Spaces:
Running
Running
File size: 10,446 Bytes
5e33499 106e748 5e33499 0b83364 106e748 5e33499 2061100 5e33499 268bc54 1577d3f 78bb9d8 1577d3f 5e33499 106e748 833fec1 3bde99c 5e33499 e32a65c 870ea65 3bde99c 5de1b0d 5e33499 106e748 d0b6323 67615e2 106e748 0b83364 7bf8c01 78bb9d8 7bf8c01 106e748 0b83364 106e748 78bb9d8 0b83364 78bb9d8 c2feeec 78bb9d8 0b83364 78bb9d8 106e748 0b83364 239bbb6 78bb9d8 106e748 0b83364 106e748 0b83364 106e748 5e33499 0b83364 833fec1 106e748 3bde99c 5de1b0d 3bde99c 78bb9d8 ecf5670 106e748 78bb9d8 33fd8b0 106e748 ecf5670 106e748 78bb9d8 106e748 833fec1 106e748 78bb9d8 106e748 78bb9d8 106e748 78bb9d8 106e748 c2feeec ecf5670 106e748 c2feeec 106e748 0b83364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import re
from datetime import datetime
from typing import Dict
import gradio
import sign_language_translator as slt
DESCRIPTION = """Enter your text and select languages from the dropdowns, then click Submit to generate a video. [`Library Repository`](https://github.com/sign-language-translator/sign-language-translator)
The text is preprocessed, tokenized and rearranged and then each token is mapped to a prerecorded video which are concatenated and returned. [`Model Code`](https://github.com/sign-language-translator/sign-language-translator/blob/main/sign_language_translator/models/text_to_sign/concatenative_synthesis.py)
> *NOTE*: This model only supports a fixed vocabulary. See the [`*-dictionary-mapping.json`](https://github.com/sign-language-translator/sign-language-datasets/tree/main/parallel_texts) files for supported words.
> This version needs to re-encode the generated video so that will take some extra time after translation.
> Since this is a rule-based model, you will have to add **context** to ambiguous words (e.g. glass(material) vs glass(container)).
""".strip()
TITLE = "Concatenative Synthesis: Rule Based Text to Sign Language Translator"
CUSTOM_JS = """<script>
const rtlLanguages = ["ur", "ar"];
function updateTextareaDir(language) {
const sourceTextarea = document.getElementById("source-textbox").querySelector("textarea");
if (rtlLanguages.includes(language)) {
sourceTextarea.setAttribute("dir", "rtl");
} else {
sourceTextarea.setAttribute("dir", "ltr");
}
}
</script>"""
# todo: add dropdown keyboard custom component with key mapping
CUSTOM_CSS = """
#auto-complete-button {
border-color: var(--button-primary-border-color-hover);
}
"""
try:
HF_TOKEN = os.getenv("HF_TOKEN")
request_logger = (
gradio.HuggingFaceDatasetSaver(
HF_TOKEN,
"sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus",
)
if HF_TOKEN
else gradio.CSVLogger()
)
request_logger.setup(
[
gradio.Markdown(label="Spoken Language Sentence"),
gradio.Markdown(label="Text Language"),
gradio.Markdown(label="Sign Language"),
gradio.Markdown(label="Exception"),
gradio.Markdown(label="Timestamp"),
],
"flagged",
)
request_logger = (
gradio.HuggingFaceDatasetSaver(
HF_TOKEN,
"sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus",
)
if HF_TOKEN
else gradio.CSVLogger()
)
eroor_mesg = ""
except Exception as e:
request_logger = gradio.CSVLogger()
eroor_mesg = f"Error in setting up HuggingFaceDatasetSaver: {e}"
print(eroor_mesg)
translation_model = slt.models.ConcatenativeSynthesis("ur", "pk-sl", "video")
language_models: Dict[str, slt.models.BeamSampling] = {}
def auto_complete_text(model_code: str, text: str):
if model_code not in language_models:
lm = slt.get_model(model_code)
language_models[model_code] = slt.models.BeamSampling(
lm, # type: ignore
start_of_sequence_token=getattr(lm, "start_of_sequence_token", "<"), # type: ignore
end_of_sequence_token=getattr(lm, "end_of_sequence_token", ">"), # type: ignore
)
# todo: better tokenize/detokenize
tokens = [w for w in re.split(r"\b", text) if w]
lm = language_models[model_code]
lm.max_length = len(tokens) + 10
completion, _ = lm.complete(tokens or None)
if completion[0] == lm.start_of_sequence_token: # type: ignore
completion = completion[1:] # type: ignore
if completion[-1] == lm.end_of_sequence_token: # type: ignore
completion = completion[:-1] # type: ignore
new_text = "".join(completion)
return new_text
def text_to_video(
text: str,
text_language: str,
sign_language: str,
sign_format: str = "video",
output_path: str = "output.mp4",
codec="h264", # ToDo: install h264 codec for opencv
