mdsr's picture
english examples, move hands to pose wrist, Note
50f0067
raw
history blame
13.7 kB
import os
import re
from datetime import datetime
from typing import Dict
import gradio
import sign_language_translator as slt
DESCRIPTION = """Enter your text and select languages from the dropdowns, then click Submit to generate a video. [`Library Repository`](https://github.com/sign-language-translator/sign-language-translator)
The text is preprocessed, tokenized and rearranged and then each token is mapped to a prerecorded video which are concatenated and returned. [`Model Code`](https://github.com/sign-language-translator/sign-language-translator/blob/main/sign_language_translator/models/text_to_sign/concatenative_synthesis.py)
> **NOTE**
> - This model only supports a fixed vocabulary. See the [`*-dictionary-mapping.json`](https://github.com/sign-language-translator/sign-language-datasets/tree/main/parallel_texts) files for supported words.
> - This version needs to re-encode the generated video so that will take some extra time after translation.
> - Since this is a rule-based model, you will have to add **context** to ambiguous words (e.g. glass(material) vs glass(container)).
> - Some signs correspond to words very specific in a particular language so their mapping in other languages will not make sense (e.g. in pakistan-sign-language, signs were recorded in reference to common Urdu words, hence English words "for" & "to" etc do not map well to their original Urdu words "کے لئے" and "کو" etc).
""".strip()
TITLE = "Concatenative Synthesis: Rule Based Text to Sign Language Translator"
CUSTOM_JS = """<script>
const rtlLanguages = ["urdu", "arabic"];
const keyMap = {
"urdu": {
"1": "۱",
"2": "۲",
"3": "۳",
"4": "۴",
"5": "۵",
"6": "٦",
"7": "۷",
"8": "۸",
"9": "۹",
"0": "۰",
"q": "ق",
"w": "و",
"e": "ع",
"r": "ر",
"t": "ت",
"y": "ے",
"u": "ء",
"i": "ی",
"o": "ہ",
"p": "پ",
"a": "ا",
"s": "س",
"d": "د",
"f": "ف",
"g": "گ",
"h": "ح",
"j": "ج",
"k": "ک",
"l": "ل",
"z": "ز",
"x": "ش",
"c": "چ",
"v": "ط",
"b": "ب",
"n": "ن",
"m": "م",
"R": "ڑ",
"T": "ٹ",
"Y": "َ",
"U": "ئ",
"I": "ِ",
"P": "ُ",
"A": "آ",
"S": "ص",
"D": "ڈ",
"F": "أ",
"G": "غ",
"H": "ھ",
"J": "ض",
"K": "خ",
"Z": "ذ",
"X": "ژ",
"C": "ث",
"V": "ظ",
"N": "ں",
",": "،",
".": "۔",
"?": "؟",
";": "؛",
},
"hindi": {
"1": "१",
"2": "२",
"3": "३",
"4": "४",
"5": "५",
"6": "६",
"7": "७",
"8": "८",
"9": "९",
"0": "०",
"=": "ृ",
"!": "ऍ",
"@": "ॅ",
"#": "्र",
"$": "र्",
"%": "ज्ञ",
"^": "त्र",
"&": "क्ष",
"*": "श्र",
"_": "ः",
"+": "ऋ",
"q": "ौ",
"w": "ै",
"e": "ा",
"r": "ी",
"t": "ू",
"y": "ब",
"u": "ह",
"i": "ग",
"o": "द",
"p": "ज",
"[": "ड",
"]": "़",
'\\\\': "ॉ",
"Q": "औ",
"W": "ऐ",
"E": "आ",
"R": "ई",
"T": "ऊ",
"Y": "भ",
"U": "ङ",
"I": "घ",
"O": "ध",
"P": "झ",
"{": "ढ",
"}": "ञ",
"|": "ऑ",
"a": "ो",
"s": "े",
"d": "्",
"f": "ि",
"g": "ु",
"h": "प",
"j": "र",
"k": "क",
"l": "त",
";": "च",
"'": "ट",
"A": "ओ",
"S": "ए",
"D": "अ",
"F": "इ",
"G": "उ",
"H": "फ",
"J": "ऱ",
"K": "ख",
"L": "थ",
":": "छ",
'"': "ठ",
"z": "ॆ",
"x": "ं",
"c": "म",
"v": "न",
"b": "व",
"n": "ल",
"m": "स",
".": "।",
"/": "य",
"Z": "ऎ",
"X": "ँ",
"C": "ण",
"V": "ऩ",
"B": "ऴ",
"N": "ळ",
"M": "श",
"<": "ष",
">": "य़",
// "?":"य़",
}
};
function updateTextareaDir(language) {
const sourceTextarea = document.getElementById("source-textbox").querySelector("textarea");
if (rtlLanguages.includes(language)) {
sourceTextarea.setAttribute("dir", "rtl");
} else {
sourceTextarea.setAttribute("dir", "ltr");
}
