings:
|
244 |
+
review_text = " ".join(reviews[:5])
|
245 |
+
review_embedding = self.model.encode(review_text, convert_to_tensor=True)
|
246 |
+
self.cached_embeddings[review_key] = review_embedding
|
247 |
+
else:
|
248 |
+
review_embedding = self.cached_embeddings[review_key]
|
249 |
+
|
250 |
+
# Compute similarities
|
251 |
+
title_similarity = self.compute_similarity(query_embedding, title_embedding)
|
252 |
+
review_similarity = 0.0
|
253 |
+
if review_embedding is not None:
|
254 |
+
review_similarity = self.compute_similarity(query_embedding, review_embedding)
|
255 |
+
|
256 |
+
# Calculate final score - emphasis on reviews if available
|
257 |
+
if review_embedding is not None:
|
258 |
+
# Weight reviews more heavily if there are reviews
|
259 |
+
final_score = title_similarity * 0.4 + review_similarity * 0.6
|
260 |
+
else:
|
261 |
+
# Use only title similarity if no reviews
|
262 |
+
final_score = title_similarity
|
263 |
+
|
264 |
+
scores.append(final_score)
|
265 |
+
|
266 |
+
return scores
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Error in search scoring: {str(e)}")
|
270 |
+
return [0.0] * len(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
def sort_by_relevance(self, df, search_query):
|
273 |
+
"""Sort listings by relevance using sentence transformer comparison"""
|
274 |
if not search_query:
|
275 |
return df
|
276 |
|
277 |
+
# Compute semantic similarity scores
|
278 |
scores = self.compute_search_scores(df, search_query)
|
279 |
df['relevance_score'] = scores
|
280 |
df['relevance_percentage'] = df['relevance_score'] * 100
|
281 |
|
282 |
+
# Add relevance description
|
283 |
def get_relevance_description(score):
|
284 |
if score >= 80:
|
285 |
return "Perfect match"
|
|
|
294 |
|
295 |
df['relevance_features'] = df['relevance_percentage'].apply(get_relevance_description)
|
296 |
|
297 |
+
# Add match information about which part matched better
|
298 |
+
def get_match_source(row):
|
299 |
+
# Get title and reviews
|
300 |
+
title = str(row['name'])
|
301 |
+
reviews = self.get_listing_reviews_for_search(row['id'])
|
302 |
+
|
303 |
+
# Recompute individual similarities to determine match source
|
304 |
+
title_similarity = 0.0
|
305 |
+
review_similarity = 0.0
|
306 |
+
|
307 |
+
if self.model is not None:
|
308 |
+
query_embedding = self.model.encode(search_query, convert_to_tensor=True)
|
309 |
+
title_embedding = self.model.encode(title, convert_to_tensor=True)
|
310 |
+
title_similarity = self.compute_similarity(query_embedding, title_embedding)
|
311 |
+
|
312 |
+
if reviews and len(reviews) > 0:
|
313 |
+
review_text = " ".join(reviews[:5])
|
314 |
+
review_embedding = self.model.encode(review_text, convert_to_tensor=True)
|
315 |
+
review_similarity = self.compute_similarity(query_embedding, review_embedding)
|
316 |
+
|
317 |
+
# Determine which source matched better
|
318 |
+
if title_similarity > 0.7 and review_similarity > 0.7:
|
319 |
+
return "Strong match in title and reviews"
|
320 |
+
elif title_similarity > 0.7:
|
321 |
+
return "Strong match in listing title"
|
322 |
+
elif review_similarity > 0.7:
|
323 |
+
return "Strong match in reviews"
|
324 |
+
elif title_similarity > review_similarity:
|
325 |
+
return "Better match in listing title"
|
326 |
+
elif review_similarity > title_similarity:
|
327 |
+
return "Better match in reviews"
|
328 |
+
else:
|
329 |
+
return "Moderate semantic match"
|
330 |
|
331 |
+
# Only calculate match source if score is above threshold
|
332 |
+
df['matching_features'] = df.apply(
|
333 |
+
lambda row: get_match_source(row) if row['relevance_score'] > 0.3 else "Low semantic match",
|
334 |
+
axis=1
|
335 |
+
)
|
336 |
|
337 |
+
# Sort by relevance score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
return df.sort_values('relevance_score', ascending=False)
|
339 |
|
340 |
def create_map_and_data(self, neighborhood="Sha Tin", show_traffic=True, center_lat=None, center_lng=None,
|
|
|
357 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
358 |
|
359 |
if search_query:
|
360 |
+
# Use the sentence transformer semantic search
|
361 |
df = self.sort_by_relevance(df, search_query)
|
362 |
|
363 |
if df.empty:
|
|
|
387 |
<br/>
|
388 |
<strong>Relevance:</strong> {row['relevance_features']}
|
389 |
<br/>
|
390 |
+
<strong>Match Type:</strong> {row['matching_features']}
|
391 |
</p>
|
392 |
</div>
|
393 |
"""
|
TrafficSpot.py
CHANGED
@@ -4,7 +4,7 @@ from html import escape
|
|
4 |
import folium
|
5 |
import oracledb
|
6 |
from datasets import load_dataset
|
7 |
-
import base64
|
8 |
|
9 |
|
10 |
class TrafficSpot:
|
|
|
4 |
import folium
|
5 |
import oracledb
|
6 |
from datasets import load_dataset
|
7 |
+
import base64
|
8 |
|
9 |
|
10 |
class TrafficSpot:
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
accelerate
|
2 |
diffusers~=0.32.2
|
3 |
invisible_watermark
|
4 |
-
numpy
|
5 |
-
torch~=2.2.1
|
6 |
transformers~=4.48.3
|
7 |
xformers
|
8 |
gradio~=4.44.1
|
|
|
1 |
accelerate
|
2 |
diffusers~=0.32.2
|
3 |
invisible_watermark
|
4 |
+
numpy~=2.2.3
|
|
|
5 |
transformers~=4.48.3
|
6 |
xformers
|
7 |
gradio~=4.44.1
|