File size: 10,187 Bytes
fd0db3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import sys
sys.path.append("../")

import os
import re
import time
import datetime
from copy import deepcopy

import numpy as np
import cv2
import torch
import torch.nn.functional as F
import gradio as gr
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import load_file

from utils.flow_utils import flow_to_image, resize_flow
from flowgen.models import UnetGenerator
from flowdiffusion.pipeline import FlowDiffusionPipeline

LENGTH = 512
FLOWGAN_RESOLUTION = [256, 256] # HxW
FLOWDIFFUSION_RESOLUTION = [512, 512] # HxW

def process_img(image):
    if image["composite"] is not None and not np.all(image["composite"] == 0):
        original_image = Image.fromarray(image["composite"]).resize((LENGTH, LENGTH), Image.BICUBIC)
        original_image = np.array(exif_transpose(original_image))
        return original_image, [], gr.Image(value=deepcopy(original_image), interactive=False)
    else:
        return (
            gr.Image(value=None, interactive=False),
            [],
            gr.Image(value=None, interactive=False),
        )

def get_points(img, sel_pix, evt: gr.SelectData):
    sel_pix.append(evt.index)
    print(sel_pix)
    points = []
    for idx, point in enumerate(sel_pix):
        if idx % 2 == 0:
            cv2.circle(img, tuple(point), 4, (255, 0, 0), -1)
        else:
            cv2.circle(img, tuple(point), 4, (0, 0, 255), -1)
        points.append(tuple(point))
        if len(points) == 2:
            cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 2, tipLength=0.5)
            points = []
    img = img if isinstance(img, np.ndarray) else np.array(img)
    return img

def display_points(img, predefined_points, save_results):
    if predefined_points != "":
        predefined_points = predefined_points.split()
        predefined_points = [int(re.sub(r'[^0-9]', '', point)) for point in predefined_points]
        processed_points = []
        for i, point in enumerate(predefined_points):
            if i % 2 == 0:
                processed_points.append([point, predefined_points[i+1]])
        selected_points = processed_points

    print(selected_points)
    points = []
    for idx, point in enumerate(selected_points):
        if idx % 2 == 0:
            cv2.circle(img, tuple(point), 4, (255, 0, 0), -1)
        else:
            cv2.circle(img, tuple(point), 4, (0, 0, 255), -1)
        points.append(tuple(point))
        if len(points) == 2:
            cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 2, tipLength=0.5)
            points = []
    img = img if isinstance(img, np.ndarray) else np.array(img)

    if save_results:
        if not os.path.isdir("results/drag_inst_viz"):
            os.makedirs("results/drag_inst_viz")
        save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
        to_save_img = Image.fromarray(img)
        to_save_img.save(f"results/drag_inst_viz/{save_prefix}.png")

    return img

def undo_points_image(original_image):
    if original_image is not None:
        return original_image, []
    else:
        return gr.Image(value=None, interactive=False), []

def clear_all():
    return (
        gr.Image(value=None, interactive=True),
        gr.Image(value=None, interactive=False),
        gr.Image(value=None, interactive=False),
        [],
        None
    )

class InstantDragPipeline:
    def __init__(self, seed=9999, device="cuda", dtype=torch.float16):
        self.seed = seed
        self.device = device
        self.dtype = dtype
        self.generator = torch.Generator(device=device).manual_seed(seed)
        self.flowgen_ckpt, self.flowdiffusion_ckpt = None, None
        self.model_config = dict()

    def build_model(self):
        print("Building model...")
        if self.flowgen_ckpt != self.model_config["flowgen_ckpt"]:
            self.flowgen = UnetGenerator(input_nc=5, output_nc=2)
            self.flowgen.load_state_dict(
                load_file(os.path.join("checkpoints/", self.model_config["flowgen_ckpt"]), device="cpu")
            )
            self.flowgen.to(self.device)
            self.flowgen.eval()
            self.flowgen_ckpt = self.model_config["flowgen_ckpt"]

        if self.flowdiffusion_ckpt != self.model_config["flowdiffusion_ckpt"]:
            self.flowdiffusion = FlowDiffusionPipeline.from_pretrained(
                os.path.join("checkpoints/", self.model_config["flowdiffusion_ckpt"]),
                torch_dtype=self.dtype,
                safety_checker=None
            )
            self.flowdiffusion.to(self.device)
            self.flowdiffusion_ckpt = self.model_config["flowdiffusion_ckpt"]

    def drag(self, original_image, selected_points, save_results):
        scale = self.model_config["flowgen_output_scale"]
        original_image = torch.tensor(original_image).permute(2, 0, 1).unsqueeze(0).float()  # 1, 3, 512, 512
        original_image = 2 * (original_image / 255.) - 1  # Normalize to [-1, 1]
        original_image = original_image.to(self.device)

        source_points = []
        target_points = []
        for idx, point in enumerate(selected_points):
            cur_point = torch.tensor([point[0], point[1]])  # x, y 
            if idx % 2 == 0:
                source_points.append(cur_point)
            else:
                target_points.append(cur_point)

        torch.cuda.synchronize()
        start_time = time.time()

