image_hd / app_upscale.py
zhiweili
add app_upscale
3f85c56
raw
history blame
2.22 kB
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionUpscalePipeline
import torch
model_id = "stabilityai/stable-diffusion-x4-upscaler"
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
upscale_pipe = upscale_pipe.to("cuda")
DEFAULT_SRC_PROMPT = "a person with pefect face"
def create_demo() -> gr.Blocks:
from inversion_run_base import run as base_run
@spaces.GPU(duration=15)
def upscale_image(
input_image: Image,
prompt: str,
):
upscaled_image = upscale_pipe(prompt=prompt, image=input_image).images[0]
extension = 'png'
path = f"output/{uuid.uuid4()}.{extension}"
upscaled_image.save(path, quality=100)
return upscaled_image, path, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
with gr.Column():
g_btn = gr.Button("Upscale Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
g_btn.click(
fn=upscale_image,
inputs=[input_image, input_image_prompt],
outputs=[upscaled_image, download_path, generated_cost],
)
return demo