File size: 5,228 Bytes
df4ab84
 
 
 
 
 
 
 
 
 
 
 
3226a63
 
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
 
df4ab84
 
 
 
 
3226a63
 
 
 
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
 
df4ab84
 
3226a63
df4ab84
 
3226a63
 
df4ab84
 
3226a63
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
df4ab84
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import spaces
import gradio as gr
import time
import torch

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from enhance_utils import enhance_image

DEFAULT_SRC_PROMPT = "a person"
DEFAULT_EDIT_PROMPT = "a person with perfect face"

DEFAULT_CATEGORY = "face"

device = "cuda" if torch.cuda.is_available() else "cpu"

def create_demo() -> gr.Blocks:
    from inversion_run_base import run as base_run

    @spaces.GPU(duration=30)
    def image_to_image(
        input_image: Image,
        input_image_prompt: str,
        edit_prompt: str,
        seed: int,
        w1: float,
        num_steps: int,
        start_step: int,
        guidance_scale: float,
        generate_size: int,
        pre_enhance: bool = True,
        pre_enhance_scale: int = 2,
    ):
        w2 = 1.0
        run_task_time = 0
        time_cost_str = ''
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        if pre_enhance:
            input_image = enhance_image(input_image, enhance_face=True, scale=pre_enhance_scale)
            input_image = input_image.resize((generate_size, generate_size))
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        run_model = base_run
        res_image = run_model(
            input_image,
            input_image_prompt,
            edit_prompt,
            generate_size,
            seed,
            w1,
            w2,
            num_steps,
            start_step,
            guidance_scale,
        )
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        enhanced_image = enhance_image(res_image)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

        return enhanced_image, res_image, time_cost_str

    def get_time_cost(run_task_time, time_cost_str):
        now_time = int(time.time()*1000)
        if run_task_time == 0:
            time_cost_str = 'start'
        else:
            if time_cost_str != '': 
                time_cost_str += f'-->'
            time_cost_str += f'{now_time - run_task_time}'
        run_task_time = now_time
        return run_task_time, time_cost_str

    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Num Steps")
                start_step = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Start Step")
                with gr.Accordion("Advanced Options", open=False):
                    guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
                    generate_size = gr.Number(label="Generate Size", value=512)
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    pre_enhance = gr.Checkbox(label="Pre Enhance", value=True)
                    pre_enhance_scale = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Pre Enhance Scale")
            with gr.Column():
                seed = gr.Number(label="Seed", value=8)
                w1 = gr.Number(label="W1", value=1.5)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
                download_path = gr.File(label="Download the output image", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
                enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
                generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, pre_enhance, pre_enhance_scale],
            outputs=[enhanced_image, generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, enhanced_image],
            outputs=[restored_image, download_path],
        )

    return demo