File size: 9,760 Bytes
5e33499
106e748
 
 
5e33499
0b83364
 
 
106e748
5e33499
2061100
5e33499
268bc54
1577d3f
78bb9d8
1577d3f
5e33499
106e748
 
 
c3eb76b
106e748
 
 
 
 
 
 
 
 
 
 
 
c3eb76b
106e748
833fec1
c3eb76b
 
 
833fec1
 
 
 
 
b75d870
 
 
 
 
e32a65c
b75d870
 
 
5e33499
106e748
 
 
c3eb76b
 
 
 
 
 
 
106e748
 
 
 
 
 
d0b6323
67615e2
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83364
 
 
7bf8c01
 
 
78bb9d8
7bf8c01
106e748
0b83364
106e748
 
78bb9d8
 
 
0b83364
78bb9d8
 
c3eb76b
c2feeec
c3eb76b
c2feeec
78bb9d8
 
 
0b83364
 
 
 
78bb9d8
c3eb76b
106e748
 
 
 
 
 
 
0b83364
239bbb6
78bb9d8
 
 
 
 
 
 
 
106e748
0b83364
106e748
0b83364
106e748
 
5e33499
0b83364
 
833fec1
106e748
b75d870
c3eb76b
 
 
 
 
 
 
 
 
 
 
78bb9d8
ecf5670
 
 
c3eb76b
 
 
 
 
 
 
 
ecf5670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106e748
c3eb76b
 
dfc8066
c3eb76b
 
 
 
 
 
 
 
 
 
 
 
 
 
106e748
c3eb76b
 
 
 
 
 
 
 
 
 
106e748
c3eb76b
 
 
 
 
 
 
 
 
 
 
 
 
106e748
 
 
c3eb76b
 
 
 
 
 
 
 
 
 
106e748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83364
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import re
from datetime import datetime
from typing import Dict

import gradio
import sign_language_translator as slt

DESCRIPTION = """Enter your text and select languages from the dropdowns, then click Submit to generate a video. [`Library Repository`](https://github.com/sign-language-translator/sign-language-translator)

The text is preprocessed, tokenized and rearranged and then each token is mapped to a prerecorded video which are concatenated and returned. [`Model Code`](https://github.com/sign-language-translator/sign-language-translator/blob/main/sign_language_translator/models/text_to_sign/concatenative_synthesis.py)

> *NOTE*: This model only supports a fixed vocabulary. See the [`*-dictionary-mapping.json`](https://github.com/sign-language-translator/sign-language-datasets/tree/main/parallel_texts) files for supported words.
> This version needs to re-encode the generated video so that will take some extra time after translation.
> Since this is a rule-based model, you will have to add **context** to ambiguous words (e.g. glass(material) vs glass(container)).
""".strip()

TITLE = "Concatenative Synthesis: Rule Based Text to Sign Language Translator"

CUSTOM_JS = """<script>
const rtlLanguages = ["urdu", "arabic"];

function updateTextareaDir(language) {
    const sourceTextarea = document.getElementById("source-textbox").querySelector("textarea");

    if (rtlLanguages.includes(language)) {
        sourceTextarea.setAttribute("dir", "rtl");
    } else {
        sourceTextarea.setAttribute("dir", "ltr");
    }
}
</script>"""
# todo: add dropdown keyboard custom component with key mapping
# todo: output full height

CUSTOM_CSS = """
.reverse-row {
    flex-direction: row-reverse;
}
#auto-complete-button {
    border-color: var(--button-primary-border-color-hover);
}
"""

HF_TOKEN = os.getenv("HF_TOKEN")
request_logger = (
    gradio.HuggingFaceDatasetSaver(
        HF_TOKEN,
        "sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus",
    )
    if HF_TOKEN
    else gradio.CSVLogger()
)

translation_model = slt.models.ConcatenativeSynthesis("ur", "pk-sl", "video")
language_models: Dict[str, slt.models.BeamSampling] = {}

full_to_short = {
    "english": "en",
    "urdu": "ur",
    "hindi": "hi",
}
short_to_full = {s: f for f, s in full_to_short.items()}


def auto_complete_text(model_code: str, text: str):
    if model_code not in language_models:
        lm = slt.get_model(model_code)
        language_models[model_code] = slt.models.BeamSampling(
            lm,  # type: ignore
            start_of_sequence_token=getattr(lm, "start_of_sequence_token", "<"),  # type: ignore
            end_of_sequence_token=getattr(lm, "end_of_sequence_token", ">"),  # type: ignore
        )

    # todo: better tokenize/detokenize
    tokens = [w for w in re.split(r"\b", text) if w]
    lm = language_models[model_code]
    lm.max_length = len(tokens) + 10
    completion, _ = lm.complete(tokens or None)
    if completion[0] == lm.start_of_sequence_token:  # type: ignore
        completion = completion[1:]  # type: ignore
    if completion[-1] == lm.end_of_sequence_token:  # type: ignore
        completion = completion[:-1]  # type: ignore
    new_text = "".join(completion)

    return new_text


def text_to_video(
    text: str,
    text_language: str,
    sign_language: str,
    sign_format: str = "video",
    output_path: str = "output.mp4",
    codec="h264",  # ToDo: install h264 codec for opencv
):
    translation_model.text_language = text_language
    translation_model.sign_language = sign_language
    translation_model.sign_format = sign_format
    if sign_format == "landmarks":
        translation_model.sign_embedding_model = "mediapipe-world"

    sign = translation_model.translate(text)
    if isinstance(sign, slt.Landmarks):
        sign.data[:, 33:] *= 2
        sign.data[:, 33:54, 0] += 0.25
        sign.data[:, 54:, 0] -= 0.25

        sign.save_animation(output_path, overwrite=True)
    else:
        sign.save(output_path, overwrite=True, codec=codec)

