smfaiz commited on
Commit
e736148
·
verified ·
1 Parent(s): baaf744

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -18,8 +18,7 @@ from transformers import pipeline
18
  # citation_generator = pipeline("text-generation", model="gpt2")
19
 
20
  # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
21
-
22
- from transformers import T5Tokenizer, T5ForConditionalGeneration
23
 
24
 
25
  def search_related_articles_crossref(query, max_results=3):
@@ -65,9 +64,9 @@ def extract_text_from_html(url):
65
  except Exception as e:
66
  return f"Error extracting text: {str(e)}"
67
 
68
-
69
- tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
70
- model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
71
 
72
  def summarize_article(article_text):
73
  """Summarize a given article's text."""
@@ -187,11 +186,11 @@ def research_assistant(research_topic, citation_style):
187
  # Fetching article content might not be feasible; consider using metadata
188
  article_content += f"{extract_text_from_html(article['link'])}.\n" # Simplified; actual content may require other methods
189
 
190
- # citation, error = generate_citation_t5(article['title'], citation_style, article['link'])
191
- # if error:
192
- # citations.append(f"Error generating citation for '{article['title']}': {error}")
193
- # else:
194
- # citations.append(citation)
195
 
196
  except Exception as e:
197
  summaries.append(f"Error processing article '{article['title']}': {str(e)}")
 
18
  # citation_generator = pipeline("text-generation", model="gpt2")
19
 
20
  # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
21
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
22
 
23
 
24
  def search_related_articles_crossref(query, max_results=3):
 
64
  except Exception as e:
65
  return f"Error extracting text: {str(e)}"
66
 
67
+ # Load the tokenizer and model
68
+ tokenizer = AutoTokenizer.from_pretrained("pszemraj/pegasus-large-summary-explain")
69
+ model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/pegasus-large-summary-explain")
70
 
71
  def summarize_article(article_text):
72
  """Summarize a given article's text."""
 
186
  # Fetching article content might not be feasible; consider using metadata
187
  article_content += f"{extract_text_from_html(article['link'])}.\n" # Simplified; actual content may require other methods
188
 
189
+ citation, error = generate_citation_t5(article['title'], citation_style, article['link'])
190
+ if error:
191
+ citations.append(f"Error generating citation for '{article['title']}': {error}")
192
+ else:
193
+ citations.append(citation)
194
 
195
  except Exception as e:
196
  summaries.append(f"Error processing article '{article['title']}': {str(e)}")