File size: 8,372 Bytes
5e33499
106e748
 
 
5e33499
0b83364
 
 
106e748
5e33499
2061100
5e33499
268bc54
1577d3f
268bc54
1577d3f
5e33499
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833fec1
 
 
 
 
 
5e33499
106e748
5e33499
2061100
 
5e33499
 
106e748
5e33499
 
106e748
 
 
 
 
 
 
 
 
d0b6323
67615e2
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83364
 
 
7bf8c01
 
 
 
106e748
0b83364
106e748
 
0b83364
106e748
7bf8c01
0b83364
 
 
 
106e748
 
 
 
 
 
 
 
0b83364
239bbb6
5e33499
106e748
0b83364
106e748
0b83364
106e748
 
5e33499
0b83364
 
833fec1
106e748
 
 
 
 
 
 
33fd8b0
106e748
1577d3f
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833fec1
 
 
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83364
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import re
from datetime import datetime
from typing import Dict

import gradio
import sign_language_translator as slt

DESCRIPTION = """Enter your text and select languages from the dropdowns, then click Submit to generate a video. [`Library Repository`](https://github.com/sign-language-translator/sign-language-translator)

The text is preprocessed, tokenized and rearranged and then each token is mapped to a prerecorded video which are concatenated and returned. [`Model Code`](https://github.com/sign-language-translator/sign-language-translator/blob/main/sign_language_translator/models/text_to_sign/concatenative_synthesis.py)

> *NOTE*: This model only supports a fixed vocabulary. See the [`*-dictionary-mapping.json`](https://github.com/sign-language-translator/sign-language-datasets/tree/main/parallel_texts) files for supported words.
> This version needs to re-encode the generated video so that will take some extra time after translation.
> Since this is a rule-based model, you will have to add *context* to ambiguous words (e.g. glass(material) vs glass(container)).
""".strip()

TITLE = "Concatenative Synthesis: Rule Based Text to Sign Language Translator"

CUSTOM_JS = """<script>
const rtlLanguages = ["ur", "ar"];

function updateTextareaDir(language) {
    const sourceTextarea = document.getElementById("source-textbox").querySelector("textarea");

    if (rtlLanguages.includes(language)) {
        sourceTextarea.setAttribute("dir", "rtl");
    } else {
        sourceTextarea.setAttribute("dir", "ltr");
    }
}
</script>"""
# todo: add dropdown keyboard custom component with key mapping

CUSTOM_CSS = """
#auto-complete-button {
    border-color: var(--button-primary-border-color-hover);
}
"""

HF_TOKEN = os.getenv("HF_TOKEN")
request_logger = (
    gradio.HuggingFaceDatasetSaver(
        HF_TOKEN,
        "sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus",
    )
    if HF_TOKEN
    else gradio.CSVLogger()
)

translation_model = slt.models.ConcatenativeSynthesis("ur", "pk-sl", "video")
language_models: Dict[str, slt.models.BeamSampling] = {}


def auto_complete_text(model_code: str, text: str):
    if model_code not in language_models:
        lm = slt.get_model(model_code)
        language_models[model_code] = slt.models.BeamSampling(
            lm,  # type: ignore
            start_of_sequence_token=getattr(lm, "start_of_sequence_token", "<"),  # type: ignore
            end_of_sequence_token=getattr(lm, "end_of_sequence_token", ">"),  # type: ignore
        )

    # todo: better tokenize/detokenize
    tokens = [w for w in re.split(r"\b", text) if w]
    lm = language_models[model_code]
    lm.max_length = len(tokens) + 10
    completion, _ = lm.complete(tokens or None)
    if completion[0] == lm.start_of_sequence_token:  # type: ignore
        completion = completion[1:]  # type: ignore
    if completion[-1] == lm.end_of_sequence_token:  # type: ignore
        completion = completion[:-1]  # type: ignore
    new_text = "".join(completion)

    return new_text


def text_to_video(
    text: str,
    text_language: str,
    sign_language: str,
    output_path: str = "output.mp4",
    codec="h264",  # ToDo: install h264 codec for opencv
):
    translation_model.text_language = text_language
    translation_model.sign_language = sign_language

    video = translation_model.translate(text)
    video.save(output_path, overwrite=True, codec=codec)

