File size: 3,808 Bytes
560b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

import torch
import torch.nn as nn
from einops import rearrange

from .convnext import CvnxtBlock


class ConvUpsample(nn.Module):
    def __init__(
        self,
        hidden_dim,
        num_layers: int = 2,
        expansion: int = 4,
        layer_scale: float = 1.0,
        kernel_size: int = 7,
        **kwargs,
    ):
        super().__init__()
        self.convs = nn.ModuleList([])
        for _ in range(num_layers):
            self.convs.append(
                CvnxtBlock(
                    hidden_dim,
                    kernel_size=kernel_size,
                    expansion=expansion,
                    layer_scale=layer_scale,
                )
            )
        self.up = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0),
            nn.UpsamplingBilinear2d(scale_factor=2),
            nn.Conv2d(hidden_dim // 2, hidden_dim // 2, kernel_size=3, padding=1),
        )

    def forward(self, x: torch.Tensor):
        for conv in self.convs:
            x = conv(x)
        x = self.up(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        return x


class ConvUpsampleShuffle(nn.Module):
    def __init__(
        self,
        hidden_dim,
        num_layers: int = 2,
        expansion: int = 4,
        layer_scale: float = 1.0,
        kernel_size: int = 7,
        **kwargs,
    ):
        super().__init__()
        self.convs = nn.ModuleList([])
        for _ in range(num_layers):
            self.convs.append(
                CvnxtBlock(
                    hidden_dim,
                    kernel_size=kernel_size,
                    expansion=expansion,
                    layer_scale=layer_scale,
                )
            )
        self.up = nn.Sequential(
            nn.PixelShuffle(2),
            nn.Conv2d(hidden_dim // 4, hidden_dim // 2, kernel_size=3, padding=1),
        )

    def forward(self, x: torch.Tensor):
        for conv in self.convs:
            x = conv(x)
        x = self.up(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        return x


class ConvUpsampleShuffleResidual(nn.Module):
    def __init__(
        self,
        hidden_dim,
        num_layers: int = 2,
        expansion: int = 4,
        layer_scale: float = 1.0,
        kernel_size: int = 7,
        padding_mode: str = "zeros",
        **kwargs,
    ):
        super().__init__()
        self.convs = nn.ModuleList([])
        for _ in range(num_layers):
            self.convs.append(
                CvnxtBlock(
                    hidden_dim,
                    kernel_size=kernel_size,
                    expansion=expansion,
                    layer_scale=layer_scale,
                    padding_mode=padding_mode,
                )
            )
        self.up = nn.Sequential(
            nn.PixelShuffle(2),
            nn.Conv2d(
                hidden_dim // 4,
                hidden_dim // 4,
                kernel_size=7,
                padding=3,
                padding_mode=padding_mode,
                groups=hidden_dim // 4,
            ),
            nn.ReLU(),
            nn.Conv2d(
                hidden_dim // 4,
                hidden_dim // 2,
                kernel_size=3,
                padding=1,
                padding_mode=padding_mode,
            ),
        )
        self.residual = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

    def forward(self, x: torch.Tensor):
        for conv in self.convs:
            x = conv(x)
        x = self.up(x) + self.residual(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        return x