Spaces:
Sleeping
Sleeping
File size: 4,776 Bytes
fd0db3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, max_flow=None):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (torch.Tensor): Flow UV image of shape [2,H,W]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
PIL Image: Flow visualization image
"""
flow_uv = flow_uv.permute(1, 2, 0).cpu().numpy() # change to [H,W,2] and convert to numpy
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
if max_flow is None:
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
else:
rad_max = max_flow
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
flow_image = flow_uv_to_colors(u, v, convert_to_bgr)
return Image.fromarray(flow_image)
def resize_flow(flow, size, scale_type="none", mode="bicubic"):
"""
Resize the flow tensor (Bx2xHxW) to the given size (HxW).
flow tensor is in range of [-ori_w, ori_w] and [-ori_h, ori_h]
Size should be a tuple (H, W).
"""
ori_h, ori_w = flow.shape[2:]
flow = F.interpolate(flow, size=size, mode=mode, align_corners=False)
if scale_type == "scale" and (ori_h != size[0] or ori_w != size[1]):
flow[:,0,:,:] *= size[1] / ori_w
flow[:,1,:,:] *= size[0] / ori_h
elif scale_type == "normalize_fixed": # normalize to -1 ~ 1
flow[:,0,:,:] /= ori_w
flow[:,1,:,:] /= ori_h
elif scale_type == "normalize_max":
max_flow_x = torch.amax(torch.abs(flow[:, 0, :, :]), dim=(1, 2))
max_flow_y = torch.amax(torch.abs(flow[:, 1, :, :]), dim=(1, 2))
flow[:, 0, :, :] /= max_flow_x.view(-1, 1, 1)
flow[:, 1, :, :] /= max_flow_y.view(-1, 1, 1)
return flow |