    # ToDo: video.watermark("Sign Language Translator\nAI Generated Video")


def translate(text: str, text_lang: str, sign_lang: str):
    log = [
        text,
        text_lang,
        sign_lang,
        None,
        datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
    ]
    try:
        path = "output.mp4"
        text_to_video(text, text_lang, sign_lang, output_path=path, codec="mp4v")
        request_logger.flag(log)
        return path

    except Exception as exc:
        log[3] = str(exc)
        request_logger.flag(log)
        raise gradio.Error(f"Error during translation: {exc}")


with gradio.Blocks(title=TITLE, head=CUSTOM_JS, css=CUSTOM_CSS) as gradio_app:
    gradio.Markdown(f"# {TITLE}")
    gradio.Markdown(DESCRIPTION)
    with gradio.Row():
        with gradio.Column():
            gradio.Markdown("## Input Text")
            with gradio.Row():
                with gradio.Column():
                    gradio.Markdown("Write here (in selected language):")
                    source_textbox = gradio.Textbox(
                        lines=1,
                        placeholder="Enter Text Here...",
                        label="Spoken Language Sentence",
                        show_copy_button=True,
                        elem_id="source-textbox",
                    )
                with gradio.Column():
                    gradio.Markdown("Generate sample text instead:")
                    with gradio.Row():
                        language_model_dropdown = gradio.Dropdown(
                            choices=[
                                slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
                                slt.ModelCodes.TRANSFORMER_LM_UR_SUPPORTED.value,
                            ],
                            value=slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
                            label="Language Model for auto-complete",
                        )
                    with gradio.Row():
                        clear_button = gradio.ClearButton(
                            source_textbox, api_name=False
                        )
                        auto_complete_button = gradio.Button(
                            "Auto-Complete", elem_id="auto-complete-button"
                        )
                        auto_complete_button.click(
                            auto_complete_text,
                            inputs=[language_model_dropdown, source_textbox],
                            outputs=[source_textbox],
                            api_name=False,
                        )

            gradio.Markdown("## Select Languages")
            with gradio.Row():
                text_lang_dropdown = gradio.Dropdown(
                    choices=[code.value for code in slt.TextLanguageCodes],
                    value=slt.TextLanguageCodes.URDU.value,
                    label="Text Language",
                    elem_id="text-lang-dropdown",
                )
                text_lang_dropdown.change(
                    None, inputs=text_lang_dropdown, js="updateTextareaDir"
                )
                sign_lang_dropdown = gradio.Dropdown(
                    choices=[code.value for code in slt.SignLanguageCodes],
                    value=slt.SignLanguageCodes.PAKISTAN_SIGN_LANGUAGE.value,
                    label="Sign Language",
                )
                # todo: sign format: video/landmarks (tabs?)

        with gradio.Column():
            gradio.Markdown("## Output Sign Language")
            output_video = gradio.Video(
                format="mp4",
                label="Synthesized Sign Language Video",
                autoplay=True,
                show_download_button=True,
                include_audio=False,
            )

    with gradio.Row():
        translate_button = gradio.Button("Translate", variant="primary")
        translate_button.click(
            translate,
            inputs=[source_textbox, text_lang_dropdown, sign_lang_dropdown],
            outputs=[output_video],
            api_name="translate",
        )

    gradio.Examples(
        [
            ["یہ بہت اچھا ہے۔", "ur", "pakistan-sign-language"],
            ["وہ کام آسان تھا۔", "ur", "pakistan-sign-language"],
            ["पाँच घंटे।", "hi", "pakistan-sign-language"],
            # ["आप कैसे हैं?", "hi", "pakistan-sign-language"],
        ],
        inputs=[source_textbox, text_lang_dropdown, sign_lang_dropdown],
        outputs=output_video,
    )
    request_logger.setup(
        [
            source_textbox,
            text_lang_dropdown,
            sign_lang_dropdown,
            gradio.Markdown(label="Exception"),
            gradio.Markdown(label="Timestamp"),
        ],
        "flagged",
    )

    gradio_app.load(None, inputs=[text_lang_dropdown], js="updateTextareaDir")

if __name__ == "__main__":
    gradio_app.launch()