optimize / app_onediff.py
zhiweili
test compile pipe
c555988
raw
history blame
3.14 kB
import spaces
import gradio as gr
import time
import torch
import os
import json
from diffusers import (
DDPMScheduler,
AutoPipelineForText2Image,
AutoencoderTiny,
)
os.system("python3 -m pip --no-cache-dir install --pre nexfort -f https://github.com/siliconflow/nexfort_releases/releases/expanded_assets/torch2.4.1_cu121")
os.system("git clone https://github.com/siliconflow/onediff.git")
os.system("cd onediff && python3 -m pip install -e .")
os.system("cd onediff_diffusers_extensions && python3 -m pip install -e .")
from onediffx import compile_pipe
def nexfort_compile(torch_module: torch.nn.Module):
options = json.loads('{"mode": "max-autotune:cudagraphs", "dynamic": true}')
return compile_pipe(torch_module, backend="nexfort", options=options, fuse_qkv_projections=True)
BASE_MODEL = "stabilityai/sdxl-turbo"
device = "cuda"
vae = AutoencoderTiny.from_pretrained(
'madebyollin/taesdxl',
use_safetensors=True,
torch_dtype=torch.float16,
).to('cuda')
base_pipe = AutoPipelineForText2Image.from_pretrained(
BASE_MODEL,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
base_pipe.to(device)
base_pipe = base_pipe.to(device, silence_dtype_warnings=True)
base_pipe.scheduler = DDPMScheduler.from_pretrained(
BASE_MODEL,
subfolder="scheduler",
)
base_pipe = compile_pipe(base_pipe)
def create_demo() -> gr.Blocks:
@spaces.GPU(duration=30)
def text_to_image(
prompt:str,
steps:int,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
generated_image = base_pipe(
prompt=prompt,
num_inference_steps=steps,
).images[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Write a prompt here", lines=2, value="A beautiful sunset over the city")
with gr.Column():
steps = gr.Slider(minimum=1, maximum=100, value=5, step=1, label="Num Steps")
g_btn = gr.Button("Generate")
with gr.Row():
with gr.Column():
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
with gr.Column():
time_cost = gr.Textbox(label="Time Cost", lines=1, interactive=False)
g_btn.click(
fn=text_to_image,
inputs=[prompt, steps],
outputs=[generated_image, time_cost],
)
return demo