|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionUpscalePipeline |
|
import torch |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
upscale_pipe = upscale_pipe.to("cuda") |
|
|
|
DEFAULT_SRC_PROMPT = "a person with pefect face" |
|
|
|
|
|
def create_demo() -> gr.Blocks: |
|
from inversion_run_base import run as base_run |
|
|
|
@spaces.GPU(duration=15) |
|
def upscale_image( |
|
input_image: Image, |
|
prompt: str, |
|
): |
|
upscaled_image = upscale_pipe(prompt=prompt, image=input_image).images[0] |
|
extension = 'png' |
|
|
|
path = f"output/{uuid.uuid4()}.{extension}" |
|
upscaled_image.save(path, quality=100) |
|
|
|
return upscaled_image, path, time_cost_str |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
with gr.Blocks() as demo: |
|
croper = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) |
|
with gr.Column(): |
|
g_btn = gr.Button("Upscale Image") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
with gr.Column(): |
|
upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) |
|
download_path = gr.File(label="Download the output image", interactive=False) |
|
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) |
|
|
|
g_btn.click( |
|
fn=upscale_image, |
|
inputs=[input_image, input_image_prompt], |
|
outputs=[upscaled_image, download_path, generated_cost], |
|
) |
|
|
|
return demo |
|
|