Spaces:
Running
Running
File size: 1,687 Bytes
a578142 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import torch.nn as nn
import torch
import matplotlib.pyplot as plt
import torchsummary
import torchview
import config.configure as config
from src import logger
from src.data.data_ingestion import DataIngestion
from src.data.data_preprocess import data_loaders
from src.pipelines.training import model_fit
from src.model.unet import UNet
## graphviiz
STAGE_NAME = "Data Ingestion stage"
try:
logger.info(f">>>>>>>> Starting {STAGE_NAME} <<<<<<<<")
data_ingestion = DataIngestion()
data_ingestion.download()
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = 'Training'
BATCH_SIZE = 32
NUM_WORKERS = 3
EPOCHS = 50
PATH = config.SAVE_MODEL_PATH
try:
logger.info(f'Preparing DataLoders')
# getting the dataloaders
train_loader, valid_loader = data_loaders(batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, train_split=True)
# fitting the model
loss_fn = nn.BCEWithLogitsLoss()
in_channels = 3
out_channels = 1
device = 'cuda' if torch.cuda.is_available() else 'cpu'
features = [64, 128, 256, 512]
model = UNet(in_channels=in_channels, out_channels=out_channels, features=features)
optimizer = torch.optim.AdamW(model.parameters(),lr=1e-4)
# starting the training stage
logger.info(f"Strating {STAGE_NAME} Stage \n\n ==============")
summary = model_fit(
epochs=EPOCHS,
model=model,
device=device,
train_loader=train_loader,
valid_loader=valid_loader,
criterion=loss_fn,
optimizer=optimizer,
PATH=PATH
)
except Exception as e:
logger.exception(e)
raise e |