        # Generate sparse flow vectors
        point_vector_map = torch.zeros((1, 2, LENGTH, LENGTH))
        for source_point, target_point in zip(source_points, target_points):
            cur_x, cur_y = source_point[0], source_point[1]
            target_x, target_y = target_point[0], target_point[1]
            vec_x = target_x - cur_x
            vec_y = target_y - cur_y
            point_vector_map[0, 0, int(cur_y), int(cur_x)] = vec_x
            point_vector_map[0, 1, int(cur_y), int(cur_x)] = vec_y
        point_vector_map = point_vector_map.to(self.device)

        # Sample-wise normalize the flow vectors
        factor_x = torch.amax(torch.abs(point_vector_map[:, 0, :, :]), dim=(1, 2)).view(-1, 1, 1).to(self.device)
        factor_y = torch.amax(torch.abs(point_vector_map[:, 1, :, :]), dim=(1, 2)).view(-1, 1, 1).to(self.device)
        if factor_x >= 1e-8: # Avoid division by zero
            point_vector_map[:, 0, :, :] /= factor_x
        if factor_y >= 1e-8: # Avoid division by zero
            point_vector_map[:, 1, :, :] /= factor_y

        with torch.inference_mode():
            gan_input_image = F.interpolate(original_image, size=FLOWGAN_RESOLUTION, mode="bicubic") # 256 x 256
            point_vector_map = F.interpolate(point_vector_map, size=FLOWGAN_RESOLUTION, mode="bicubic") # 256 x 256
            gan_input = torch.cat([gan_input_image, point_vector_map], dim=1)
            flow = self.flowgen(gan_input) # -1 ~ 1

            if scale == -1.0:
                flow[:, 0, :, :] *= 1.0 / torch.amax(torch.abs(flow[:, 0, :, :]), dim=(1, 2)).view(-1, 1, 1) # force the range to be [-1 ~ 1]
                flow[:, 1, :, :] *= 1.0 / torch.amax(torch.abs(flow[:, 1, :, :]), dim=(1, 2)).view(-1, 1, 1) # force the range to be [-1 ~ 1]
            else:
                flow[:, 0, :, :] *= scale # manually adjust the scale
                flow[:, 1, :, :] *= scale # manually adjust the scale

            if factor_x >= 1e-8:
                flow[:, 0, :, :] *= factor_x * (FLOWGAN_RESOLUTION[1] / original_image.shape[3]) # width
            else:
                flow[:, 0, :, :] *= 0
            if factor_y >= 1e-8:
                flow[:, 1, :, :] *= factor_y * (FLOWGAN_RESOLUTION[0] / original_image.shape[2]) # height
            else:
                flow[:, 1, :, :] *= 0
            
            resized_flow = resize_flow(flow, (FLOWDIFFUSION_RESOLUTION[0]//8, FLOWDIFFUSION_RESOLUTION[1]//8), scale_type="normalize_fixed")

            kwargs = {
                "image": original_image.to(self.dtype),
                "flow": resized_flow.to(self.dtype),
                "num_inference_steps": self.model_config['n_inference_step'],
                "image_guidance_scale": self.model_config['image_guidance'],
                "flow_guidance_scale": self.model_config['flow_guidance'],
                "generator": self.generator,
            }
            edited_image = self.flowdiffusion(**kwargs).images[0]

        end_time = time.time()
        inference_time = end_time - start_time
        print(f"Inference Time: {inference_time} seconds")

        if save_results:
            save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
            if not os.path.isdir("results/flows"):
                os.makedirs("results/flows")
            np.save(f"results/flows/{save_prefix}.npy", flow[0].detach().cpu().numpy())
            if not os.path.isdir("results/flow_visualized"):
                os.makedirs("results/flow_visualized")
            flow_to_image(flow[0].detach()).save(f"results/flow_visualized/{save_prefix}.png")
            if not os.path.isdir("results/edited_images"):
                os.makedirs("results/edited_images")
            edited_image.save(f"results/edited_images/{save_prefix}.png")
            if not os.path.isdir("results/drag_instructions"):
                os.makedirs("results/drag_instructions")
            with open(f"results/drag_instructions/{save_prefix}.txt", "w") as f:
                f.write(str(selected_points))

        edited_image = np.array(edited_image)
        return edited_image           

    def run(self, original_image, selected_points, 
            flowgen_ckpt, flowdiffusion_ckpt, image_guidance, flow_guidance, flowgen_output_scale,
            num_steps, save_results):

        self.model_config = {
            "flowgen_ckpt": flowgen_ckpt,
            "flowdiffusion_ckpt": flowdiffusion_ckpt, 
            "image_guidance": image_guidance,
            "flow_guidance": flow_guidance,
            "flowgen_output_scale": flowgen_output_scale,
            "n_inference_step": num_steps
        }

        self.build_model()

        edited_image = self.drag(original_image, selected_points, save_results)

        return edited_image