function keypressHandler(event) {
const key = event.key;
if (keyMap[language].hasOwnProperty(key)) {
event.preventDefault();
const mappedValue = keyMap[language][key];
const start = sourceTextarea.selectionStart;
const end = sourceTextarea.selectionEnd;
sourceTextarea.value = sourceTextarea.value.slice(0, start) + mappedValue + sourceTextarea.value.slice(end);
sourceTextarea.selectionStart = sourceTextarea.selectionEnd = start + mappedValue.length;
}
}
sourceTextarea.removeEventListener("keypress", sourceTextarea.keypressHandler);
sourceTextarea.addEventListener("keypress", keypressHandler);
// Save the handler function to the textarea element for future removal
sourceTextarea.keypressHandler = keypressHandler;
}
</script>
"""
# todo: add dropdown keyboard custom component with key mapping
# todo: output full height
CUSTOM_CSS = """
.reverse-row {
flex-direction: row-reverse;
}
#auto-complete-button {
border-color: var(--button-primary-border-color-hover);
}
"""
HF_TOKEN = os.getenv("HF_TOKEN")
request_logger = (
gradio.HuggingFaceDatasetSaver(
HF_TOKEN,
"sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus",
)
if HF_TOKEN
else gradio.CSVLogger()
)
translation_model = slt.models.ConcatenativeSynthesis("ur", "pk-sl", "video")
language_models: Dict[str, slt.models.BeamSampling] = {}
full_to_short = {
"english": "en",
"urdu": "ur",
"hindi": "hi",
}
short_to_full = {s: f for f, s in full_to_short.items()}
def auto_complete_text(model_code: str, text: str):
if model_code not in language_models:
lm = slt.get_model(model_code)
language_models[model_code] = slt.models.BeamSampling(
lm, # type: ignore
start_of_sequence_token=getattr(lm, "start_of_sequence_token", "<"), # type: ignore
end_of_sequence_token=getattr(lm, "end_of_sequence_token", ">"), # type: ignore
)
# todo: better tokenize/detokenize
tokens = [w for w in re.split(r"\b", text) if w]
lm = language_models[model_code]
lm.max_length = len(tokens) + 10
completion, _ = lm.complete(tokens or None)
if completion[0] == lm.start_of_sequence_token: # type: ignore
completion = completion[1:] # type: ignore
if completion[-1] == lm.end_of_sequence_token: # type: ignore
completion = completion[:-1] # type: ignore
new_text = "".join(completion)
return new_text
def text_to_video(
text: str,
text_language: str,
sign_language: str,
sign_format: str = "video",
output_path: str = "output.mp4",
codec="h264", # ToDo: install h264 codec for opencv
):
translation_model.text_language = text_language
translation_model.sign_language = sign_language
translation_model.sign_format = sign_format
if sign_format == "landmarks":
translation_model.sign_embedding_model = "mediapipe-world"
sign = translation_model.translate(text)
if isinstance(sign, slt.Landmarks):
# large hands on sides
# sign.data[:, 33:] *= 2
# sign.data[:, 33:54, 0] += 0.25
# sign.data[:, 54:, 0] -= 0.25
# hands moved to pose wrists
sign.data[:, 33:54, :3] += -sign.data[:, 33:34, :3] + sign.data[:, 15:16, :3]
sign.data[:, 54:, :3] += - sign.data[:, 54:55, :3] + sign.data[:, 16:17, :3]
sign.save_animation(output_path, overwrite=True)
else:
sign.save(output_path, overwrite=True, codec=codec)
# ToDo: video.watermark("Sign Language Translator\nAI Generated Video")
def translate(text: str, text_lang: str, sign_lang: str, sign_format: str):
text_lang = full_to_short.get(text_lang, text_lang)
log = [
text,
text_lang,
sign_lang,
None,
datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
]
try:
path = "output.mp4"
text_to_video(
text,
text_lang,
