zhiweili commited on
Commit
fd9040f
·
1 Parent(s): 2a2d3ad
Files changed (2) hide show
  1. app_base.py +2 -0
  2. upscale.py +7 -0
app_base.py CHANGED
@@ -48,6 +48,7 @@ def create_demo() -> gr.Blocks:
48
  upscale_prompt,
49
  start_size=pre_upscale_start_size,
50
  upscale_steps=pre_upscale_steps,
 
51
  )
52
  input_image = input_image.resize((generate_size, generate_size))
53
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
@@ -70,6 +71,7 @@ def create_demo() -> gr.Blocks:
70
  upscale_prompt,
71
  start_size=upscale_start_size,
72
  upscale_steps=upscale_steps,
 
73
  )
74
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
75
 
 
48
  upscale_prompt,
49
  start_size=pre_upscale_start_size,
50
  upscale_steps=pre_upscale_steps,
51
+ seed=seed,
52
  )
53
  input_image = input_image.resize((generate_size, generate_size))
54
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
 
71
  upscale_prompt,
72
  start_size=upscale_start_size,
73
  upscale_steps=upscale_steps,
74
+ seed=seed,
75
  )
76
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
77
 
upscale.py CHANGED
@@ -3,23 +3,30 @@ import torch
3
  from PIL import Image
4
  from diffusers import StableDiffusionUpscalePipeline
5
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
  model_id = "stabilityai/stable-diffusion-x4-upscaler"
9
  upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
10
  upscale_pipe = upscale_pipe.to(device)
11
 
 
 
12
  def upscale_image(
13
  input_image: Image,
14
  prompt: str,
15
  start_size: int = 128,
16
  upscale_steps: int = 30,
 
17
  ):
 
18
  input_image = input_image.resize((start_size, start_size))
19
  upscaled_image = upscale_pipe(
20
  prompt=prompt,
21
  image=input_image,
22
  num_inference_steps=upscale_steps,
 
23
  ).images[0]
24
 
25
  return upscaled_image
 
3
  from PIL import Image
4
  from diffusers import StableDiffusionUpscalePipeline
5
 
6
+ from hidiffusion import apply_hidiffusion
7
+
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  model_id = "stabilityai/stable-diffusion-x4-upscaler"
11
  upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
12
  upscale_pipe = upscale_pipe.to(device)
13
 
14
+ apply_hidiffusion(upscale_pipe)
15
+
16
  def upscale_image(
17
  input_image: Image,
18
  prompt: str,
19
  start_size: int = 128,
20
  upscale_steps: int = 30,
21
+ seed: int = 42,
22
  ):
23
+ generator = torch.Generator().manual_seed(seed)
24
  input_image = input_image.resize((start_size, start_size))
25
  upscaled_image = upscale_pipe(
26
  prompt=prompt,
27
  image=input_image,
28
  num_inference_steps=upscale_steps,
29
+ generator=generator,
30
  ).images[0]
31
 
32
  return upscaled_image