import os import modal LOCAL=True if LOCAL == False: stub = modal.Stub() hopsworks_image = modal.Image.debian_slim().pip_install(["hopsworks","joblib","seaborn","sklearn","dataframe-image"]) @stub.function(image=hopsworks_image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("jim-hopsworks-ai")) def f(): g() def g(): import pandas as pd import hopsworks import joblib import datetime from PIL import Image from datetime import datetime import dataframe_image as dfi from sklearn.metrics import confusion_matrix from matplotlib import pyplot import seaborn as sns import requests project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("iris_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/iris_model.pkl") feature_view = fs.get_feature_view(name="iris_modal", version=1) batch_data = feature_view.get_batch_data() y_pred = model.predict(batch_data) # print(y_pred) flower = y_pred[y_pred.size-1] flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + flower + ".png" print("Flower predicted: " + flower) img = Image.open(requests.get(flower_url, stream=True).raw) img.save("./latest_iris.png") dataset_api = project.get_dataset_api() dataset_api.upload("./latest_iris.png", "Resources/images", overwrite=True) iris_fg = fs.get_feature_group(name="iris_modal", version=1) df = iris_fg.read() # print(df["variety"]) label = df.iloc[-1]["variety"] label_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + label + ".png" print("Flower actual: " + label) img = Image.open(requests.get(label_url, stream=True).raw) img.save("./actual_iris.png") dataset_api.upload("./actual_iris.png", "Resources/images", overwrite=True) monitor_fg = fs.get_or_create_feature_group(name="iris_predictions", version=1, primary_key=["datetime"], description="Iris flower Prediction/Outcome Monitoring" ) now = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") data = { 'prediction': [flower], 'label': [label], 'datetime': [now], } monitor_df = pd.DataFrame(data) monitor_fg.insert(monitor_df, write_options={"wait_for_job" : False}) history_df = monitor_fg.read() # Add our prediction to the history, as the history_df won't have it - # the insertion was done asynchronously, so it will take ~1 min to land on App history_df = pd.concat([history_df, monitor_df]) df_recent = history_df.tail(5) dfi.export(df_recent, './df_recent.png', table_conversion = 'matplotlib') dataset_api.upload("./df_recent.png", "Resources/images", overwrite=True) predictions = history_df[['prediction']] labels = history_df[['label']] # Only create the confusion matrix when our iris_predictions feature group has examples of all 3 iris flowers print("Number of different flower predictions to date: " + str(predictions.value_counts().count())) if predictions.value_counts().count() == 3: results = confusion_matrix(labels, predictions) df_cm = pd.DataFrame(results, ['True Setosa', 'True Versicolor', 'True Virginica'], ['Pred Setosa', 'Pred Versicolor', 'Pred Virginica']) cm = sns.heatmap(df_cm, annot=True) fig = cm.get_figure() fig.savefig("./confusion_matrix.png") dataset_api.upload("./confusion_matrix.png", "Resources/images", overwrite=True) else: print("You need 3 different flower predictions to create the confusion matrix.") print("Run the batch inference pipeline more times until you get 3 different iris flower predictions") if __name__ == "__main__": if LOCAL == True : g() else: with stub.run(): f()