zhiweili
commited on
Commit
Β·
a1553b6
1
Parent(s):
8491a0f
test onediff
Browse files- .gitignore +3 -0
- app.py +10 -0
- app_onediff.py +85 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
.DS_Store
|
3 |
+
__pycache__
|
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from app_base import create_demo as create_demo_face
|
4 |
+
|
5 |
+
with gr.Blocks(css="style.css") as demo:
|
6 |
+
with gr.Tabs():
|
7 |
+
with gr.Tab(label="Face"):
|
8 |
+
create_demo_face()
|
9 |
+
|
10 |
+
demo.launch()
|
app_onediff.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from diffusers import (
|
7 |
+
DDPMScheduler,
|
8 |
+
AutoPipelineForText2Image,
|
9 |
+
AutoencoderTiny,
|
10 |
+
)
|
11 |
+
|
12 |
+
import oneflow as flow
|
13 |
+
from onediff.infer_compiler import oneflow_compile
|
14 |
+
|
15 |
+
BASE_MODEL = "stabilityai/sdxl-turbo"
|
16 |
+
device = "cuda"
|
17 |
+
|
18 |
+
vae = AutoencoderTiny.from_pretrained(
|
19 |
+
'madebyollin/taesdxl',
|
20 |
+
use_safetensors=True,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
).to('cuda')
|
23 |
+
base_pipe = AutoPipelineForText2Image.from_pretrained(
|
24 |
+
BASE_MODEL,
|
25 |
+
vae=vae,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
variant="fp16",
|
28 |
+
use_safetensors=True,
|
29 |
+
)
|
30 |
+
base_pipe.to(device)
|
31 |
+
|
32 |
+
base_pipe = base_pipe.to(device, silence_dtype_warnings=True)
|
33 |
+
base_pipe.scheduler = DDPMScheduler.from_pretrained(
|
34 |
+
BASE_MODEL,
|
35 |
+
subfolder="scheduler",
|
36 |
+
)
|
37 |
+
base_pipe.unet = oneflow_compile(base_pipe.unet)
|
38 |
+
# base_pipe.vae.decoder = oneflow_compile(base_pipe.vae.decoder)
|
39 |
+
|
40 |
+
def create_demo() -> gr.Blocks:
|
41 |
+
|
42 |
+
@spaces.GPU(duration=10)
|
43 |
+
def text_to_image(
|
44 |
+
prompt:str,
|
45 |
+
steps:int,
|
46 |
+
):
|
47 |
+
run_task_time = 0
|
48 |
+
time_cost_str = ''
|
49 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
50 |
+
generated_image = base_pipe(
|
51 |
+
prompt=prompt,
|
52 |
+
num_inference_steps=steps,
|
53 |
+
).images[0]
|
54 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
55 |
+
return generated_image
|
56 |
+
|
57 |
+
def get_time_cost(run_task_time, time_cost_str):
|
58 |
+
now_time = int(time.time()*1000)
|
59 |
+
if run_task_time == 0:
|
60 |
+
time_cost_str = 'start'
|
61 |
+
else:
|
62 |
+
if time_cost_str != '':
|
63 |
+
time_cost_str += f'-->'
|
64 |
+
time_cost_str += f'{now_time - run_task_time}'
|
65 |
+
run_task_time = now_time
|
66 |
+
return run_task_time, time_cost_str
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Write a prompt here", lines=2, value="A beautiful sunset over the city")
|
72 |
+
with gr.Column():
|
73 |
+
steps = gr.Slider(label="Inference Steps", min=1, max=30, step=1, value=5)
|
74 |
+
g_btn = gr.Button("Generate")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
78 |
+
|
79 |
+
g_btn.click(
|
80 |
+
fn=text_to_image,
|
81 |
+
inputs=[prompt, steps],
|
82 |
+
outputs=[generated_image],
|
83 |
+
)
|
84 |
+
|
85 |
+
return demo
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
diffusers
|
5 |
+
transformers
|
6 |
+
accelerate
|
7 |
+
spaces
|