Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from PIL import Image
|
|
8 |
import numpy as np
|
9 |
import config.configure as config
|
10 |
from src.pipelines.predict import predict_mask
|
11 |
-
|
12 |
model = UNet(3, 1, [64, 128, 256, 512])
|
13 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
|
@@ -22,10 +22,29 @@ transform = A.Compose([
|
|
22 |
])
|
23 |
# Streamlit app
|
24 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
st.title("MRI segmenation App")
|
26 |
|
27 |
# Upload image through Streamlit
|
28 |
-
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
29 |
|
30 |
if uploaded_image is not None:
|
31 |
# Display the uploaded and processed images side by side
|
@@ -40,7 +59,7 @@ def main():
|
|
40 |
|
41 |
# Display the processed image in the second column
|
42 |
col2.header("Processed Image")
|
43 |
-
col2.image(processed_image, caption="
|
44 |
|
45 |
# Function to generate an image using the PyTorch model
|
46 |
def generate_image(uploaded_image):
|
|
|
8 |
import numpy as np
|
9 |
import config.configure as config
|
10 |
from src.pipelines.predict import predict_mask
|
11 |
+
import os
|
12 |
model = UNet(3, 1, [64, 128, 256, 512])
|
13 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
|
|
|
22 |
])
|
23 |
# Streamlit app
|
24 |
def main():
|
25 |
+
page_bg_img = '''
|
26 |
+
<style>
|
27 |
+
.stApp {
|
28 |
+
background-image: url("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ5xTkOsu0UGhx3csUXvFKBPn0LdyvWjALhiw&usqp=CAU");
|
29 |
+
background-size: cover;
|
30 |
+
}
|
31 |
+
.stSelectbox {
|
32 |
+
background-color:white; /* Replace with the desired background color */
|
33 |
+
color:white; /* Replace with the desired text color */
|
34 |
+
}
|
35 |
+
.stsubheader {
|
36 |
+
background-color:white;
|
37 |
+
color:white;
|
38 |
+
}
|
39 |
+
</style>
|
40 |
+
'''
|
41 |
+
|
42 |
+
st.markdown(page_bg_img, unsafe_allow_html=True)
|
43 |
+
|
44 |
st.title("MRI segmenation App")
|
45 |
|
46 |
# Upload image through Streamlit
|
47 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "tiff"])
|
48 |
|
49 |
if uploaded_image is not None:
|
50 |
# Display the uploaded and processed images side by side
|
|
|
59 |
|
60 |
# Display the processed image in the second column
|
61 |
col2.header("Processed Image")
|
62 |
+
col2.image(processed_image, caption="Processed Image", use_column_width=True)
|
63 |
|
64 |
# Function to generate an image using the PyTorch model
|
65 |
def generate_image(uploaded_image):
|