import numpy as np from PIL import Image import torch import torch.nn.functional as F def make_colorwheel(): """ Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf Code follows the original C++ source code of Daniel Scharstein. Code follows the the Matlab source code of Deqing Sun. Returns: np.ndarray: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) col = col+RY # YG colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) colorwheel[col:col+YG, 1] = 255 col = col+YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) col = col+GC # CB colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) colorwheel[col:col+CB, 2] = 255 col = col+CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) col = col+BM # MR colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) colorwheel[col:col+MR, 0] = 255 return colorwheel def flow_uv_to_colors(u, v, convert_to_bgr=False): """ Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun Args: u (np.ndarray): Input horizontal flow of shape [H,W] v (np.ndarray): Input vertical flow of shape [H,W] convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. Returns: np.ndarray: Flow visualization image of shape [H,W,3] """ flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u)/np.pi fk = (a+1) / 2*(ncols-1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:,i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1-f)*col0 + f*col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1-col[idx]) col[~idx] = col[~idx] * 0.75 # out of range # Note the 2-i => BGR instead of RGB ch_idx = 2-i if convert_to_bgr else i flow_image[:,:,ch_idx] = np.floor(255 * col) return flow_image def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, max_flow=None): """ Expects a two dimensional flow image of shape. Args: flow_uv (torch.Tensor): Flow UV image of shape [2,H,W] clip_flow (float, optional): Clip maximum of flow values. Defaults to None. convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. Returns: PIL Image: Flow visualization image """ flow_uv = flow_uv.permute(1, 2, 0).cpu().numpy() # change to [H,W,2] and convert to numpy if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:,:,0] v = flow_uv[:,:,1] if max_flow is None: rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) else: rad_max = max_flow epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) flow_image = flow_uv_to_colors(u, v, convert_to_bgr) return Image.fromarray(flow_image) def resize_flow(flow, size, scale_type="none", mode="bicubic"): """ Resize the flow tensor (Bx2xHxW) to the given size (HxW). flow tensor is in range of [-ori_w, ori_w] and [-ori_h, ori_h] Size should be a tuple (H, W). """ ori_h, ori_w = flow.shape[2:] flow = F.interpolate(flow, size=size, mode=mode, align_corners=False) if scale_type == "scale" and (ori_h != size[0] or ori_w != size[1]): flow[:,0,:,:] *= size[1] / ori_w flow[:,1,:,:] *= size[0] / ori_h elif scale_type == "normalize_fixed": # normalize to -1 ~ 1 flow[:,0,:,:] /= ori_w flow[:,1,:,:] /= ori_h elif scale_type == "normalize_max": max_flow_x = torch.amax(torch.abs(flow[:, 0, :, :]), dim=(1, 2)) max_flow_y = torch.amax(torch.abs(flow[:, 1, :, :]), dim=(1, 2)) flow[:, 0, :, :] /= max_flow_x.view(-1, 1, 1) flow[:, 1, :, :] /= max_flow_y.view(-1, 1, 1) return flow