sign_lang,
sign_format=sign_format,
output_path=path,
codec="mp4v",
)
request_logger.flag(log)
return path
except Exception as exc:
log[3] = str(exc)
request_logger.flag(log)
raise gradio.Error(f"Error during translation: {exc}")
with gradio.Blocks(title=TITLE, head=CUSTOM_JS, css=CUSTOM_CSS) as gradio_app:
gradio.Markdown(f"# {TITLE}")
gradio.Markdown(DESCRIPTION)
with gradio.Row(elem_classes=["reverse-row"]): # Inputs and Outputs
with gradio.Column(): # Outputs
gradio.Markdown("## Output Sign Language")
output_video = gradio.Video(
format="mp4",
label="Synthesized Sign Language Video",
autoplay=True,
show_download_button=True,
include_audio=False,
)
with gradio.Column(): # Inputs
gradio.Markdown("## Select Languages")
with gradio.Row():
text_lang_dropdown = gradio.Dropdown(
choices=[
short_to_full.get(code.value, code.value)
for code in slt.TextLanguageCodes
],
value=short_to_full.get(
slt.TextLanguageCodes.URDU.value,
slt.TextLanguageCodes.URDU.value,
),
label="Text Language",
elem_id="text-lang-dropdown",
)
text_lang_dropdown.change(
None, inputs=text_lang_dropdown, js="updateTextareaDir"
)
sign_lang_dropdown = gradio.Dropdown(
choices=[code.value for code in slt.SignLanguageCodes],
value=slt.SignLanguageCodes.PAKISTAN_SIGN_LANGUAGE.value,
label="Sign Language",
)
output_format_dropdown = gradio.Dropdown(
choices=[
slt.SignFormatCodes.VIDEO.value,
slt.SignFormatCodes.LANDMARKS.value,
],
value=slt.SignFormatCodes.VIDEO.value,
label="Output Format",
)
# todo: sign format: video/landmarks (tabs?)
gradio.Markdown("## Input Text")
with gradio.Row(): # Source TextArea
source_textbox = gradio.Textbox(
lines=4,
placeholder="Enter Text Here...",
label="Spoken Language Sentence",
show_copy_button=True,
elem_id="source-textbox",
)
with gradio.Row(): # clear/auto-complete/Language Model
language_model_dropdown = gradio.Dropdown(
choices=[
slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
slt.ModelCodes.TRANSFORMER_LM_UR_SUPPORTED.value,
],
value=slt.ModelCodes.MIXER_LM_NGRAM_URDU.value,
label="Select language model to Generate sample text",
)
auto_complete_button = gradio.Button(
"Auto-Complete", elem_id="auto-complete-button"
)
auto_complete_button.click(
auto_complete_text,
inputs=[language_model_dropdown, source_textbox],
outputs=[source_textbox],
api_name=False,
)
clear_button = gradio.ClearButton(source_textbox, api_name=False)
with gradio.Row(): # Translate Button
translate_button = gradio.Button("Translate", variant="primary")
translate_button.click(
translate,
inputs=[
source_textbox,
text_lang_dropdown,
sign_lang_dropdown,
output_format_dropdown,
],
outputs=[output_video],
api_name="translate",
)
gradio.Examples(
[
["We are here to use this.", "english", "pakistan-sign-language", "video"],
["i(me) admire art.", "english", "pakistan-sign-language", "landmarks"],
["یہ بہت اچھا ہے۔", "urdu", "pakistan-sign-language", "video"],
["وہ کام آسان تھا۔", "urdu", "pakistan-sign-language", "landmarks"],
["कैसे हैं आप?", "hindi", "pakistan-sign-language", "video"],
["पाँच घंटे।", "hindi", "pakistan-sign-language", "landmarks"],
],
inputs=[
source_textbox,
text_lang_dropdown,
sign_lang_dropdown,
output_format_dropdown,
],
outputs=output_video,
)
request_logger.setup(
[
source_textbox,
text_lang_dropdown,
sign_lang_dropdown,
gradio.Markdown(label="Exception"),
gradio.Markdown(label="Timestamp"),
],
"flagged",
)
gradio_app.load(None, inputs=[text_lang_dropdown], js="updateTextareaDir")
if __name__ == "__main__":
gradio_app.launch()