    # ToDo: video.watermark("Sign Language Translator\nAI Generated Video")


def translate(text: str, text_lang: str, sign_lang: str, sign_format: str):
    text_lang = full_to_short.get(text_lang, text_lang)
    log = [
        text,
        text_lang,
        sign_lang,
        None,
        datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
    ]
    try:
        path = "output.mp4"
        text_to_video(
            text,
            text_lang,
            sign_lang,
            sign_format=sign_format,
            output_path=path,
            codec="mp4v",
        )
        request_logger.flag(log)
        return path

    except Exception as exc:
        log[3] = str(exc)
        request_logger.flag(log)
        raise gradio.Error(f"Error during translation: {exc}")


with gradio.Blocks(title=TITLE, head=CUSTOM_JS, css=CUSTOM_CSS) as gradio_app:
    gradio.Markdown(f"# {TITLE}")
    gradio.Markdown(DESCRIPTION)
    with gradio.Row(elem_classes=["reverse-row"]):  # Inputs and Outputs
        with gradio.Column():  # Outputs
            gradio.Markdown("## Output Sign Language")
            output_video = gradio.Video(
                format="mp4",
                label="Synthesized Sign Language Video",
                autoplay=True,
                show_download_button=True,
                include_audio=False,
            )

        with gradio.Column():  # Inputs
            gradio.Markdown("## Select Languages")
            with gradio.Row():
                text_lang_dropdown = gradio.Dropdown(
                    choices=[
                        short_to_full.get(code.value, code.value)
                        for code in slt.TextLanguageCodes
                    ],
                    value=short_to_full.get(
                        slt.TextLanguageCodes.URDU.value,
                        slt.TextLanguageCodes.URDU.value,
                    ),
                    label="Text Language",
                    elem_id="text-lang-dropdown",
                )
                text_lang_dropdown.change(
                    None, inputs=text_lang_dropdown, js="updateTextareaDir"
                )
                sign_lang_dropdown = gradio.Dropdown(
                    choices=[code.value for code in slt.SignLanguageCodes],
                    value=slt.SignLanguageCodes.PAKISTAN_SIGN_LANGUAGE.value,
                    label="Sign Language",
                )
                output_format_dropdown = gradio.Dropdown(
                    choices=[
                        slt.SignFormatCodes.VIDEO.value,
                        slt.SignFormatCodes.LANDMARKS.value,
                    ],
                    value=slt.SignFormatCodes.VIDEO.value,
                    label="Output Format",
                )
                # todo: sign format: video/landmarks (tabs?)

            gradio.Markdown("## Input Text")
            with gradio.Row():  # Source TextArea
                source_textbox = gradio.Textbox(
                    lines=4,
                    placeholder="Enter Text Here...",
                    label="Spoken Language Sentence",
                    show_copy_button=True,
                    elem_id="source-textbox",
                )
            with gradio.Row():  # clear/auto-complete/Language Model
                language_model_dropdown = gradio.Dropdown(
                    choices=[
                        slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
                        slt.ModelCodes.TRANSFORMER_LM_UR_SUPPORTED.value,
                    ],
                    value=slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
                    label="Select language model to Generate sample text",
                )

                auto_complete_button = gradio.Button(
                    "Auto-Complete", elem_id="auto-complete-button"
                )
                auto_complete_button.click(
                    auto_complete_text,
                    inputs=[language_model_dropdown, source_textbox],
                    outputs=[source_textbox],
                    api_name=False,
                )
                clear_button = gradio.ClearButton(source_textbox, api_name=False)

            with gradio.Row():  # Translate Button
                translate_button = gradio.Button("Translate", variant="primary")
                translate_button.click(
                    translate,
                    inputs=[
                        source_textbox,
                        text_lang_dropdown,
                        sign_lang_dropdown,
                        output_format_dropdown,
                    ],
                    outputs=[output_video],
                    api_name="translate",
                )

    gradio.Examples(
        [
            ["یہ بہت اچھا ہے۔", "urdu", "pakistan-sign-language", "video"],
            ["وہ کام آسان تھا۔", "urdu", "pakistan-sign-language", "landmarks"],
            ["पाँच घंटे।", "hindi", "pakistan-sign-language", "video"],
            ["कैसे हैं आप?", "hindi", "pakistan-sign-language", "landmarks"],
        ],
        inputs=[
            source_textbox,
            text_lang_dropdown,
            sign_lang_dropdown,
            output_format_dropdown,
        ],
        outputs=output_video,
    )
    request_logger.setup(
        [
            source_textbox,
            text_lang_dropdown,
            sign_lang_dropdown,
            gradio.Markdown(label="Exception"),
            gradio.Markdown(label="Timestamp"),
        ],
        "flagged",
    )

    gradio_app.load(None, inputs=[text_lang_dropdown], js="updateTextareaDir")

if __name__ == "__main__":
    gradio_app.launch()