|
import spaces |
|
import gradio as gr |
|
import torch |
|
import os |
|
|
|
from diffusers import ( |
|
DDPMScheduler, |
|
StableDiffusionXLImg2ImgPipeline, |
|
AutoencoderKL, |
|
) |
|
|
|
from diffusers.utils import load_image |
|
|
|
os.system("pip install torch_tensorrt==2.4.0") |
|
|
|
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"--------->Device: {device}") |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
base_pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
BASE_MODEL, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
use_safetensors=True, |
|
) |
|
base_pipe = base_pipe.to(device, silence_dtype_warnings=True) |
|
base_pipe.scheduler = DDPMScheduler.from_pretrained( |
|
BASE_MODEL, |
|
subfolder="scheduler", |
|
) |
|
|
|
backend = "torch_tensorrt" |
|
import torch_tensorrt |
|
print('Compiling model...') |
|
compiledModel = torch.compile( |
|
base_pipe.unet, |
|
backend=backend, |
|
options={ |
|
"truncate_long_and_double": True, |
|
"enabled_precisions": {torch.float32, torch.float16}, |
|
}, |
|
dynamic=False, |
|
) |
|
|
|
base_pipe.unet = compiledModel |
|
|
|
import torch._dynamo |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
try: |
|
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img.png") |
|
generated_image = base_pipe( |
|
image=init_image, |
|
prompt="A white cat", |
|
num_inference_steps=5, |
|
).images[0] |
|
|
|
generated_image.save("/tmp/gradio/generated_image.png") |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
def create_demo() -> gr.Blocks: |
|
|
|
@spaces.GPU(duration=30) |
|
def image_to_image( |
|
image: gr.Image, |
|
prompt:str, |
|
steps:int, |
|
): |
|
run_task_time = 0 |
|
time_cost_str = '' |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
generated_image = base_pipe( |
|
image=image, |
|
prompt=prompt, |
|
num_inference_steps=steps, |
|
).images[0] |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
return generated_image |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt", placeholder="Write a prompt here", lines=2, value="A beautiful sunset over the city") |
|
with gr.Column(): |
|
steps = gr.Slider(minimum=1, maximum=100, value=5, step=1, label="Num Steps") |
|
g_btn = gr.Button("Generate") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil", interactive=True) |
|
with gr.Column(): |
|
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) |
|
time_cost = gr.Textbox(label="Time Cost", lines=1, interactive=False) |
|
|
|
g_btn.click( |
|
fn=text_to_image, |
|
inputs=[input_image, prompt, steps], |
|
outputs=[generated_image, time_cost], |
|
) |
|
|
|
return demo |
|
|