Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
import logging
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class AgeClassifier:
|
14 |
+
def __init__(self):
|
15 |
+
try:
|
16 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
self.pipe = pipeline("image-classification", model="nateraw/vit-age-classifier", device=self.device)
|
18 |
+
logger.info(f"Model loaded successfully on {self.device}")
|
19 |
+
except Exception as e:
|
20 |
+
logger.error(f"Failed to initialize pipeline: {e}")
|
21 |
+
raise
|
22 |
+
|
23 |
+
def classify_image(self, image):
|
24 |
+
try:
|
25 |
+
return self.pipe(image)
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Classification failed: {e}")
|
28 |
+
return None
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def format_results(results):
|
32 |
+
if not results:
|
33 |
+
return "No valid results"
|
34 |
+
return results
|
35 |
+
|
36 |
+
def load_image_from_url(url):
|
37 |
+
try:
|
38 |
+
response = requests.get(url, timeout=10)
|
39 |
+
response.raise_for_status()
|
40 |
+
image = Image.open(BytesIO(response.content))
|
41 |
+
return image
|
42 |
+
except Exception as e:
|
43 |
+
st.error(f"Error loading image from URL: {e}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
def main():
|
47 |
+
st.set_page_config(
|
48 |
+
page_title="Age Classification App",
|
49 |
+
page_icon="👤",
|
50 |
+
layout="wide"
|
51 |
+
)
|
52 |
+
|
53 |
+
st.title("Age Classification App 👤")
|
54 |
+
st.write("Upload an image or provide a URL to classify the age range of people in the image.")
|
55 |
+
|
56 |
+
# Initialize the classifier
|
57 |
+
@st.cache_resource
|
58 |
+
def get_classifier():
|
59 |
+
return AgeClassifier()
|
60 |
+
|
61 |
+
classifier = get_classifier()
|
62 |
+
|
63 |
+
# Create two columns for input methods
|
64 |
+
col1, col2 = st.columns(2)
|
65 |
+
|
66 |
+
with col1:
|
67 |
+
st.subheader("Upload Image")
|
68 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
69 |
+
|
70 |
+
with col2:
|
71 |
+
st.subheader("Image URL")
|
72 |
+
image_url = st.text_input("Enter image URL")
|
73 |
+
|
74 |
+
# Process the image
|
75 |
+
image = None
|
76 |
+
if uploaded_file is not None:
|
77 |
+
image = Image.open(uploaded_file)
|
78 |
+
elif image_url:
|
79 |
+
image = load_image_from_url(image_url)
|
80 |
+
|
81 |
+
if image:
|
82 |
+
# Display the image
|
83 |
+
st.image(image, caption="Input Image", use_column_width=True)
|
84 |
+
|
85 |
+
# Add a classify button
|
86 |
+
if st.button("Classify Age"):
|
87 |
+
with st.spinner("Classifying..."):
|
88 |
+
results = classifier.classify_image(image)
|
89 |
+
|
90 |
+
if results:
|
91 |
+
# Create a bar chart
|
92 |
+
st.subheader("Classification Results")
|
93 |
+
|
94 |
+
# Convert results to format suitable for bar chart
|
95 |
+
labels = [r['label'] for r in results]
|
96 |
+
scores = [r['score'] * 100 for r in results]
|
97 |
+
|
98 |
+
# Display most likely age range
|
99 |
+
most_likely = max(results, key=lambda x: x['score'])
|
100 |
+
st.success(f"Most likely age range: {most_likely['label']} ({most_likely['score']*100:.1f}%)")
|
101 |
+
|
102 |
+
# Create bar chart
|
103 |
+
chart_data = {
|
104 |
+
'Age Range': labels,
|
105 |
+
'Confidence (%)': scores
|
106 |
+
}
|
107 |
+
st.bar_chart(chart_data, x='Age Range', y='Confidence (%)')
|
108 |
+
|
109 |
+
# Display detailed results in an expander
|
110 |
+
with st.expander("See detailed results"):
|
111 |
+
st.write("Confidence scores for all age ranges:")
|
112 |
+
for result in results:
|
113 |
+
st.write(f"{result['label']}: {result['score']*100:.1f}%")
|
114 |
+
else:
|
115 |
+
st.error("Could not classify the image. Please try another image.")
|
116 |
+
|
117 |
+
# Add information about the model
|
118 |
+
with st.sidebar:
|
119 |
+
st.header("About")
|
120 |
+
st.write("""
|
121 |
+
This app uses the ViT (Vision Transformer) model trained for age classification.
|
122 |
+
|
123 |
+
The model classifies images into the following age ranges:
|
124 |
+
- 0-2 years
|
125 |
+
- 3-9 years
|
126 |
+
- 10-19 years
|
127 |
+
- 20-29 years
|
128 |
+
- 30-39 years
|
129 |
+
- 40-49 years
|
130 |
+
- 50-59 years
|
131 |
+
- 60-69 years
|
132 |
+
- 70+ years
|
133 |
+
""")
|
134 |
+
|
135 |
+
st.write("Model: nateraw/vit-age-classifier")
|
136 |
+
st.write(f"Running on: {classifier.device}")
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
main()
|