):
translation_model.text_language = text_language
translation_model.sign_language = sign_language
translation_model.sign_format = sign_format
if sign_format == "landmarks":
translation_model.sign_embedding_model = "mediapipe-world"
sign = translation_model.translate(text)
if isinstance(sign, slt.Landmarks):
sign.data[:, 33: ] *= 3
sign.data[:, 33:54, 0] += 0.25
sign.data[:, 54: , 0] -= 0.25
sign.save_animation(output_path, overwrite=True)
else:
sign.save(output_path, overwrite=True, codec=codec)
# ToDo: video.watermark("Sign Language Translator\nAI Generated Video")
def translate(text: str, text_lang: str, sign_lang: str, sign_format: str):
log = [
text,
text_lang,
sign_lang,
None,
datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
]
try:
path = "output.mp4"
text_to_video(
text,
text_lang,
sign_lang,
sign_format=sign_format,
output_path=path,
codec="mp4v",
)
request_logger.flag(log)
return path
except Exception as exc:
log[3] = str(exc)
request_logger.flag(log)
raise gradio.Error(f"Error during translation: {exc}")
with gradio.Blocks(title=TITLE, head=CUSTOM_JS, css=CUSTOM_CSS) as gradio_app:
gradio.Markdown(f"# {TITLE}")
gradio.Markdown(
DESCRIPTION + f"\n\n<sub>{eroor_mesg}<sub/>"
if not isinstance(request_logger, gradio.HuggingFaceDatasetSaver)
else ""
)
with gradio.Row(): # Inputs and Outputs
with gradio.Column(): # Inputs
gradio.Markdown("## Select Languages")
with gradio.Row():
text_lang_dropdown = gradio.Dropdown(
choices=[code.value for code in slt.TextLanguageCodes],
value=slt.TextLanguageCodes.URDU.value,
label="Text Language",
elem_id="text-lang-dropdown",
)
text_lang_dropdown.change(
None, inputs=text_lang_dropdown, js="updateTextareaDir"
)
sign_lang_dropdown = gradio.Dropdown(
choices=[code.value for code in slt.SignLanguageCodes],
value=slt.SignLanguageCodes.PAKISTAN_SIGN_LANGUAGE.value,
label="Sign Language",
)
output_format_dropdown = gradio.Dropdown(
choices=[
slt.SignFormatCodes.VIDEO.value,
slt.SignFormatCodes.LANDMARKS.value,
],
value=slt.SignFormatCodes.VIDEO.value,
label="Output Format",
)
# todo: sign format: video/landmarks (tabs?)
gradio.Markdown("## Input Text")
with gradio.Row():
with gradio.Column(): # Source TextArea
gradio.Markdown("Write here (in selected language):")
source_textbox = gradio.Textbox(
lines=2,
placeholder="Enter Text Here...",
label="Spoken Language Sentence",
show_copy_button=True,
elem_id="source-textbox",
)
with gradio.Column(): # Language Model
gradio.Markdown("Generate sample text instead:")
with gradio.Row():
language_model_dropdown = gradio.Dropdown(
choices=[
slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
slt.ModelCodes.TRANSFORMER_LM_UR_SUPPORTED.value,
],
value=slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
label="Language Model for auto-complete",
)
with gradio.Row():
clear_button = gradio.ClearButton(
source_textbox, api_name=False
)
auto_complete_button = gradio.Button(
"Auto-Complete", elem_id="auto-complete-button"
)
auto_complete_button.click(
auto_complete_text,
inputs=[language_model_dropdown, source_textbox],
outputs=[source_textbox],
api_name=False,
)
with gradio.Column(): # Outputs
gradio.Markdown("## Output Sign Language")
output_video = gradio.Video(
format="mp4",
label="Synthesized Sign Language Video",
autoplay=True,
show_download_button=True,
include_audio=False,
)
with gradio.Row(): # Translate Button
translate_button = gradio.Button("Translate", variant="primary")
translate_button.click(
translate,
inputs=[
source_textbox,
text_lang_dropdown,
sign_lang_dropdown,
output_format_dropdown,
],
outputs=[output_video],
api_name="translate",
)
gradio.Examples(
[
["یہ بہت اچھا ہے۔", "ur", "pakistan-sign-language", "video"],
["وہ کام آسان تھا۔", "ur", "pakistan-sign-language", "landmarks"],
["पाँच घंटे।", "hi", "pakistan-sign-language", "video"],
["कैसे हैं आप?", "hi", "pakistan-sign-language", "video"],
],
inputs=[source_textbox, text_lang_dropdown, sign_lang_dropdown, output_format_dropdown],
outputs=output_video,
)
request_logger.setup(
[
source_textbox,
text_lang_dropdown,
sign_lang_dropdown,
gradio.Markdown(label="Exception"),
gradio.Markdown(label="Timestamp"),
],
"flagged",
)
gradio_app.load(None, inputs=[text_lang_dropdown], js="updateTextareaDir")
if __name__ == "__main__":
gradio_app.launch()
|