|
import torch |
|
|
|
from PIL import Image |
|
from diffusers import StableDiffusionUpscalePipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
upscale_pipe = upscale_pipe.to(device) |
|
|
|
def upscale_image( |
|
input_image: Image, |
|
prompt: str, |
|
start_size: int = 128, |
|
upscale_steps: int = 30, |
|
seed: int = 42, |
|
): |
|
generator = torch.Generator().manual_seed(seed) |
|
input_image = input_image.resize((start_size, start_size)) |
|
upscaled_image = upscale_pipe( |
|
prompt=prompt, |
|
image=input_image, |
|
num_inference_steps=upscale_steps, |
|
generator=generator, |
|
).images[0] |
|
|
|
return upscaled_image |